aboutsummaryrefslogtreecommitdiffstatshomepage
path: root/src/others/irrlicht-1.8.1/include/vector3d.h
blob: fd6c50dc3ec323223afd0b1c43a699dcd4d8192c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
// Copyright (C) 2002-2012 Nikolaus Gebhardt
// This file is part of the "Irrlicht Engine".
// For conditions of distribution and use, see copyright notice in irrlicht.h

#ifndef __IRR_POINT_3D_H_INCLUDED__
#define __IRR_POINT_3D_H_INCLUDED__

#include "irrMath.h"

namespace irr
{
namespace core
{

	//! 3d vector template class with lots of operators and methods.
	/** The vector3d class is used in Irrlicht for three main purposes:
		1) As a direction vector (most of the methods assume this).
		2) As a position in 3d space (which is synonymous with a direction vector from the origin to this position).
		3) To hold three Euler rotations, where X is pitch, Y is yaw and Z is roll.
	*/
	template <class T>
	class vector3d
	{
	public:
		//! Default constructor (null vector).
		vector3d() : X(0), Y(0), Z(0) {}
		//! Constructor with three different values
		vector3d(T nx, T ny, T nz) : X(nx), Y(ny), Z(nz) {}
		//! Constructor with the same value for all elements
		explicit vector3d(T n) : X(n), Y(n), Z(n) {}
		//! Copy constructor
		vector3d(const vector3d<T>& other) : X(other.X), Y(other.Y), Z(other.Z) {}

		// operators

		vector3d<T> operator-() const { return vector3d<T>(-X, -Y, -Z); }

		vector3d<T>& operator=(const vector3d<T>& other) { X = other.X; Y = other.Y; Z = other.Z; return *this; }

		vector3d<T> operator+(const vector3d<T>& other) const { return vector3d<T>(X + other.X, Y + other.Y, Z + other.Z); }
		vector3d<T>& operator+=(const vector3d<T>& other) { X+=other.X; Y+=other.Y; Z+=other.Z; return *this; }
		vector3d<T> operator+(const T val) const { return vector3d<T>(X + val, Y + val, Z + val); }
		vector3d<T>& operator+=(const T val) { X+=val; Y+=val; Z+=val; return *this; }

		vector3d<T> operator-(const vector3d<T>& other) const { return vector3d<T>(X - other.X, Y - other.Y, Z - other.Z); }
		vector3d<T>& operator-=(const vector3d<T>& other) { X-=other.X; Y-=other.Y; Z-=other.Z; return *this; }
		vector3d<T> operator-(const T val) const { return vector3d<T>(X - val, Y - val, Z - val); }
		vector3d<T>& operator-=(const T val) { X-=val; Y-=val; Z-=val; return *this; }

		vector3d<T> operator*(const vector3d<T>& other) const { return vector3d<T>(X * other.X, Y * other.Y, Z * other.Z); }
		vector3d<T>& operator*=(const vector3d<T>& other) { X*=other.X; Y*=other.Y; Z*=other.Z; return *this; }
		vector3d<T> operator*(const T v) const { return vector3d<T>(X * v, Y * v, Z * v); }
		vector3d<T>& operator*=(const T v) { X*=v; Y*=v; Z*=v; return *this; }

		vector3d<T> operator/(const vector3d<T>& other) const { return vector3d<T>(X / other.X, Y / other.Y, Z / other.Z); }
		vector3d<T>& operator/=(const vector3d<T>& other) { X/=other.X; Y/=other.Y; Z/=other.Z; return *this; }
		vector3d<T> operator/(const T v) const { T i=(T)1.0/v; return vector3d<T>(X * i, Y * i, Z * i); }
		vector3d<T>& operator/=(const T v) { T i=(T)1.0/v; X*=i; Y*=i; Z*=i; return *this; }

		//! sort in order X, Y, Z. Equality with rounding tolerance.
		bool operator<=(const vector3d<T>&other) const
		{
			return 	(X<other.X || core::equals(X, other.X)) ||
					(core::equals(X, other.X) && (Y<other.Y || core::equals(Y, other.Y))) ||
					(core::equals(X, other.X) && core::equals(Y, other.Y) && (Z<other.Z || core::equals(Z, other.Z)));
		}

		//! sort in order X, Y, Z. Equality with rounding tolerance.
		bool operator>=(const vector3d<T>&other) const
		{
			return 	(X>other.X || core::equals(X, other.X)) ||
					(core::equals(X, other.X) && (Y>other.Y || core::equals(Y, other.Y))) ||
					(core::equals(X, other.X) && core::equals(Y, other.Y) && (Z>other.Z || core::equals(Z, other.Z)));
		}

		//! sort in order X, Y, Z. Difference must be above rounding tolerance.
		bool operator<(const vector3d<T>&other) const
		{
			return 	(X<other.X && !core::equals(X, other.X)) ||
					(core::equals(X, other.X) && Y<other.Y && !core::equals(Y, other.Y)) ||
					(core::equals(X, other.X) && core::equals(Y, other.Y) && Z<other.Z && !core::equals(Z, other.Z));
		}

		//! sort in order X, Y, Z. Difference must be above rounding tolerance.
		bool operator>(const vector3d<T>&other) const
		{
			return 	(X>other.X && !core::equals(X, other.X)) ||
					(core::equals(X, other.X) && Y>other.Y && !core::equals(Y, other.Y)) ||
					(core::equals(X, other.X) && core::equals(Y, other.Y) && Z>other.Z && !core::equals(Z, other.Z));
		}

		//! use weak float compare
		bool operator==(const vector3d<T>& other) const
		{
			return this->equals(other);
		}

		bool operator!=(const vector3d<T>& other) const
		{
			return !this->equals(other);
		}

		// functions

		//! returns if this vector equals the other one, taking floating point rounding errors into account
		bool equals(const vector3d<T>& other, const T tolerance = (T)ROUNDING_ERROR_f32 ) const
		{
			return core::equals(X, other.X, tolerance) &&
				core::equals(Y, other.Y, tolerance) &&
				core::equals(Z, other.Z, tolerance);
		}

		vector3d<T>& set(const T nx, const T ny, const T nz) {X=nx; Y=ny; Z=nz; return *this;}
		vector3d<T>& set(const vector3d<T>& p) {X=p.X; Y=p.Y; Z=p.Z;return *this;}

		//! Get length of the vector.
		T getLength() const { return core::squareroot( X*X + Y*Y + Z*Z ); }

		//! Get squared length of the vector.
		/** This is useful because it is much faster than getLength().
		\return Squared length of the vector. */
		T getLengthSQ() const { return X*X + Y*Y + Z*Z; }

		//! Get the dot product with another vector.
		T dotProduct(const vector3d<T>& other) const
		{
			return X*other.X + Y*other.Y + Z*other.Z;
		}

		//! Get distance from another point.
		/** Here, the vector is interpreted as point in 3 dimensional space. */
		T getDistanceFrom(const vector3d<T>& other) const
		{
			return vector3d<T>(X - other.X, Y - other.Y, Z - other.Z).getLength();
		}

		//! Returns squared distance from another point.
		/** Here, the vector is interpreted as point in 3 dimensional space. */
		T getDistanceFromSQ(const vector3d<T>& other) const
		{
			return vector3d<T>(X - other.X, Y - other.Y, Z - other.Z).getLengthSQ();
		}

		//! Calculates the cross product with another vector.
		/** \param p Vector to multiply with.
		\return Crossproduct of this vector with p. */
		vector3d<T> crossProduct(const vector3d<T>& p) const
		{
			return vector3d<T>(Y * p.Z - Z * p.Y, Z * p.X - X * p.Z, X * p.Y - Y * p.X);
		}

		//! Returns if this vector interpreted as a point is on a line between two other points.
		/** It is assumed that the point is on the line.
		\param begin Beginning vector to compare between.
		\param end Ending vector to compare between.
		\return True if this vector is between begin and end, false if not. */
		bool isBetweenPoints(const vector3d<T>& begin, const vector3d<T>& end) const
		{
			const T f = (end - begin).getLengthSQ();
			return getDistanceFromSQ(begin) <= f &&
				getDistanceFromSQ(end) <= f;
		}

		//! Normalizes the vector.
		/** In case of the 0 vector the result is still 0, otherwise
		the length of the vector will be 1.
		\return Reference to this vector after normalization. */
		vector3d<T>& normalize()
		{
			f64 length = X*X + Y*Y + Z*Z;
			if (length == 0 ) // this check isn't an optimization but prevents getting NAN in the sqrt.
				return *this;
			length = core::reciprocal_squareroot(length);

			X = (T)(X * length);
			Y = (T)(Y * length);
			Z = (T)(Z * length);
			return *this;
		}

		//! Sets the length of the vector to a new value
		vector3d<T>& setLength(T newlength)
		{
			normalize();
			return (*this *= newlength);
		}

		//! Inverts the vector.
		vector3d<T>& invert()
		{
			X *= -1;
			Y *= -1;
			Z *= -1;
			return *this;
		}

		//! Rotates the vector by a specified number of degrees around the Y axis and the specified center.
		/** \param degrees Number of degrees to rotate around the Y axis.
		\param center The center of the rotation. */
		void rotateXZBy(f64 degrees, const vector3d<T>& center=vector3d<T>())
		{
			degrees *= DEGTORAD64;
			f64 cs = cos(degrees);
			f64 sn = sin(degrees);
			X -= center.X;
			Z -= center.Z;
			set((T)(X*cs - Z*sn), Y, (T)(X*sn + Z*cs));
			X += center.X;
			Z += center.Z;
		}

		//! Rotates the vector by a specified number of degrees around the Z axis and the specified center.
		/** \param degrees: Number of degrees to rotate around the Z axis.
		\param center: The center of the rotation. */
		void rotateXYBy(f64 degrees, const vector3d<T>& center=vector3d<T>())
		{
			degrees *= DEGTORAD64;
			f64 cs = cos(degrees);
			f64 sn = sin(degrees);
			X -= center.X;
			Y -= center.Y;
			set((T)(X*cs - Y*sn), (T)(X*sn + Y*cs), Z);
			X += center.X;
			Y += center.Y;
		}

		//! Rotates the vector by a specified number of degrees around the X axis and the specified center.
		/** \param degrees: Number of degrees to rotate around the X axis.
		\param center: The center of the rotation. */
		void rotateYZBy(f64 degrees, const vector3d<T>& center=vector3d<T>())
		{
			degrees *= DEGTORAD64;
			f64 cs = cos(degrees);
			f64 sn = sin(degrees);
			Z -= center.Z;
			Y -= center.Y;
			set(X, (T)(Y*cs - Z*sn), (T)(Y*sn + Z*cs));
			Z += center.Z;
			Y += center.Y;
		}

		//! Creates an interpolated vector between this vector and another vector.
		/** \param other The other vector to interpolate with.
		\param d Interpolation value between 0.0f (all the other vector) and 1.0f (all this vector).
		Note that this is the opposite direction of interpolation to getInterpolated_quadratic()
		\return An interpolated vector.  This vector is not modified. */
		vector3d<T> getInterpolated(const vector3d<T>& other, f64 d) const
		{
			const f64 inv = 1.0 - d;
			return vector3d<T>((T)(other.X*inv + X*d), (T)(other.Y*inv + Y*d), (T)(other.Z*inv + Z*d));
		}

		//! Creates a quadratically interpolated vector between this and two other vectors.
		/** \param v2 Second vector to interpolate with.
		\param v3 Third vector to interpolate with (maximum at 1.0f)
		\param d Interpolation value between 0.0f (all this vector) and 1.0f (all the 3rd vector).
		Note that this is the opposite direction of interpolation to getInterpolated() and interpolate()
		\return An interpolated vector. This vector is not modified. */
		vector3d<T> getInterpolated_quadratic(const vector3d<T>& v2, const vector3d<T>& v3, f64 d) const
		{
			// this*(1-d)*(1-d) + 2 * v2 * (1-d) + v3 * d * d;
			const f64 inv = (T) 1.0 - d;
			const f64 mul0 = inv * inv;
			const f64 mul1 = (T) 2.0 * d * inv;
			const f64 mul2 = d * d;

			return vector3d<T> ((T)(X * mul0 + v2.X * mul1 + v3.X * mul2),
					(T)(Y * mul0 + v2.Y * mul1 + v3.Y * mul2),
					(T)(Z * mul0 + v2.Z * mul1 + v3.Z * mul2));
		}

		//! Sets this vector to the linearly interpolated vector between a and b.
		/** \param a first vector to interpolate with, maximum at 1.0f
		\param b second vector to interpolate with, maximum at 0.0f
		\param d Interpolation value between 0.0f (all vector b) and 1.0f (all vector a)
		Note that this is the opposite direction of interpolation to getInterpolated_quadratic()
		*/
		vector3d<T>& interpolate(const vector3d<T>& a, const vector3d<T>& b, f64 d)
		{
			X = (T)((f64)b.X + ( ( a.X - b.X ) * d ));
			Y = (T)((f64)b.Y + ( ( a.Y - b.Y ) * d ));
			Z = (T)((f64)b.Z + ( ( a.Z - b.Z ) * d ));
			return *this;
		}


		//! Get the rotations that would make a (0,0,1) direction vector point in the same direction as this direction vector.
		/** Thanks to Arras on the Irrlicht forums for this method.  This utility method is very useful for
		orienting scene nodes towards specific targets.  For example, if this vector represents the difference
		between two scene nodes, then applying the result of getHorizontalAngle() to one scene node will point
		it at the other one.
		Example code:
		// Where target and seeker are of type ISceneNode*
		const vector3df toTarget(target->getAbsolutePosition() - seeker->getAbsolutePosition());
		const vector3df requiredRotation = toTarget.getHorizontalAngle();
		seeker->setRotation(requiredRotation);

		\return A rotation vector containing the X (pitch) and Y (raw) rotations (in degrees) that when applied to a
		+Z (e.g. 0, 0, 1) direction vector would make it point in the same direction as this vector. The Z (roll) rotation
		is always 0, since two Euler rotations are sufficient to point in any given direction. */
		vector3d<T> getHorizontalAngle() const
		{
			vector3d<T> angle;

			const f64 tmp = (atan2((f64)X, (f64)Z) * RADTODEG64);
			angle.Y = (T)tmp;

			if (angle.Y < 0)
				angle.Y += 360;
			if (angle.Y >= 360)
				angle.Y -= 360;

			const f64 z1 = core::squareroot(X*X + Z*Z);

			angle.X = (T)(atan2((f64)z1, (f64)Y) * RADTODEG64 - 90.0);

			if (angle.X < 0)
				angle.X += 360;
			if (angle.X >= 360)
				angle.X -= 360;

			return angle;
		}

		//! Get the spherical coordinate angles
		/** This returns Euler degrees for the point represented by
		this vector.  The calculation assumes the pole at (0,1,0) and
		returns the angles in X and Y.
		*/
		vector3d<T> getSphericalCoordinateAngles() const
		{
			vector3d<T> angle;
			const f64 length = X*X + Y*Y + Z*Z;

			if (length)
			{
				if (X!=0)
				{
					angle.Y = (T)(atan2((f64)Z,(f64)X) * RADTODEG64);
				}
				else if (Z<0)
					angle.Y=180;

				angle.X = (T)(acos(Y * core::reciprocal_squareroot(length)) * RADTODEG64);
			}
			return angle;
		}

		//! Builds a direction vector from (this) rotation vector.
		/** This vector is assumed to be a rotation vector composed of 3 Euler angle rotations, in degrees.
		The implementation performs the same calculations as using a matrix to do the rotation.

		\param[in] forwards  The direction representing "forwards" which will be rotated by this vector.
		If you do not provide a direction, then the +Z axis (0, 0, 1) will be assumed to be forwards.
		\return A direction vector calculated by rotating the forwards direction by the 3 Euler angles
		(in degrees) represented by this vector. */
		vector3d<T> rotationToDirection(const vector3d<T> & forwards = vector3d<T>(0, 0, 1)) const
		{
			const f64 cr = cos( core::DEGTORAD64 * X );
			const f64 sr = sin( core::DEGTORAD64 * X );
			const f64 cp = cos( core::DEGTORAD64 * Y );
			const f64 sp = sin( core::DEGTORAD64 * Y );
			const f64 cy = cos( core::DEGTORAD64 * Z );
			const f64 sy = sin( core::DEGTORAD64 * Z );

			const f64 srsp = sr*sp;
			const f64 crsp = cr*sp;

			const f64 pseudoMatrix[] = {
				( cp*cy ), ( cp*sy ), ( -sp ),
				( srsp*cy-cr*sy ), ( srsp*sy+cr*cy ), ( sr*cp ),
				( crsp*cy+sr*sy ), ( crsp*sy-sr*cy ), ( cr*cp )};

			return vector3d<T>(
				(T)(forwards.X * pseudoMatrix[0] +
					forwards.Y * pseudoMatrix[3] +
					forwards.Z * pseudoMatrix[6]),
				(T)(forwards.X * pseudoMatrix[1] +
					forwards.Y * pseudoMatrix[4] +
					forwards.Z * pseudoMatrix[7]),
				(T)(forwards.X * pseudoMatrix[2] +
					forwards.Y * pseudoMatrix[5] +
					forwards.Z * pseudoMatrix[8]));
		}

		//! Fills an array of 4 values with the vector data (usually floats).
		/** Useful for setting in shader constants for example. The fourth value
		will always be 0. */
		void getAs4Values(T* array) const
		{
			array[0] = X;
			array[1] = Y;
			array[2] = Z;
			array[3] = 0;
		}

		//! Fills an array of 3 values with the vector data (usually floats).
		/** Useful for setting in shader constants for example.*/
		void getAs3Values(T* array) const
		{
			array[0] = X;
			array[1] = Y;
			array[2] = Z;
		}


		//! X coordinate of the vector
		T X;

		//! Y coordinate of the vector
		T Y;

		//! Z coordinate of the vector
		T Z;
	};

	//! partial specialization for integer vectors
	// Implementor note: inline keyword needed due to template specialization for s32. Otherwise put specialization into a .cpp
	template <>
	inline vector3d<s32> vector3d<s32>::operator /(s32 val) const {return core::vector3d<s32>(X/val,Y/val,Z/val);}
	template <>
	inline vector3d<s32>& vector3d<s32>::operator /=(s32 val) {X/=val;Y/=val;Z/=val; return *this;}

	template <>
	inline vector3d<s32> vector3d<s32>::getSphericalCoordinateAngles() const
	{
		vector3d<s32> angle;
		const f64 length = X*X + Y*Y + Z*Z;

		if (length)
		{
			if (X!=0)
			{
				angle.Y = round32((f32)(atan2((f64)Z,(f64)X) * RADTODEG64));
			}
			else if (Z<0)
				angle.Y=180;

			angle.X = round32((f32)(acos(Y * core::reciprocal_squareroot(length)) * RADTODEG64));
		}
		return angle;
	}

	//! Typedef for a f32 3d vector.
	typedef vector3d<f32> vector3df;

	//! Typedef for an integer 3d vector.
	typedef vector3d<s32> vector3di;

	//! Function multiplying a scalar and a vector component-wise.
	template<class S, class T>
	vector3d<T> operator*(const S scalar, const vector3d<T>& vector) { return vector*scalar; }

} // end namespace core
} // end namespace irr

#endif