aboutsummaryrefslogtreecommitdiffstatshomepage
path: root/libraries/irrlicht-1.8/examples/11.PerPixelLighting/main.cpp
blob: a6e95ba9139216f16c5a946ddafd4011f5688641 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
/** Example 011 Per-Pixel Lighting

This tutorial shows how to use one of the built in more complex materials in
irrlicht: Per pixel lighted surfaces using normal maps and parallax mapping. It
will also show how to use fog and moving particle systems. And don't panic: You
do not need any experience with shaders to use these materials in Irrlicht.

At first, we need to include all headers and do the stuff we always do, like in
nearly all other tutorials.
*/
#include <irrlicht.h>
#include "driverChoice.h"

using namespace irr;

#ifdef _MSC_VER
#pragma comment(lib, "Irrlicht.lib")
#endif

/*
For this example, we need an event receiver, to make it possible for the user
to switch between the three available material types. In addition, the event
receiver will create some small GUI window which displays what material is
currently being used. There is nothing special done in this class, so maybe you
want to skip reading it.
*/
class MyEventReceiver : public IEventReceiver
{
public:

	MyEventReceiver(scene::ISceneNode* room,scene::ISceneNode* earth,
		gui::IGUIEnvironment* env, video::IVideoDriver* driver)
	{
		// store pointer to room so we can change its drawing mode
		Room = room;
		Earth = earth;
		Driver = driver;

		// set a nicer font
		gui::IGUISkin* skin = env->getSkin();
		gui::IGUIFont* font = env->getFont("../../media/fonthaettenschweiler.bmp");
		if (font)
			skin->setFont(font);

		// add window and listbox
		gui::IGUIWindow* window = env->addWindow(
			core::rect<s32>(460,375,630,470), false, L"Use 'E' + 'R' to change");

		ListBox = env->addListBox(
			core::rect<s32>(2,22,165,88), window);

		ListBox->addItem(L"Diffuse");
		ListBox->addItem(L"Bump mapping");
		ListBox->addItem(L"Parallax mapping");
		ListBox->setSelected(1);

		// create problem text
		ProblemText = env->addStaticText(
			L"Your hardware or this renderer is not able to use the "\
			L"needed shaders for this material. Using fall back materials.",
			core::rect<s32>(150,20,470,80));

		ProblemText->setOverrideColor(video::SColor(100,255,255,255));

		// set start material (prefer parallax mapping if available)
		video::IMaterialRenderer* renderer =
			Driver->getMaterialRenderer(video::EMT_PARALLAX_MAP_SOLID);
		if (renderer && renderer->getRenderCapability() == 0)
			ListBox->setSelected(2);

		// set the material which is selected in the listbox
		setMaterial();
	}

	bool OnEvent(const SEvent& event)
	{
		// check if user presses the key 'E' or 'R'
		if (event.EventType == irr::EET_KEY_INPUT_EVENT &&
			!event.KeyInput.PressedDown && Room && ListBox)
		{
			// change selected item in listbox

			int sel = ListBox->getSelected();
			if (event.KeyInput.Key == irr::KEY_KEY_R)
				++sel;
			else
			if (event.KeyInput.Key == irr::KEY_KEY_E)
				--sel;
			else
				return false;

			if (sel > 2) sel = 0;
			if (sel < 0) sel = 2;
			ListBox->setSelected(sel);

			// set the material which is selected in the listbox
			setMaterial();
		}

		return false;
	}

private:

	// sets the material of the room mesh the the one set in the
	// list box.
	void setMaterial()
	{
		video::E_MATERIAL_TYPE type = video::EMT_SOLID;

		// change material setting
		switch(ListBox->getSelected())
		{
		case 0: type = video::EMT_SOLID;
			break;
		case 1: type = video::EMT_NORMAL_MAP_SOLID;
			break;
		case 2: type = video::EMT_PARALLAX_MAP_SOLID;
			break;
		}

		Room->setMaterialType(type);

		// change material setting
		switch(ListBox->getSelected())
		{
		case 0: type = video::EMT_TRANSPARENT_VERTEX_ALPHA;
			break;
		case 1: type = video::EMT_NORMAL_MAP_TRANSPARENT_VERTEX_ALPHA;
			break;
		case 2: type = video::EMT_PARALLAX_MAP_TRANSPARENT_VERTEX_ALPHA;
			break;
		}

		Earth->setMaterialType(type);

		/*
		We need to add a warning if the materials will not be able to
		be displayed 100% correctly. This is no problem, they will be
		rendered using fall back materials, but at least the user
		should know that it would look better on better hardware. We
		simply check if the material renderer is able to draw at full
		quality on the current hardware. The
		IMaterialRenderer::getRenderCapability() returns 0 if this is
		the case.
		*/
		video::IMaterialRenderer* renderer = Driver->getMaterialRenderer(type);

		// display some problem text when problem
		if (!renderer || renderer->getRenderCapability() != 0)
			ProblemText->setVisible(true);
		else
			ProblemText->setVisible(false);
	}

private:

	gui::IGUIStaticText* ProblemText;
	gui::IGUIListBox* ListBox;

	scene::ISceneNode* Room;
	scene::ISceneNode* Earth;
	video::IVideoDriver* Driver;
};


/*
Now for the real fun. We create an Irrlicht Device and start to setup the scene.
*/
int main()
{
	// ask user for driver
	video::E_DRIVER_TYPE driverType=driverChoiceConsole();
	if (driverType==video::EDT_COUNT)
		return 1;

	// create device

	IrrlichtDevice* device = createDevice(driverType,
			core::dimension2d<u32>(640, 480));

	if (device == 0)
		return 1; // could not create selected driver.

	/*
	Before we start with the interesting stuff, we do some simple things:
	Store pointers to the most important parts of the engine (video driver,
	scene manager, gui environment) to safe us from typing too much, add an
	irrlicht engine logo to the window and a user controlled first person
	shooter style camera. Also, we let the engine know that it should store
	all textures in 32 bit. This necessary because for parallax mapping, we
	need 32 bit textures.
	*/

	video::IVideoDriver* driver = device->getVideoDriver();
	scene::ISceneManager* smgr = device->getSceneManager();
	gui::IGUIEnvironment* env = device->getGUIEnvironment();

	driver->setTextureCreationFlag(video::ETCF_ALWAYS_32_BIT, true);

	// add irrlicht logo
	env->addImage(driver->getTexture("../../media/irrlichtlogo3.png"),
		core::position2d<s32>(10,10));

	// add camera
	scene::ICameraSceneNode* camera = smgr->addCameraSceneNodeFPS();
	camera->setPosition(core::vector3df(-200,200,-200));

	// disable mouse cursor
	device->getCursorControl()->setVisible(false);

	/*
	Because we want the whole scene to look a little bit scarier, we add
	some fog to it. This is done by a call to IVideoDriver::setFog(). There
	you can set various fog settings. In this example, we use pixel fog,
	because it will work well with the materials we'll use in this example.
	Please note that you will have to set the material flag EMF_FOG_ENABLE
	to 'true' in every scene node which should be affected by this fog.
	*/
	driver->setFog(video::SColor(0,138,125,81), video::EFT_FOG_LINEAR, 250, 1000, .003f, true, false);

	/*
	To be able to display something interesting, we load a mesh from a .3ds
	file which is a room I modeled with anim8or. It is the same room as
	from the specialFX example. Maybe you remember from that tutorial, I am
	no good modeler at all and so I totally messed up the texture mapping
	in this model, but we can simply repair it with the
	IMeshManipulator::makePlanarTextureMapping() method.
	*/

	scene::IAnimatedMesh* roomMesh = smgr->getMesh("../../media/room.3ds");
	scene::ISceneNode* room = 0;
	scene::ISceneNode* earth = 0;

	if (roomMesh)
	{
		// The Room mesh doesn't have proper Texture Mapping on the
		// floor, so we can recreate them on runtime
		smgr->getMeshManipulator()->makePlanarTextureMapping(
				roomMesh->getMesh(0), 0.003f);

		/*
		Now for the first exciting thing: If we successfully loaded the
		mesh we need to apply textures to it. Because we want this room
		to be displayed with a very cool material, we have to do a
		little bit more than just set the textures. Instead of only
		loading a color map as usual, we also load a height map which
		is simply a grayscale texture. From this height map, we create
		a normal map which we will set as second texture of the room.
		If you already have a normal map, you could directly set it,
		but I simply didn't find a nice normal map for this texture.
		The normal map texture is being generated by the
		makeNormalMapTexture method of the VideoDriver. The second
		parameter specifies the height of the heightmap. If you set it
		to a bigger value, the map will look more rocky.
		*/

		video::ITexture* normalMap =
			driver->getTexture("../../media/rockwall_height.bmp");

		if (normalMap)
			driver->makeNormalMapTexture(normalMap, 9.0f);
/*
		// The Normal Map and the displacement map/height map in the alpha channel
		video::ITexture* normalMap =
			driver->getTexture("../../media/rockwall_NRM.tga");
*/
		/*
		But just setting color and normal map is not everything. The
		material we want to use needs some additional informations per
		vertex like tangents and binormals. Because we are too lazy to
		calculate that information now, we let Irrlicht do this for us.
		That's why we call IMeshManipulator::createMeshWithTangents().
		It creates a mesh copy with tangents and binormals from another
		mesh. After we've done that, we simply create a standard
		mesh scene node with this mesh copy, set color and normal map
		and adjust some other material settings. Note that we set
		EMF_FOG_ENABLE to true to enable fog in the room.
		*/

		scene::IMesh* tangentMesh = smgr->getMeshManipulator()->
				createMeshWithTangents(roomMesh->getMesh(0));

		room = smgr->addMeshSceneNode(tangentMesh);
		room->setMaterialTexture(0,
				driver->getTexture("../../media/rockwall.jpg"));
		room->setMaterialTexture(1, normalMap);

		// Stones don't glitter..
		room->getMaterial(0).SpecularColor.set(0,0,0,0);
		room->getMaterial(0).Shininess = 0.f;

		room->setMaterialFlag(video::EMF_FOG_ENABLE, true);
		room->setMaterialType(video::EMT_PARALLAX_MAP_SOLID);
		// adjust height for parallax effect
		room->getMaterial(0).MaterialTypeParam = 1.f / 64.f;

		// drop mesh because we created it with a create.. call.
		tangentMesh->drop();
	}

	/*
	After we've created a room shaded by per pixel lighting, we add a
	sphere into it with the same material, but we'll make it transparent.
	In addition, because the sphere looks somehow like a familiar planet,
	we make it rotate. The procedure is similar as before. The difference
	is that we are loading the mesh from an .x file which already contains
	a color map so we do not need to load it manually. But the sphere is a
	little bit too small for our needs, so we scale it by the factor 50.
	*/

	// add earth sphere

	scene::IAnimatedMesh* earthMesh = smgr->getMesh("../../media/earth.x");
	if (earthMesh)
	{
		//perform various task with the mesh manipulator
		scene::IMeshManipulator *manipulator = smgr->getMeshManipulator();

		// create mesh copy with tangent informations from original earth.x mesh
		scene::IMesh* tangentSphereMesh =
			manipulator->createMeshWithTangents(earthMesh->getMesh(0));

		// set the alpha value of all vertices to 200
		manipulator->setVertexColorAlpha(tangentSphereMesh, 200);

		// scale the mesh by factor 50
		core::matrix4 m;
		m.setScale ( core::vector3df(50,50,50) );
		manipulator->transform( tangentSphereMesh, m );

		earth = smgr->addMeshSceneNode(tangentSphereMesh);

		earth->setPosition(core::vector3df(-70,130,45));

		// load heightmap, create normal map from it and set it
		video::ITexture* earthNormalMap = driver->getTexture("../../media/earthbump.jpg");
		if (earthNormalMap)
		{
			driver->makeNormalMapTexture(earthNormalMap, 20.0f);
			earth->setMaterialTexture(1, earthNormalMap);
			earth->setMaterialType(video::EMT_NORMAL_MAP_TRANSPARENT_VERTEX_ALPHA);
		}

		// adjust material settings
		earth->setMaterialFlag(video::EMF_FOG_ENABLE, true);

		// add rotation animator
		scene::ISceneNodeAnimator* anim =
			smgr->createRotationAnimator(core::vector3df(0,0.1f,0));
		earth->addAnimator(anim);
		anim->drop();

		// drop mesh because we created it with a create.. call.
		tangentSphereMesh->drop();
	}

	/*
	Per pixel lighted materials only look cool when there are moving
	lights. So we add some. And because moving lights alone are so boring,
	we add billboards to them, and a whole particle system to one of them.
	We start with the first light which is red and has only the billboard
	attached.
	*/

	// add light 1 (more green)
	scene::ILightSceneNode* light1 =
		smgr->addLightSceneNode(0, core::vector3df(0,0,0),
		video::SColorf(0.5f, 1.0f, 0.5f, 0.0f), 800.0f);

	light1->setDebugDataVisible ( scene::EDS_BBOX );


	// add fly circle animator to light 1
	scene::ISceneNodeAnimator* anim =
		smgr->createFlyCircleAnimator (core::vector3df(50,300,0),190.0f, -0.003f);
	light1->addAnimator(anim);
	anim->drop();

	// attach billboard to the light
	scene::IBillboardSceneNode* bill =
		smgr->addBillboardSceneNode(light1, core::dimension2d<f32>(60, 60));

	bill->setMaterialFlag(video::EMF_LIGHTING, false);
	bill->setMaterialFlag(video::EMF_ZWRITE_ENABLE, false);
	bill->setMaterialType(video::EMT_TRANSPARENT_ADD_COLOR);
	bill->setMaterialTexture(0, driver->getTexture("../../media/particlegreen.jpg"));

	/*
	Now the same again, with the second light. The difference is that we
	add a particle system to it too. And because the light moves, the
	particles of the particlesystem will follow. If you want to know more
	about how particle systems are created in Irrlicht, take a look at the
	specialFx example. Maybe you will have noticed that we only add 2
	lights, this has a simple reason: The low end version of this material
	was written in ps1.1 and vs1.1, which doesn't allow more lights. You
	could add a third light to the scene, but it won't be used to shade the
	walls. But of course, this will change in future versions of Irrlicht
	where higher versions of pixel/vertex shaders will be implemented too.
	*/

	// add light 2 (red)
	scene::ISceneNode* light2 =
		smgr->addLightSceneNode(0, core::vector3df(0,0,0),
		video::SColorf(1.0f, 0.2f, 0.2f, 0.0f), 800.0f);

	// add fly circle animator to light 2
	anim = smgr->createFlyCircleAnimator(core::vector3df(0,150,0), 200.0f,
			0.001f, core::vector3df(0.2f, 0.9f, 0.f));
	light2->addAnimator(anim);
	anim->drop();

	// attach billboard to light
	bill = smgr->addBillboardSceneNode(light2, core::dimension2d<f32>(120, 120));
	bill->setMaterialFlag(video::EMF_LIGHTING, false);
	bill->setMaterialFlag(video::EMF_ZWRITE_ENABLE, false);
	bill->setMaterialType(video::EMT_TRANSPARENT_ADD_COLOR);
	bill->setMaterialTexture(0, driver->getTexture("../../media/particlered.bmp"));

	// add particle system
	scene::IParticleSystemSceneNode* ps =
		smgr->addParticleSystemSceneNode(false, light2);

	// create and set emitter
	scene::IParticleEmitter* em = ps->createBoxEmitter(
		core::aabbox3d<f32>(-3,0,-3,3,1,3),
		core::vector3df(0.0f,0.03f,0.0f),
		80,100,
		video::SColor(10,255,255,255), video::SColor(10,255,255,255),
		400,1100);
	em->setMinStartSize(core::dimension2d<f32>(30.0f, 40.0f));
	em->setMaxStartSize(core::dimension2d<f32>(30.0f, 40.0f));

	ps->setEmitter(em);
	em->drop();

	// create and set affector
	scene::IParticleAffector* paf = ps->createFadeOutParticleAffector();
	ps->addAffector(paf);
	paf->drop();

	// adjust some material settings
	ps->setMaterialFlag(video::EMF_LIGHTING, false);
	ps->setMaterialFlag(video::EMF_ZWRITE_ENABLE, false);
	ps->setMaterialTexture(0, driver->getTexture("../../media/fireball.bmp"));
	ps->setMaterialType(video::EMT_TRANSPARENT_ADD_COLOR);

	MyEventReceiver receiver(room, earth, env, driver);
	device->setEventReceiver(&receiver);

	/*
	Finally, draw everything. That's it.
	*/

	int lastFPS = -1;

	while(device->run())
	if (device->isWindowActive())
	{
		driver->beginScene(true, true, 0);

		smgr->drawAll();
		env->drawAll();

		driver->endScene();

		int fps = driver->getFPS();

		if (lastFPS != fps)
		{
			core::stringw str = L"Per pixel lighting example - Irrlicht Engine [";
			str += driver->getName();
			str += "] FPS:";
			str += fps;

			device->setWindowCaption(str.c_str());
			lastFPS = fps;
		}
	}

	device->drop();

	return 0;
}

/*
**/