1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
|
%include
{
#include "LuaSL.h"
}
%extra_argument {LuaSL_compiler *compiler}
%stack_size 1024
%token_type {LSL_Leaf *}
%default_type {LSL_Leaf *}
%token_destructor {burnLeaf($$);}
%default_destructor {burnLeaf($$);}
// The start symbol, just coz we need one.
// Lemon does not like the start symbol to be on the RHS, so give it a dummy start symbol.
program ::= script LSL_SCRIPT(A). { if (NULL != A) A->left = compiler->ast; compiler->ast = A; }
// Various forms of "space". The lexer takes care of them for us.
%nonassoc LSL_SPACE LSL_COMMENT LSL_COMMENT_LINE LSL_UNKNOWN.
// Basic script structure.
%nonassoc LSL_SCRIPT.
script ::= script state(A). { if (NULL != A) A->left = compiler->ast; compiler->ast = A; }
script ::= script functionBody(A). { if (NULL != A) A->left = compiler->ast; compiler->ast = A; }
script ::= script statement(A). { if (NULL != A) A->left = compiler->ast; compiler->ast = A; }
script ::= .
// State definitions.
%nonassoc LSL_BLOCK_OPEN LSL_BLOCK_CLOSE LSL_STATE.
stateBlock(A) ::= beginBlock(L) functionList(B) LSL_BLOCK_CLOSE(R). { A = addBlock(compiler, L, B, R); }
state(A) ::= LSL_DEFAULT(I) stateBlock(B). { A = addState(compiler, NULL, I, B); }
state(A) ::= LSL_STATE_CHANGE(S) LSL_IDENTIFIER(I) stateBlock(B). { A = addState(compiler, S, I, B); }
// Function definitions.
%nonassoc LSL_PARAMETER LSL_PARAMETER_LIST LSL_FUNCTION.
functionList(A) ::= functionList(B) functionBody(C). { A = collectStatements(compiler, B, C); }
functionList(A) ::= functionBody(C). { A = collectStatements(compiler, NULL, C); }
// No such thing as a function list with no functions.
//functionList(A) ::= . { A = collectStatements(compiler, NULL, NULL); }
functionBody(A) ::= function(F) block(B). { A = addFunctionBody(compiler, F, B); } // addFunctionBody returns an implied addStatement(compiler, NULL, F, NULL, F, NULL, NULL);
parameterList(A) ::= parameterList(B) LSL_COMMA(C) parameter(D). { A = collectParameters(compiler, B, C, D); }
parameterList(A) ::= parameter(D). { A = collectParameters(compiler, NULL, NULL, D); }
parameterList(A) ::= . { A = collectParameters(compiler, NULL, NULL, NULL); }
parameter(A) ::= type(B) LSL_IDENTIFIER(C). { A = addParameter(compiler, B, C); }
function(A) ::= LSL_IDENTIFIER(C) LSL_PARENTHESIS_OPEN(D) parameterList(E) LSL_PARENTHESIS_CLOSE(F). { A = addFunction(compiler, NULL, C, D, E, F); }
function(A) ::= type(B) LSL_IDENTIFIER(C) LSL_PARENTHESIS_OPEN(D) parameterList(E) LSL_PARENTHESIS_CLOSE(F). { A = addFunction(compiler, B, C, D, E, F); }
// Blocks.
block(A) ::= beginBlock(L) statementList(B) LSL_BLOCK_CLOSE(R). { A = addBlock(compiler, L, B, R); }
// Various forms of statement.
%nonassoc LSL_STATEMENT.
statementList(A) ::= statementList(B) statement(C). { A = collectStatements(compiler, B, C); }
// This causes infinite loops (and about 150 conflicts) with - if () single statement;
//statementList(A) ::= statement(C). { A = collectStatements(compiler, NULL, C); }
// Yes, you can have an empty block.
statementList(A) ::= . { A = collectStatements(compiler, NULL, NULL); }
%nonassoc LSL_DO LSL_FOR LSL_IF LSL_JUMP LSL_RETURN LSL_STATE_CHANGE LSL_WHILE.
%nonassoc LSL_ELSE LSL_ELSEIF.
statement(A) ::= LSL_DO(F) block(B) LSL_WHILE(W) LSL_PARENTHESIS_OPEN(L) expr(E) LSL_PARENTHESIS_CLOSE(R) LSL_STATEMENT(S). { A = addStatement(compiler, S, F, L, E, R, B, W); }
statement(A) ::= LSL_FOR(F) LSL_PARENTHESIS_OPEN(L) expr(E0) LSL_STATEMENT(S0) expr(E1) LSL_STATEMENT(S1) expr(E2) LSL_PARENTHESIS_CLOSE(R) block(B). { A = addFor(compiler, NULL, F, L, E0, S0, E1, S1, E2, R, B); }
statement(A) ::= LSL_FOR(F) LSL_PARENTHESIS_OPEN(L) expr(E0) LSL_STATEMENT(S0) expr(E1) LSL_STATEMENT(S1) expr(E2) LSL_PARENTHESIS_CLOSE(R) statement(S). { A = addFor(compiler, NULL, F, L, E0, S0, E1, S1, E2, R, S); }
statement(A) ::= ifBlock(B). { A = B; }
ifBlock(A) ::= ifBlock(B) elseIfBlock(E). { A = addIfElse(compiler, B, E); }
ifBlock(A) ::= ifBlock(B) elseBlock(E). { A = addIfElse(compiler, B, E); }
ifBlock(A) ::= LSL_IF(F) LSL_PARENTHESIS_OPEN(L) expr(E) LSL_PARENTHESIS_CLOSE(R) block(B). [LSL_ELSE] { A = addStatement(compiler, NULL, F, L, E, R, B, NULL); }
ifBlock(A) ::= LSL_IF(F) LSL_PARENTHESIS_OPEN(L) expr(E) LSL_PARENTHESIS_CLOSE(R) statement(S). [LSL_ELSE] { A = addStatement(compiler, NULL, F, L, E, R, S, NULL); }
elseIfBlock(A) ::= LSL_ELSEIF(F) LSL_PARENTHESIS_OPEN(L) expr(E) LSL_PARENTHESIS_CLOSE(R) block(B). [LSL_ELSEIF] { A = addStatement(compiler, NULL, F, L, E, R, B, NULL); }
elseIfBlock(A) ::= LSL_ELSEIF(F) LSL_PARENTHESIS_OPEN(L) expr(E) LSL_PARENTHESIS_CLOSE(R) statement(S). [LSL_ELSEIF] { A = addStatement(compiler, NULL, F, L, E, R, S, NULL); }
elseBlock(A) ::= LSL_ELSE(F) block(B). { A = addStatement(compiler, NULL, F, NULL, NULL, NULL, B, NULL); }
elseBlock(A) ::= LSL_ELSE(F) statement(S). { A = addStatement(compiler, NULL, F, NULL, NULL, NULL, S, NULL); }
statement(A) ::= LSL_JUMP(F) LSL_IDENTIFIER(I) LSL_STATEMENT(S). { A = addStatement(compiler, S, F, NULL, NULL, NULL, NULL, I); }
statement(A) ::= LSL_RETURN(F) expr(E) LSL_STATEMENT(S). { A = addStatement(compiler, S, F, NULL, E, NULL, NULL, NULL); }
statement(A) ::= LSL_RETURN(F) LSL_STATEMENT(S). { A = addStatement(compiler, S, F, NULL, NULL, NULL, NULL, NULL); }
statement(A) ::= LSL_STATE_CHANGE(F) LSL_DEFAULT(I) LSL_STATEMENT(S). { A = addStatement(compiler, S, F, NULL, NULL, NULL, NULL, I); }
statement(A) ::= LSL_STATE_CHANGE(F) LSL_IDENTIFIER(I) LSL_STATEMENT(S). { A = addStatement(compiler, S, F, NULL, NULL, NULL, NULL, I); }
statement(A) ::= LSL_WHILE(F) LSL_PARENTHESIS_OPEN(L) expr(E) LSL_PARENTHESIS_CLOSE(R) block(B). { A = addStatement(compiler, NULL, F, L, E, R, B, NULL); }
statement(A) ::= LSL_WHILE(F) LSL_PARENTHESIS_OPEN(L) expr(E) LSL_PARENTHESIS_CLOSE(R) statement(S). { A = addStatement(compiler, NULL, F, L, E, R, S, NULL); }
%nonassoc LSL_LABEL.
statement(A) ::= LSL_LABEL(F) LSL_IDENTIFIER(I) LSL_STATEMENT(S). { A = addStatement(compiler, S, F, NULL, NULL, NULL, NULL, I); }
beginBlock(A) ::= LSL_BLOCK_OPEN(B). { A = beginBlock(compiler, B); }
// This might be bogus, or might be valid LSL, but it lets us test the expression parser by evaluating them.
statement(A) ::= expr(E) LSL_STATEMENT(S). { A = addStatement(compiler, S, S, NULL, E, NULL, NULL, NULL); }
// Various forms of expression.
// Used for function call params, and list contents.
exprList(A) ::= exprList(B) LSL_COMMA(C) expr(D). { A = collectArguments(compiler, B, C, D); }
exprList(A) ::= expr(D). { A = collectArguments(compiler, NULL, NULL, D); }
exprList(A) ::= . { A = collectArguments(compiler, NULL, NULL, NULL); }
// Assignments and variable declarations.
%right LSL_ASSIGNMENT_CONCATENATE LSL_ASSIGNMENT_ADD LSL_ASSIGNMENT_SUBTRACT LSL_ASSIGNMENT_MULTIPLY LSL_ASSIGNMENT_MODULO LSL_ASSIGNMENT_DIVIDE LSL_ASSIGNMENT_PLAIN.
// Variables and dealing with them.
expr(A) ::= identifier(B). { A = B; }
// Yes, these can be expressions, and can happen in if statements and such. In Lua they are NOT expressions. sigh
expr(A) ::= identifier(B) LSL_ASSIGNMENT_CONCATENATE(C) expr(D). { A = addOperation(compiler, B, C, D); }
expr(A) ::= identifier(B) LSL_ASSIGNMENT_ADD(C) expr(D). { A = addOperation(compiler, B, C, D); }
expr(A) ::= identifier(B) LSL_ASSIGNMENT_SUBTRACT(C) expr(D). { A = addOperation(compiler, B, C, D); }
expr(A) ::= identifier(B) LSL_ASSIGNMENT_MULTIPLY(C) expr(D). { A = addOperation(compiler, B, C, D); }
expr(A) ::= identifier(B) LSL_ASSIGNMENT_MODULO(C) expr(D). { A = addOperation(compiler, B, C, D); }
expr(A) ::= identifier(B) LSL_ASSIGNMENT_DIVIDE(C) expr(D). { A = addOperation(compiler, B, C, D); }
expr(A) ::= identifier(B) LSL_ASSIGNMENT_PLAIN(C) expr(D). { A = addOperation(compiler, B, C, D); }
// Hmm think this can have commas seperating the assignment parts, or is that only in C?. If so, best to separate them when converting to Lua, as it uses that syntax for something else.
// Well, not in OpenSim at least, nor in SL. So we are safe. B-)
// On the other hand, it might be legal to have comma separated bits in a for loop - for ((i = 1), (j=1); ...
statement(A) ::= type(T) LSL_IDENTIFIER(I) LSL_ASSIGNMENT_PLAIN(D) expr(E) LSL_STATEMENT(S). { A = addStatement(compiler, S, I, NULL, addVariable(compiler, T, I, D, E), NULL, NULL, I); }
statement(A) ::= type(T) LSL_IDENTIFIER(I) LSL_STATEMENT(S). { A = addStatement(compiler, S, I, NULL, addVariable(compiler, T, I, NULL, NULL), NULL, NULL, I); }
// Basic operators.
%right LSL_BOOL_AND.
expr(A) ::= expr(B) LSL_BOOL_AND(C) expr(D). { A = addOperation(compiler, B, C, D); }
%right LSL_BOOL_OR.
expr(A) ::= expr(B) LSL_BOOL_OR(C) expr(D). { A = addOperation(compiler, B, C, D); }
%left LSL_BIT_AND LSL_BIT_XOR LSL_BIT_OR.
expr(A) ::= expr(B) LSL_BIT_OR(C) expr(D). { A = addOperation(compiler, B, C, D); }
expr(A) ::= expr(B) LSL_BIT_XOR(C) expr(D). { A = addOperation(compiler, B, C, D); }
expr(A) ::= expr(B) LSL_BIT_AND(C) expr(D). { A = addOperation(compiler, B, C, D); }
%right LSL_EQUAL LSL_NOT_EQUAL.
expr(A) ::= expr(B) LSL_NOT_EQUAL(C) expr(D). { A = addOperation(compiler, B, C, D); }
expr(A) ::= expr(B) LSL_EQUAL(C) expr(D). { A = addOperation(compiler, B, C, D); }
%right LSL_LESS_THAN LSL_GREATER_THAN LSL_LESS_EQUAL LSL_GREATER_EQUAL.
expr(A) ::= expr(B) LSL_GREATER_EQUAL(C) expr(D). { A = addOperation(compiler, B, C, D); }
expr(A) ::= expr(B) LSL_LESS_EQUAL(C) expr(D). { A = addOperation(compiler, B, C, D); }
expr(A) ::= expr(B) LSL_GREATER_THAN(C) expr(D). { A = addOperation(compiler, B, C, D); }
expr(A) ::= expr(B) LSL_LESS_THAN(C) expr(D). { A = addOperation(compiler, B, C, D); }
%left LSL_LEFT_SHIFT LSL_RIGHT_SHIFT.
expr(A) ::= expr(B) LSL_RIGHT_SHIFT(C) expr(D). { A = addOperation(compiler, B, C, D); }
expr(A) ::= expr(B) LSL_LEFT_SHIFT(C) expr(D). { A = addOperation(compiler, B, C, D); }
%left LSL_SUBTRACT LSL_ADD LSL_CONCATENATE.
expr(A) ::= expr(B) LSL_ADD(C) expr(D). { A = addOperation(compiler, B, C, D); }
expr(A) ::= expr(B) LSL_SUBTRACT(C) expr(D). { A = addOperation(compiler, B, C, D); }
%left LSL_DIVIDE LSL_MODULO LSL_MULTIPLY LSL_DOT_PRODUCT LSL_CROSS_PRODUCT.
expr(A) ::= expr(B) LSL_MULTIPLY(C) expr(D). { A = addOperation(compiler, B, C, D); }
expr(A) ::= expr(B) LSL_MODULO(C) expr(D). { A = addOperation(compiler, B, C, D); }
expr(A) ::= expr(B) LSL_DIVIDE(C) expr(D). { A = addOperation(compiler, B, C, D); }
%right LSL_BIT_NOT LSL_BOOL_NOT LSL_NEGATION.
expr(A) ::= LSL_BIT_NOT(B) expr(C). { A = addOperation(compiler, NULL, B, C); }
expr(A) ::= LSL_BOOL_NOT(B) expr(C). { A = addOperation(compiler, NULL, B, C); }
expr(A) ::= LSL_SUBTRACT(B) expr(C). [LSL_NEGATION] { A = addOperation(compiler, NULL, B, C); }
// Types, typecasts, and expression reordering.
%right LSL_TYPECAST_OPEN LSL_TYPECAST_CLOSE.
%nonassoc LSL_TYPE_FLOAT LSL_TYPE_INTEGER LSL_TYPE_KEY LSL_TYPE_LIST LSL_TYPE_ROTATION LSL_TYPE_STRING LSL_TYPE_VECTOR.
type(A) ::= LSL_TYPE_FLOAT(B). { B->basicType = OT_float; A = B; }
type(A) ::= LSL_TYPE_INTEGER(B). { B->basicType = OT_integer; A = B; }
type(A) ::= LSL_TYPE_KEY(B). { B->basicType = OT_key; A = B; }
type(A) ::= LSL_TYPE_LIST(B). { B->basicType = OT_list; A = B; }
type(A) ::= LSL_TYPE_ROTATION(B). { B->basicType = OT_rotation; A = B; }
type(A) ::= LSL_TYPE_STRING(B). { B->basicType = OT_string; A = B; }
type(A) ::= LSL_TYPE_VECTOR(B). { B->basicType = OT_vector; A = B; }
%left LSL_ANGLE_OPEN LSL_ANGLE_CLOSE.
%nonassoc LSL_BRACKET_OPEN LSL_BRACKET_CLOSE.
%nonassoc LSL_PARENTHESIS_OPEN LSL_PARENTHESIS_CLOSE LSL_EXPRESSION.
expr(A) ::= LSL_PARENTHESIS_OPEN(B) expr(C) LSL_PARENTHESIS_CLOSE(D). { A = addParenthesis(B, C, LSL_EXPRESSION, D); }
expr(A) ::= LSL_PARENTHESIS_OPEN(B) type(C) LSL_PARENTHESIS_CLOSE(D) expr(E). { A = addTypecast(B, C, D, E); }
%right LSL_DOT LSL_IDENTIFIER LSL_FUNCTION_CALL LSL_VARIABLE.
identifier(A) ::= identifier(I) LSL_DOT(D) LSL_IDENTIFIER(B). { A = checkVariable(compiler, I, D, B); }
identifier(A) ::= LSL_IDENTIFIER(B). { A = checkVariable(compiler, B, NULL, NULL); }
%right LSL_DECREMENT_PRE LSL_INCREMENT_PRE LSL_DECREMENT_POST LSL_INCREMENT_POST.
expr(A) ::= identifier(B) LSL_DECREMENT_PRE(C). { A = addCrement(compiler, B, C, LSL_DECREMENT_POST); }
expr(A) ::= identifier(B) LSL_INCREMENT_PRE(C). { A = addCrement(compiler, B, C, LSL_INCREMENT_POST); }
expr(A) ::= LSL_DECREMENT_PRE(C) identifier(B). { A = addCrement(compiler, B, C, LSL_DECREMENT_PRE); }
expr(A) ::= LSL_INCREMENT_PRE(C) identifier(B). { A = addCrement(compiler, B, C, LSL_INCREMENT_PRE); }
// Function call.
// Causes a conflict when exprList is empty with a function definition with no type and no parameters.
expr(A) ::= LSL_IDENTIFIER(B) LSL_PARENTHESIS_OPEN(C) exprList(D) LSL_PARENTHESIS_CLOSE(E). { A = addFunctionCall(compiler, B, C, D, E); }
%nonassoc LSL_COMMA.
// Values.
%nonassoc LSL_FLOAT.
expr(A) ::= LSL_FLOAT(B). { A = addNumby(B); }
%nonassoc LSL_INTEGER.
expr(A) ::= LSL_INTEGER(B). { A = addNumby(B); }
%nonassoc LSL_KEY.
expr(A) ::= LSL_KEY(B). { B->basicType = OT_key; A = B; }
%nonassoc LSL_LIST.
expr(A) ::= LSL_BRACKET_OPEN(L) exprList(E) LSL_BRACKET_CLOSE(R). [LSL_BRACKET_OPEN] { A = addList(L, E, R); }
%nonassoc LSL_ROTATION LSL_VECTOR.
// Uses the same symbol for less than, greater than, and the rotation / vector delimiters.
expr(A) ::= LSL_LESS_THAN(L) exprList(E) LSL_GREATER_THAN(R). [LSL_ANGLE_OPEN] { A = addRotVec(L, E, R); }
%nonassoc LSL_STRING.
expr(A) ::= LSL_STRING(B). { B->basicType = OT_string; A = B; }
// Parser callbacks.
%parse_accept
{
// PI("Parsing complete.");
}
%parse_failure
{
compiler->script.bugCount++;
PE("Giving up. Parser is hopelessly lost!");
}
%stack_overflow
{
compiler->script.bugCount++;
PE("Giving up. Parser stack overflow @ line %d, column %d!", yypMinor->yy0->line, yypMinor->yy0->column); // Gotta love consistancy, if it ever happens.
}
%syntax_error
{
compiler->script.bugCount++;
PE("Syntax error @ line %d, column %d!", yyminor.yy0->line, yyminor.yy0->column);
}
/* Undocumented shit that might be useful later. Pffft
** The next table maps tokens into fallback tokens. If a construct
** like the following:
**.
** %fallback ID X Y Z.
**
** appears in the grammar, then ID becomes a fallback token for X, Y,
** and Z. Whenever one of the tokens X, Y, or Z is input to the parser
** but it does not parse, the type of the token is changed to ID and
** the parse is retried before an error is thrown.
%wildcard
%code
%ifdef
%endif
%ifndef
%endif
*/
|