aboutsummaryrefslogtreecommitdiffstatshomepage
path: root/libraries/irrlicht-1.8/source/Irrlicht/CShadowVolumeSceneNode.cpp
blob: 0134edd1fce23c457f56b2ab28c208b6516ff44a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
// Copyright (C) 2002-2012 Nikolaus Gebhardt
// This file is part of the "Irrlicht Engine".
// For conditions of distribution and use, see copyright notice in irrlicht.h

#include "CShadowVolumeSceneNode.h"
#include "ISceneManager.h"
#include "IMesh.h"
#include "IVideoDriver.h"
#include "ICameraSceneNode.h"
#include "SViewFrustum.h"
#include "SLight.h"
#include "os.h"

namespace irr
{
namespace scene
{


//! constructor
CShadowVolumeSceneNode::CShadowVolumeSceneNode(const IMesh* shadowMesh, ISceneNode* parent,
		ISceneManager* mgr, s32 id, bool zfailmethod, f32 infinity)
: IShadowVolumeSceneNode(parent, mgr, id),
	ShadowMesh(0), IndexCount(0), VertexCount(0), ShadowVolumesUsed(0),
	Infinity(infinity), UseZFailMethod(zfailmethod)
{
	#ifdef _DEBUG
	setDebugName("CShadowVolumeSceneNode");
	#endif
	setShadowMesh(shadowMesh);
	setAutomaticCulling(scene::EAC_OFF);
}


//! destructor
CShadowVolumeSceneNode::~CShadowVolumeSceneNode()
{
	if (ShadowMesh)
		ShadowMesh->drop();
}


void CShadowVolumeSceneNode::createShadowVolume(const core::vector3df& light, bool isDirectional)
{
	SShadowVolume* svp = 0;
	core::aabbox3d<f32>* bb = 0;

	// builds the shadow volume and adds it to the shadow volume list.

	if (ShadowVolumes.size() > ShadowVolumesUsed)
	{
		// get the next unused buffer

		svp = &ShadowVolumes[ShadowVolumesUsed];
		svp->set_used(0);

		bb = &ShadowBBox[ShadowVolumesUsed];
	}
	else
	{
		ShadowVolumes.push_back(SShadowVolume());
		svp = &ShadowVolumes.getLast();

		ShadowBBox.push_back(core::aabbox3d<f32>());
		bb = &ShadowBBox.getLast();
	}
	svp->reallocate(IndexCount*5);
	++ShadowVolumesUsed;

	// We use triangle lists
	Edges.set_used(IndexCount*2);
	u32 numEdges = 0;

	numEdges=createEdgesAndCaps(light, svp, bb);

	// for all edges add the near->far quads
	for (u32 i=0; i<numEdges; ++i)
	{
		const core::vector3df &v1 = Vertices[Edges[2*i+0]];
		const core::vector3df &v2 = Vertices[Edges[2*i+1]];
		const core::vector3df v3(v1+(v1 - light).normalize()*Infinity);
		const core::vector3df v4(v2+(v2 - light).normalize()*Infinity);

		// Add a quad (two triangles) to the vertex list
#ifdef _DEBUG
		if (svp->size() >= svp->allocated_size()-5)
			os::Printer::log("Allocation too small.", ELL_DEBUG);
#endif
		svp->push_back(v1);
		svp->push_back(v2);
		svp->push_back(v3);

		svp->push_back(v2);
		svp->push_back(v4);
		svp->push_back(v3);
	}
}


#define IRR_USE_ADJACENCY
#define IRR_USE_REVERSE_EXTRUDED

u32 CShadowVolumeSceneNode::createEdgesAndCaps(const core::vector3df& light,
					SShadowVolume* svp, core::aabbox3d<f32>* bb)
{
	u32 numEdges=0;
	const u32 faceCount = IndexCount / 3;

	if(faceCount >= 1)
		bb->reset(Vertices[Indices[0]]);
	else
		bb->reset(0,0,0);

	// Check every face if it is front or back facing the light.
	for (u32 i=0; i<faceCount; ++i)
	{
		const core::vector3df v0 = Vertices[Indices[3*i+0]];
		const core::vector3df v1 = Vertices[Indices[3*i+1]];
		const core::vector3df v2 = Vertices[Indices[3*i+2]];

#ifdef IRR_USE_REVERSE_EXTRUDED
		FaceData[i]=core::triangle3df(v0,v1,v2).isFrontFacing(light);
#else
		FaceData[i]=core::triangle3df(v2,v1,v0).isFrontFacing(light);
#endif

		if (UseZFailMethod && FaceData[i])
		{
#ifdef _DEBUG
			if (svp->size() >= svp->allocated_size()-5)
				os::Printer::log("Allocation too small.", ELL_DEBUG);
#endif
			// add front cap from light-facing faces
			svp->push_back(v2);
			svp->push_back(v1);
			svp->push_back(v0);

			// add back cap
			const core::vector3df i0 = v0+(v0-light).normalize()*Infinity;
			const core::vector3df i1 = v1+(v1-light).normalize()*Infinity;
			const core::vector3df i2 = v2+(v2-light).normalize()*Infinity;

			svp->push_back(i0);
			svp->push_back(i1);
			svp->push_back(i2);

			bb->addInternalPoint(i0);
			bb->addInternalPoint(i1);
			bb->addInternalPoint(i2);
		}
	}

	// Create edges
	for (u32 i=0; i<faceCount; ++i)
	{
		// check all front facing faces
		if (FaceData[i] == true)
		{
			const u16 wFace0 = Indices[3*i+0];
			const u16 wFace1 = Indices[3*i+1];
			const u16 wFace2 = Indices[3*i+2];

			const u16 adj0 = Adjacency[3*i+0];
			const u16 adj1 = Adjacency[3*i+1];
			const u16 adj2 = Adjacency[3*i+2];

			// add edges if face is adjacent to back-facing face
			// or if no adjacent face was found
#ifdef IRR_USE_ADJACENCY
			if (adj0 == i || FaceData[adj0] == false)
#endif
			{
				// add edge v0-v1
				Edges[2*numEdges+0] = wFace0;
				Edges[2*numEdges+1] = wFace1;
				++numEdges;
			}

#ifdef IRR_USE_ADJACENCY
			if (adj1 == i || FaceData[adj1] == false)
#endif
			{
				// add edge v1-v2
				Edges[2*numEdges+0] = wFace1;
				Edges[2*numEdges+1] = wFace2;
				++numEdges;
			}

#ifdef IRR_USE_ADJACENCY
			if (adj2 == i || FaceData[adj2] == false)
#endif
			{
				// add edge v2-v0
				Edges[2*numEdges+0] = wFace2;
				Edges[2*numEdges+1] = wFace0;
				++numEdges;
			}
		}
	}
	return numEdges;
}


void CShadowVolumeSceneNode::setShadowMesh(const IMesh* mesh)
{
	if (ShadowMesh == mesh)
		return;
	if (ShadowMesh)
		ShadowMesh->drop();
	ShadowMesh = mesh;
	if (ShadowMesh)
	{
		ShadowMesh->grab();
		Box = ShadowMesh->getBoundingBox();
	}
}


void CShadowVolumeSceneNode::updateShadowVolumes()
{
	const u32 oldIndexCount = IndexCount;
	const u32 oldVertexCount = VertexCount;

	const IMesh* const mesh = ShadowMesh;
	if (!mesh)
		return;

	// create as much shadow volumes as there are lights but
	// do not ignore the max light settings.
	const u32 lightCount = SceneManager->getVideoDriver()->getDynamicLightCount();
	if (!lightCount)
		return;

	// calculate total amount of vertices and indices

	VertexCount = 0;
	IndexCount = 0;
	ShadowVolumesUsed = 0;

	u32 i;
	u32 totalVertices = 0;
	u32 totalIndices = 0;
	const u32 bufcnt = mesh->getMeshBufferCount();

	for (i=0; i<bufcnt; ++i)
	{
		const IMeshBuffer* buf = mesh->getMeshBuffer(i);
		totalIndices += buf->getIndexCount();
		totalVertices += buf->getVertexCount();
	}

	// allocate memory if necessary

	Vertices.set_used(totalVertices);
	Indices.set_used(totalIndices);
	FaceData.set_used(totalIndices / 3);

	// copy mesh
	for (i=0; i<bufcnt; ++i)
	{
		const IMeshBuffer* buf = mesh->getMeshBuffer(i);

		const u16* idxp = buf->getIndices();
		const u16* idxpend = idxp + buf->getIndexCount();
		for (; idxp!=idxpend; ++idxp)
			Indices[IndexCount++] = *idxp + VertexCount;

		const u32 vtxcnt = buf->getVertexCount();
		for (u32 j=0; j<vtxcnt; ++j)
			Vertices[VertexCount++] = buf->getPosition(j);
	}

	// recalculate adjacency if necessary
	if (oldVertexCount != VertexCount || oldIndexCount != IndexCount)
		calculateAdjacency();

	core::matrix4 mat = Parent->getAbsoluteTransformation();
	mat.makeInverse();
	const core::vector3df parentpos = Parent->getAbsolutePosition();

	// TODO: Only correct for point lights.
	for (i=0; i<lightCount; ++i)
	{
		const video::SLight& dl = SceneManager->getVideoDriver()->getDynamicLight(i);
		core::vector3df lpos = dl.Position;
		if (dl.CastShadows &&
			fabs((lpos - parentpos).getLengthSQ()) <= (dl.Radius*dl.Radius*4.0f))
		{
			mat.transformVect(lpos);
			createShadowVolume(lpos);
		}
	}
}


//! pre render method
void CShadowVolumeSceneNode::OnRegisterSceneNode()
{
	if (IsVisible)
	{
		SceneManager->registerNodeForRendering(this, scene::ESNRP_SHADOW);
		ISceneNode::OnRegisterSceneNode();
	}
}

//! renders the node.
void CShadowVolumeSceneNode::render()
{
	video::IVideoDriver* driver = SceneManager->getVideoDriver();

	if (!ShadowVolumesUsed || !driver)
		return;

	driver->setTransform(video::ETS_WORLD, Parent->getAbsoluteTransformation());

	for (u32 i=0; i<ShadowVolumesUsed; ++i)
	{
		bool drawShadow = true;

		if (UseZFailMethod && SceneManager->getActiveCamera())
		{
			// Disable shadows drawing, when back cap is behind of ZFar plane.

			SViewFrustum frust = *SceneManager->getActiveCamera()->getViewFrustum();

			core::matrix4 invTrans(Parent->getAbsoluteTransformation(), core::matrix4::EM4CONST_INVERSE);
			frust.transform(invTrans);

			core::vector3df edges[8];
			ShadowBBox[i].getEdges(edges);

			core::vector3df largestEdge = edges[0];
			f32 maxDistance = core::vector3df(SceneManager->getActiveCamera()->getPosition() - edges[0]).getLength();
			f32 curDistance = 0.f;

			for(int j = 1; j < 8; ++j)
			{
				curDistance = core::vector3df(SceneManager->getActiveCamera()->getPosition() - edges[j]).getLength();

				if(curDistance > maxDistance)
				{
					maxDistance = curDistance;
					largestEdge = edges[j];
				}
			}

			if (!(frust.planes[scene::SViewFrustum::VF_FAR_PLANE].classifyPointRelation(largestEdge) != core::ISREL3D_FRONT))
				drawShadow = false;
		}

		if(drawShadow)
			driver->drawStencilShadowVolume(ShadowVolumes[i], UseZFailMethod, DebugDataVisible);
		else
		{
			core::array<core::vector3df> triangles;
			driver->drawStencilShadowVolume(triangles, UseZFailMethod, DebugDataVisible);
		}
	}
}


//! returns the axis aligned bounding box of this node
const core::aabbox3d<f32>& CShadowVolumeSceneNode::getBoundingBox() const
{
	return Box;
}


//! Generates adjacency information based on mesh indices.
void CShadowVolumeSceneNode::calculateAdjacency()
{
	Adjacency.set_used(IndexCount);

	// go through all faces and fetch their three neighbours
	for (u32 f=0; f<IndexCount; f+=3)
	{
		for (u32 edge = 0; edge<3; ++edge)
		{
			const core::vector3df& v1 = Vertices[Indices[f+edge]];
			const core::vector3df& v2 = Vertices[Indices[f+((edge+1)%3)]];

			// now we search an_O_ther _F_ace with these two
			// vertices, which is not the current face.
			u32 of;

			for (of=0; of<IndexCount; of+=3)
			{
				// only other faces
				if (of != f)
				{
					bool cnt1 = false;
					bool cnt2 = false;

					for (s32 e=0; e<3; ++e)
					{
						if (v1.equals(Vertices[Indices[of+e]]))
							cnt1=true;

						if (v2.equals(Vertices[Indices[of+e]]))
							cnt2=true;
					}
					// one match for each vertex, i.e. edge is the same
					if (cnt1 && cnt2)
						break;
				}
			}

			// no adjacent edges -> store face number, else store adjacent face
			if (of >= IndexCount)
				Adjacency[f + edge] = f/3;
			else
				Adjacency[f + edge] = of/3;
		}
	}
}


} // end namespace scene
} // end namespace irr