1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
|
/** Example 016 Quake3 Map Shader Support
This Tutorial shows how to load a Quake 3 map into the
engine, create a SceneNode for optimizing the speed of
rendering and how to create a user controlled camera.
Lets start like the HelloWorld example: We include
the irrlicht header files and an additional file to be able
to ask the user for a driver type using the console.
*/
#include <irrlicht.h>
#include "driverChoice.h"
/*
define which Quake3 Level should be loaded
*/
#define IRRLICHT_QUAKE3_ARENA
//#define ORIGINAL_QUAKE3_ARENA
//#define CUSTOM_QUAKE3_ARENA
//#define SHOW_SHADER_NAME
#ifdef ORIGINAL_QUAKE3_ARENA
#define QUAKE3_STORAGE_FORMAT addFolderFileArchive
#define QUAKE3_STORAGE_1 "/baseq3/"
#ifdef CUSTOM_QUAKE3_ARENA
#define QUAKE3_STORAGE_2 "/cf/"
#define QUAKE3_MAP_NAME "maps/cf.bsp"
#else
#define QUAKE3_MAP_NAME "maps/q3dm8.bsp"
#endif
#endif
#ifdef IRRLICHT_QUAKE3_ARENA
#define QUAKE3_STORAGE_FORMAT addFileArchive
#define QUAKE3_STORAGE_1 "../../media/map-20kdm2.pk3"
#define QUAKE3_MAP_NAME "maps/20kdm2.bsp"
#endif
using namespace irr;
using namespace scene;
/*
Again, to be able to use the Irrlicht.DLL file, we need to link with the
Irrlicht.lib. We could set this option in the project settings, but
to make it easy, we use a pragma comment lib:
*/
#ifdef _MSC_VER
#pragma comment(lib, "Irrlicht.lib")
#endif
/*
A class to produce a series of screenshots
*/
class CScreenShotFactory : public IEventReceiver
{
public:
CScreenShotFactory( IrrlichtDevice *device, const c8 * templateName, ISceneNode* node )
: Device(device), Number(0), FilenameTemplate(templateName), Node(node)
{
FilenameTemplate.replace ( '/', '_' );
FilenameTemplate.replace ( '\\', '_' );
}
bool OnEvent(const SEvent& event)
{
// check if user presses the key F9
if ((event.EventType == EET_KEY_INPUT_EVENT) &&
event.KeyInput.PressedDown)
{
if (event.KeyInput.Key == KEY_F9)
{
video::IImage* image = Device->getVideoDriver()->createScreenShot();
if (image)
{
c8 buf[256];
snprintf(buf, 256, "%s_shot%04d.jpg",
FilenameTemplate.c_str(),
++Number);
Device->getVideoDriver()->writeImageToFile(image, buf, 85 );
image->drop();
}
}
else
if (event.KeyInput.Key == KEY_F8)
{
if (Node->isDebugDataVisible())
Node->setDebugDataVisible(scene::EDS_OFF);
else
Node->setDebugDataVisible(scene::EDS_BBOX_ALL);
}
}
return false;
}
private:
IrrlichtDevice *Device;
u32 Number;
core::stringc FilenameTemplate;
ISceneNode* Node;
};
/*
Ok, lets start.
*/
int IRRCALLCONV main(int argc, char* argv[])
{
/*
Like in the HelloWorld example, we create an IrrlichtDevice with
createDevice(). The difference now is that we ask the user to select
which hardware accelerated driver to use. The Software device would be
too slow to draw a huge Quake 3 map, but just for the fun of it, we make
this decision possible too.
*/
// ask user for driver
video::E_DRIVER_TYPE driverType=driverChoiceConsole();
if (driverType==video::EDT_COUNT)
return 1;
// create device and exit if creation failed
const core::dimension2du videoDim(800,600);
IrrlichtDevice *device = createDevice(driverType, videoDim, 32, false );
if (device == 0)
return 1; // could not create selected driver.
const char* mapname=0;
if (argc>2)
mapname = argv[2];
else
mapname = QUAKE3_MAP_NAME;
/*
Get a pointer to the video driver and the SceneManager so that
we do not always have to write device->getVideoDriver() and
device->getSceneManager().
*/
video::IVideoDriver* driver = device->getVideoDriver();
scene::ISceneManager* smgr = device->getSceneManager();
gui::IGUIEnvironment* gui = device->getGUIEnvironment();
//! add our private media directory to the file system
device->getFileSystem()->addFileArchive("../../media/");
/*
To display the Quake 3 map, we first need to load it. Quake 3 maps
are packed into .pk3 files, which are nothing other than .zip files.
So we add the .pk3 file to our FileSystem. After it was added,
we are able to read from the files in that archive as they would
directly be stored on disk.
*/
if (argc>2)
device->getFileSystem()->QUAKE3_STORAGE_FORMAT(argv[1]);
else
device->getFileSystem()->QUAKE3_STORAGE_FORMAT(QUAKE3_STORAGE_1);
#ifdef QUAKE3_STORAGE_2
device->getFileSystem()->QUAKE3_STORAGE_FORMAT(QUAKE3_STORAGE_2);
#endif
// Quake3 Shader controls Z-Writing
smgr->getParameters()->setAttribute(scene::ALLOW_ZWRITE_ON_TRANSPARENT, true);
/*
Now we can load the mesh by calling getMesh(). We get a pointer returned
to a IAnimatedMesh. As you know, Quake 3 maps are not really animated,
they are only a huge chunk of static geometry with some materials
attached. Hence the IAnimated mesh consists of only one frame,
so we get the "first frame" of the "animation", which is our quake level
and create an Octree scene node with it, using addOctreeSceneNode().
The Octree optimizes the scene a little bit, trying to draw only geometry
which is currently visible. An alternative to the Octree would be a
AnimatedMeshSceneNode, which would draw always the complete geometry of
the mesh, without optimization. Try it out: Write addAnimatedMeshSceneNode
instead of addOctreeSceneNode and compare the primitives drawn by the
video driver. (There is a getPrimitiveCountDrawed() method in the
IVideoDriver class). Note that this optimization with the Octree is only
useful when drawing huge meshes consisting of lots of geometry.
*/
scene::IQ3LevelMesh* const mesh =
(scene::IQ3LevelMesh*) smgr->getMesh(mapname);
/*
add the geometry mesh to the Scene ( polygon & patches )
The Geometry mesh is optimised for faster drawing
*/
scene::ISceneNode* node = 0;
if (mesh)
{
scene::IMesh * const geometry = mesh->getMesh(quake3::E_Q3_MESH_GEOMETRY);
node = smgr->addOctreeSceneNode(geometry, 0, -1, 4096);
}
// create an event receiver for making screenshots
CScreenShotFactory screenshotFactory(device, mapname, node);
device->setEventReceiver(&screenshotFactory);
/*
now construct SceneNodes for each Shader
The Objects are stored in the quake mesh scene::E_Q3_MESH_ITEMS
and the Shader ID is stored in the MaterialParameters
mostly dark looking skulls and moving lava.. or green flashing tubes?
*/
if ( mesh )
{
// the additional mesh can be quite huge and is unoptimized
const scene::IMesh * const additional_mesh = mesh->getMesh(quake3::E_Q3_MESH_ITEMS);
#ifdef SHOW_SHADER_NAME
gui::IGUIFont *font = device->getGUIEnvironment()->getFont("../../media/fontlucida.png");
u32 count = 0;
#endif
for ( u32 i = 0; i!= additional_mesh->getMeshBufferCount(); ++i )
{
const IMeshBuffer* meshBuffer = additional_mesh->getMeshBuffer(i);
const video::SMaterial& material = meshBuffer->getMaterial();
// The ShaderIndex is stored in the material parameter
const s32 shaderIndex = (s32) material.MaterialTypeParam2;
// the meshbuffer can be rendered without additional support, or it has no shader
const quake3::IShader *shader = mesh->getShader(shaderIndex);
if (0 == shader)
{
continue;
}
// we can dump the shader to the console in its
// original but already parsed layout in a pretty
// printers way.. commented out, because the console
// would be full...
// quake3::dumpShader ( Shader );
node = smgr->addQuake3SceneNode(meshBuffer, shader);
#ifdef SHOW_SHADER_NAME
count += 1;
core::stringw name( node->getName() );
node = smgr->addBillboardTextSceneNode(
font, name.c_str(), node,
core::dimension2d<f32>(80.0f, 8.0f),
core::vector3df(0, 10, 0));
#endif
}
}
/*
Now we only need a Camera to look at the Quake 3 map. And we want to
create a user controlled camera. There are some different cameras
available in the Irrlicht engine. For example the Maya Camera which can
be controlled comparable to the camera in Maya: Rotate with left mouse
button pressed, Zoom with both buttons pressed, translate with right
mouse button pressed. This could be created with
addCameraSceneNodeMaya(). But for this example, we want to create a
camera which behaves like the ones in first person shooter games (FPS).
*/
scene::ICameraSceneNode* camera = smgr->addCameraSceneNodeFPS();
/*
so we need a good starting Position in the level.
we can ask the Quake3 Loader for all entities with class_name
"info_player_deathmatch"
we choose a random launch
*/
if ( mesh )
{
quake3::tQ3EntityList &entityList = mesh->getEntityList();
quake3::IEntity search;
search.name = "info_player_deathmatch";
s32 index = entityList.binary_search(search);
if (index >= 0)
{
s32 notEndList;
do
{
const quake3::SVarGroup *group = entityList[index].getGroup(1);
u32 parsepos = 0;
const core::vector3df pos =
quake3::getAsVector3df(group->get("origin"), parsepos);
parsepos = 0;
const f32 angle = quake3::getAsFloat(group->get("angle"), parsepos);
core::vector3df target(0.f, 0.f, 1.f);
target.rotateXZBy(angle);
camera->setPosition(pos);
camera->setTarget(pos + target);
++index;
/*
notEndList = ( index < (s32) entityList.size () &&
entityList[index].name == search.name &&
(device->getTimer()->getRealTime() >> 3 ) & 1
);
*/
notEndList = index == 2;
} while ( notEndList );
}
}
/*
The mouse cursor needs not to be visible, so we make it invisible.
*/
device->getCursorControl()->setVisible(false);
// load the engine logo
gui->addImage(driver->getTexture("irrlichtlogo2.png"),
core::position2d<s32>(10, 10));
// show the driver logo
const core::position2di pos(videoDim.Width - 128, videoDim.Height - 64);
switch ( driverType )
{
case video::EDT_BURNINGSVIDEO:
gui->addImage(driver->getTexture("burninglogo.png"), pos);
break;
case video::EDT_OPENGL:
gui->addImage(driver->getTexture("opengllogo.png"), pos);
break;
case video::EDT_DIRECT3D8:
case video::EDT_DIRECT3D9:
gui->addImage(driver->getTexture("directxlogo.png"), pos);
break;
}
/*
We have done everything, so lets draw it. We also write the current
frames per second and the drawn primitives to the caption of the
window. The 'if (device->isWindowActive())' line is optional, but
prevents the engine render to set the position of the mouse cursor
after task switching when other program are active.
*/
int lastFPS = -1;
while(device->run())
if (device->isWindowActive())
{
driver->beginScene(true, true, video::SColor(255,20,20,40));
smgr->drawAll();
gui->drawAll();
driver->endScene();
int fps = driver->getFPS();
//if (lastFPS != fps)
{
io::IAttributes * const attr = smgr->getParameters();
core::stringw str = L"Q3 [";
str += driver->getName();
str += "] FPS:";
str += fps;
str += " Cull:";
str += attr->getAttributeAsInt("calls");
str += "/";
str += attr->getAttributeAsInt("culled");
str += " Draw: ";
str += attr->getAttributeAsInt("drawn_solid");
str += "/";
str += attr->getAttributeAsInt("drawn_transparent");
str += "/";
str += attr->getAttributeAsInt("drawn_transparent_effect");
device->setWindowCaption(str.c_str());
lastFPS = fps;
}
}
/*
In the end, delete the Irrlicht device.
*/
device->drop();
return 0;
}
/*
**/
|