aboutsummaryrefslogtreecommitdiffstatshomepage
path: root/libraries/irrlicht-1.8.1/source/Irrlicht/aesGladman/sha2.cpp
blob: 5be1bbf497ea52dacbafb5676f950bf732de3037 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
/*
 ---------------------------------------------------------------------------
 Copyright (c) 2002, Dr Brian Gladman <                 >, Worcester, UK.
 All rights reserved.

 LICENSE TERMS

 The free distribution and use of this software in both source and binary 
 form is allowed (with or without changes) provided that:

   1. distributions of this source code include the above copyright 
      notice, this list of conditions and the following disclaimer;

   2. distributions in binary form include the above copyright
      notice, this list of conditions and the following disclaimer
      in the documentation and/or other associated materials;

   3. the copyright holder's name is not used to endorse products 
      built using this software without specific written permission. 

 ALTERNATIVELY, provided that this notice is retained in full, this product
 may be distributed under the terms of the GNU General Public License (GPL),
 in which case the provisions of the GPL apply INSTEAD OF those given above.
 
 DISCLAIMER

 This software is provided 'as is' with no explicit or implied warranties
 in respect of its properties, including, but not limited to, correctness 
 and/or fitness for purpose.
 ---------------------------------------------------------------------------
 Issue Date: 26/08/2003

 This is a byte oriented version of SHA2 that operates on arrays of bytes
 stored in memory. This code implements sha256, sha384 and sha512 but the
 latter two functions rely on efficient 64-bit integer operations that 
 may not be very efficient on 32-bit machines

 The sha256 functions use a type 'sha256_ctx' to hold details of the 
 current hash state and uses the following three calls:

       void sha256_begin(sha256_ctx ctx[1])
       void sha256_hash(const unsigned char data[], 
                            unsigned long len, sha256_ctx ctx[1])
       void sha256_end(unsigned char hval[], sha256_ctx ctx[1])

 The first subroutine initialises a hash computation by setting up the 
 context in the sha256_ctx context. The second subroutine hashes 8-bit 
 bytes from array data[] into the hash state withinh sha256_ctx context, 
 the number of bytes to be hashed being given by the the unsigned long 
 integer len.  The third subroutine completes the hash calculation and 
 places the resulting digest value in the array of 8-bit bytes hval[].

 The sha384 and sha512 functions are similar and use the interfaces:

       void sha384_begin(sha384_ctx ctx[1]);
       void sha384_hash(const unsigned char data[], 
                            unsigned long len, sha384_ctx ctx[1]);
       void sha384_end(unsigned char hval[], sha384_ctx ctx[1]);

       void sha512_begin(sha512_ctx ctx[1]);
       void sha512_hash(const unsigned char data[], 
                            unsigned long len, sha512_ctx ctx[1]);
       void sha512_end(unsigned char hval[], sha512_ctx ctx[1]);

 In addition there is a function sha2 that can be used to call all these
 functions using a call with a hash length parameter as follows:

       int sha2_begin(unsigned long len, sha2_ctx ctx[1]);
       void sha2_hash(const unsigned char data[], 
                            unsigned long len, sha2_ctx ctx[1]);
       void sha2_end(unsigned char hval[], sha2_ctx ctx[1]);

 My thanks to Erik Andersen <andersen@codepoet.org> for testing this code 
 on big-endian systems and for his assistance with corrections
*/

/* define the hash functions that you need          */

#define SHA_2           /* for dynamic hash length  */
#define SHA_256
#define SHA_384
#define SHA_512

#include <string.h>     /* for memcpy() etc.        */
#include <stdlib.h>     /* for _lrotr with VC++     */

#include "sha2.h"
#include "../os.h"

/*  BYTE ORDER IN 32-BIT WORDS

    To obtain the highest speed on processors with 32-bit words, this code
    needs to determine the byte order of the target machine. The following 
    block of code is an attempt to capture the most obvious ways in which 
    various environemnts define byte order. It may well fail, in which case 
    the definitions will need to be set by editing at the points marked 
    **** EDIT HERE IF NECESSARY **** below.  My thanks to Peter Gutmann for 
    some of these defines (from cryptlib).
*/

#define BRG_LITTLE_ENDIAN   1234 /* byte 0 is least significant (i386) */
#define BRG_BIG_ENDIAN      4321 /* byte 0 is most significant (mc68k) */

#ifdef __BIG_ENDIAN__
#define PLATFORM_BYTE_ORDER BRG_BIG_ENDIAN
#else
#define PLATFORM_BYTE_ORDER BRG_LITTLE_ENDIAN
#endif

#ifdef _MSC_VER
#pragma intrinsic(memcpy)
#endif

#define rotr32(x,n)   (((x) >> n) | ((x) << (32 - n)))

#if !defined(bswap_32)
#define bswap_32(x) irr::os::Byteswap::byteswap(x)
#endif

#if (PLATFORM_BYTE_ORDER == BRG_LITTLE_ENDIAN)
#define SWAP_BYTES
#else
#undef  SWAP_BYTES
#endif

#if defined(SHA_2) || defined(SHA_256)

#define SHA256_MASK (SHA256_BLOCK_SIZE - 1)

#if defined(SWAP_BYTES)
#define bsw_32(p,n) { int _i = (n); while(_i--) p[_i] = bswap_32(p[_i]); }
#else
#define bsw_32(p,n) 
#endif

/* SHA256 mixing function definitions   */

#if 0

#define ch(x,y,z)       (((x) & (y)) ^ (~(x) & (z)))
#define maj(x,y,z)      (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))

#else   /* Thanks to Rich Schroeppel and Colin Plumb for the following      */

#define ch(x,y,z)       ((z) ^ ((x) & ((y) ^ (z))))
#define maj(x,y,z)      (((x) & (y)) | ((z) & ((x) ^ (y))))

#endif

#define s256_0(x) (rotr32((x),  2) ^ rotr32((x), 13) ^ rotr32((x), 22)) 
#define s256_1(x) (rotr32((x),  6) ^ rotr32((x), 11) ^ rotr32((x), 25)) 
#define g256_0(x) (rotr32((x),  7) ^ rotr32((x), 18) ^ ((x) >>  3)) 
#define g256_1(x) (rotr32((x), 17) ^ rotr32((x), 19) ^ ((x) >> 10)) 

/* rotated SHA256 round definition. Rather than swapping variables as in    */
/* FIPS-180, different variables are 'rotated' on each round, returning     */
/* to their starting positions every eight rounds                           */

#define h2(i) p[i & 15] += \
    g256_1(p[(i + 14) & 15]) + p[(i + 9) & 15] + g256_0(p[(i + 1) & 15])

#define h2_cycle(i,j)  \
    v[(7 - i) & 7] += (j ? h2(i) : p[i & 15]) + k256[i + j] \
        + s256_1(v[(4 - i) & 7]) + ch(v[(4 - i) & 7], v[(5 - i) & 7], v[(6 - i) & 7]); \
    v[(3 - i) & 7] += v[(7 - i) & 7]; \
    v[(7 - i) & 7] += s256_0(v[(0 - i) & 7]) + maj(v[(0 - i) & 7], v[(1 - i) & 7], v[(2 - i) & 7])

/* SHA256 mixing data   */

const sha2_32t k256[64] =
{   n_u32(428a2f98), n_u32(71374491), n_u32(b5c0fbcf), n_u32(e9b5dba5), 
    n_u32(3956c25b), n_u32(59f111f1), n_u32(923f82a4), n_u32(ab1c5ed5), 
    n_u32(d807aa98), n_u32(12835b01), n_u32(243185be), n_u32(550c7dc3), 
    n_u32(72be5d74), n_u32(80deb1fe), n_u32(9bdc06a7), n_u32(c19bf174), 
    n_u32(e49b69c1), n_u32(efbe4786), n_u32(0fc19dc6), n_u32(240ca1cc), 
    n_u32(2de92c6f), n_u32(4a7484aa), n_u32(5cb0a9dc), n_u32(76f988da), 
    n_u32(983e5152), n_u32(a831c66d), n_u32(b00327c8), n_u32(bf597fc7), 
    n_u32(c6e00bf3), n_u32(d5a79147), n_u32(06ca6351), n_u32(14292967), 
    n_u32(27b70a85), n_u32(2e1b2138), n_u32(4d2c6dfc), n_u32(53380d13), 
    n_u32(650a7354), n_u32(766a0abb), n_u32(81c2c92e), n_u32(92722c85),
    n_u32(a2bfe8a1), n_u32(a81a664b), n_u32(c24b8b70), n_u32(c76c51a3), 
    n_u32(d192e819), n_u32(d6990624), n_u32(f40e3585), n_u32(106aa070), 
    n_u32(19a4c116), n_u32(1e376c08), n_u32(2748774c), n_u32(34b0bcb5), 
    n_u32(391c0cb3), n_u32(4ed8aa4a), n_u32(5b9cca4f), n_u32(682e6ff3), 
    n_u32(748f82ee), n_u32(78a5636f), n_u32(84c87814), n_u32(8cc70208), 
    n_u32(90befffa), n_u32(a4506ceb), n_u32(bef9a3f7), n_u32(c67178f2),
};

/* SHA256 initialisation data */

const sha2_32t i256[8] =
{
    n_u32(6a09e667), n_u32(bb67ae85), n_u32(3c6ef372), n_u32(a54ff53a),
    n_u32(510e527f), n_u32(9b05688c), n_u32(1f83d9ab), n_u32(5be0cd19)
};

sha2_void sha256_begin(sha256_ctx ctx[1])
{
    ctx->count[0] = ctx->count[1] = 0;
    memcpy(ctx->hash, i256, 8 * sizeof(sha2_32t));
}

/* Compile 64 bytes of hash data into SHA256 digest value   */
/* NOTE: this routine assumes that the byte order in the    */
/* ctx->wbuf[] at this point is in such an order that low   */
/* address bytes in the ORIGINAL byte stream placed in this */
/* buffer will now go to the high end of words on BOTH big  */
/* and little endian systems                                */

sha2_void sha256_compile(sha256_ctx ctx[1])
{   sha2_32t    v[8], j, *p = ctx->wbuf;

    memcpy(v, ctx->hash, 8 * sizeof(sha2_32t));

    for(j = 0; j < 64; j += 16)
    {
        h2_cycle( 0, j); h2_cycle( 1, j); h2_cycle( 2, j); h2_cycle( 3, j);
        h2_cycle( 4, j); h2_cycle( 5, j); h2_cycle( 6, j); h2_cycle( 7, j);
        h2_cycle( 8, j); h2_cycle( 9, j); h2_cycle(10, j); h2_cycle(11, j);
        h2_cycle(12, j); h2_cycle(13, j); h2_cycle(14, j); h2_cycle(15, j);
    }

    ctx->hash[0] += v[0]; ctx->hash[1] += v[1]; ctx->hash[2] += v[2]; ctx->hash[3] += v[3];
    ctx->hash[4] += v[4]; ctx->hash[5] += v[5]; ctx->hash[6] += v[6]; ctx->hash[7] += v[7];
}

/* SHA256 hash data in an array of bytes into hash buffer   */
/* and call the hash_compile function as required.          */

sha2_void sha256_hash(const unsigned char data[], unsigned long len, sha256_ctx ctx[1])
{   sha2_32t pos = (sha2_32t)(ctx->count[0] & SHA256_MASK), 
             space = SHA256_BLOCK_SIZE - pos;
    const unsigned char *sp = data;

    if((ctx->count[0] += len) < len)
        ++(ctx->count[1]);

    while(len >= space)     /* tranfer whole blocks while possible  */
    {
        memcpy(((unsigned char*)ctx->wbuf) + pos, sp, space);
        sp += space; len -= space; space = SHA256_BLOCK_SIZE; pos = 0; 
        bsw_32(ctx->wbuf, SHA256_BLOCK_SIZE >> 2)
        sha256_compile(ctx);
    }

    memcpy(((unsigned char*)ctx->wbuf) + pos, sp, len);
}

/* SHA256 Final padding and digest calculation  */

static sha2_32t  m1[4] =
{
    n_u32(00000000), n_u32(ff000000), n_u32(ffff0000), n_u32(ffffff00)
};

static sha2_32t  b1[4] =
{
    n_u32(80000000), n_u32(00800000), n_u32(00008000), n_u32(00000080)
};

sha2_void sha256_end(unsigned char hval[], sha256_ctx ctx[1])
{   sha2_32t    i = (sha2_32t)(ctx->count[0] & SHA256_MASK);

    bsw_32(ctx->wbuf, (i + 3) >> 2)
    /* bytes in the buffer are now in an order in which references  */
    /* to 32-bit words will put bytes with lower addresses into the */
    /* top of 32 bit words on BOTH big and little endian machines   */
    
    /* we now need to mask valid bytes and add the padding which is */
    /* a single 1 bit and as many zero bits as necessary.           */
    ctx->wbuf[i >> 2] = (ctx->wbuf[i >> 2] & m1[i & 3]) | b1[i & 3];

    /* we need 9 or more empty positions, one for the padding byte  */
    /* (above) and eight for the length count.  If there is not     */
    /* enough space pad and empty the buffer                        */
    if(i > SHA256_BLOCK_SIZE - 9)
    {
        if(i < 60) ctx->wbuf[15] = 0;
        sha256_compile(ctx);
        i = 0;
    }
    else    /* compute a word index for the empty buffer positions  */
        i = (i >> 2) + 1;

    while(i < 14) /* and zero pad all but last two positions      */ 
        ctx->wbuf[i++] = 0;
    
    /* the following 32-bit length fields are assembled in the      */
    /* wrong byte order on little endian machines but this is       */
    /* corrected later since they are only ever used as 32-bit      */
    /* word values.                                                 */

    ctx->wbuf[14] = (ctx->count[1] << 3) | (ctx->count[0] >> 29);
    ctx->wbuf[15] = ctx->count[0] << 3;

    sha256_compile(ctx);

    /* extract the hash value as bytes in case the hash buffer is   */
    /* mislaigned for 32-bit words                                  */
    for(i = 0; i < SHA256_DIGEST_SIZE; ++i)
        hval[i] = (unsigned char)(ctx->hash[i >> 2] >> (8 * (~i & 3)));
}

sha2_void sha256(unsigned char hval[], const unsigned char data[], unsigned long len) 
{   sha256_ctx  cx[1];
    
    sha256_begin(cx); sha256_hash(data, len, cx); sha256_end(hval, cx);
}

#endif

#if defined(SHA_2) || defined(SHA_384) || defined(SHA_512)

#define SHA512_MASK (SHA512_BLOCK_SIZE - 1)

#define rotr64(x,n)   (((x) >> n) | ((x) << (64 - n)))

#if !defined(bswap_64)
#define bswap_64(x) ((((sha2_64t)(bswap_32((sha2_32t)(x)))) << 32) | (bswap_32((sha2_32t)((x) >> 32))))
#endif

#if defined(SWAP_BYTES)
#define bsw_64(p,n) { int _i = (n); while(_i--) p[_i] = bswap_64(p[_i]); }
#else
#define bsw_64(p,n) 
#endif

/* SHA512 mixing function definitions   */

#define s512_0(x) (rotr64((x), 28) ^ rotr64((x), 34) ^ rotr64((x), 39)) 
#define s512_1(x) (rotr64((x), 14) ^ rotr64((x), 18) ^ rotr64((x), 41)) 
#define g512_0(x) (rotr64((x),  1) ^ rotr64((x),  8) ^ ((x) >>  7)) 
#define g512_1(x) (rotr64((x), 19) ^ rotr64((x), 61) ^ ((x) >>  6)) 

/* rotated SHA512 round definition. Rather than swapping variables as in    */
/* FIPS-180, different variables are 'rotated' on each round, returning     */
/* to their starting positions every eight rounds                           */

#define h5(i) ctx->wbuf[i & 15] += \
    g512_1(ctx->wbuf[(i + 14) & 15]) + ctx->wbuf[(i + 9) & 15] + g512_0(ctx->wbuf[(i + 1) & 15])

#define h5_cycle(i,j)  \
    v[(7 - i) & 7] += (j ? h5(i) : ctx->wbuf[i & 15]) + k512[i + j] \
        + s512_1(v[(4 - i) & 7]) + ch(v[(4 - i) & 7], v[(5 - i) & 7], v[(6 - i) & 7]); \
    v[(3 - i) & 7] += v[(7 - i) & 7]; \
    v[(7 - i) & 7] += s512_0(v[(0 - i) & 7]) + maj(v[(0 - i) & 7], v[(1 - i) & 7], v[(2 - i) & 7])

/* SHA384/SHA512 mixing data    */

const sha2_64t  k512[80] = 
{
    n_u64(428a2f98d728ae22), n_u64(7137449123ef65cd), 
    n_u64(b5c0fbcfec4d3b2f), n_u64(e9b5dba58189dbbc),
    n_u64(3956c25bf348b538), n_u64(59f111f1b605d019),
    n_u64(923f82a4af194f9b), n_u64(ab1c5ed5da6d8118),
    n_u64(d807aa98a3030242), n_u64(12835b0145706fbe),
    n_u64(243185be4ee4b28c), n_u64(550c7dc3d5ffb4e2),
    n_u64(72be5d74f27b896f), n_u64(80deb1fe3b1696b1),
    n_u64(9bdc06a725c71235), n_u64(c19bf174cf692694),
    n_u64(e49b69c19ef14ad2), n_u64(efbe4786384f25e3),
    n_u64(0fc19dc68b8cd5b5), n_u64(240ca1cc77ac9c65),
    n_u64(2de92c6f592b0275), n_u64(4a7484aa6ea6e483),
    n_u64(5cb0a9dcbd41fbd4), n_u64(76f988da831153b5),
    n_u64(983e5152ee66dfab), n_u64(a831c66d2db43210),
    n_u64(b00327c898fb213f), n_u64(bf597fc7beef0ee4),
    n_u64(c6e00bf33da88fc2), n_u64(d5a79147930aa725),
    n_u64(06ca6351e003826f), n_u64(142929670a0e6e70),
    n_u64(27b70a8546d22ffc), n_u64(2e1b21385c26c926),
    n_u64(4d2c6dfc5ac42aed), n_u64(53380d139d95b3df),
    n_u64(650a73548baf63de), n_u64(766a0abb3c77b2a8),
    n_u64(81c2c92e47edaee6), n_u64(92722c851482353b),
    n_u64(a2bfe8a14cf10364), n_u64(a81a664bbc423001),
    n_u64(c24b8b70d0f89791), n_u64(c76c51a30654be30),
    n_u64(d192e819d6ef5218), n_u64(d69906245565a910),
    n_u64(f40e35855771202a), n_u64(106aa07032bbd1b8),
    n_u64(19a4c116b8d2d0c8), n_u64(1e376c085141ab53),
    n_u64(2748774cdf8eeb99), n_u64(34b0bcb5e19b48a8),
    n_u64(391c0cb3c5c95a63), n_u64(4ed8aa4ae3418acb),
    n_u64(5b9cca4f7763e373), n_u64(682e6ff3d6b2b8a3),
    n_u64(748f82ee5defb2fc), n_u64(78a5636f43172f60),
    n_u64(84c87814a1f0ab72), n_u64(8cc702081a6439ec),
    n_u64(90befffa23631e28), n_u64(a4506cebde82bde9),
    n_u64(bef9a3f7b2c67915), n_u64(c67178f2e372532b),
    n_u64(ca273eceea26619c), n_u64(d186b8c721c0c207),
    n_u64(eada7dd6cde0eb1e), n_u64(f57d4f7fee6ed178),
    n_u64(06f067aa72176fba), n_u64(0a637dc5a2c898a6),
    n_u64(113f9804bef90dae), n_u64(1b710b35131c471b),
    n_u64(28db77f523047d84), n_u64(32caab7b40c72493),
    n_u64(3c9ebe0a15c9bebc), n_u64(431d67c49c100d4c),
    n_u64(4cc5d4becb3e42b6), n_u64(597f299cfc657e2a),
    n_u64(5fcb6fab3ad6faec), n_u64(6c44198c4a475817)
};

/* Compile 64 bytes of hash data into SHA384/SHA512 digest value  */

sha2_void sha512_compile(sha512_ctx ctx[1])
{   sha2_64t    v[8];
    sha2_32t    j;

    memcpy(v, ctx->hash, 8 * sizeof(sha2_64t));

    for(j = 0; j < 80; j += 16)
    {
        h5_cycle( 0, j); h5_cycle( 1, j); h5_cycle( 2, j); h5_cycle( 3, j);
        h5_cycle( 4, j); h5_cycle( 5, j); h5_cycle( 6, j); h5_cycle( 7, j);
        h5_cycle( 8, j); h5_cycle( 9, j); h5_cycle(10, j); h5_cycle(11, j);
        h5_cycle(12, j); h5_cycle(13, j); h5_cycle(14, j); h5_cycle(15, j);
    }

    ctx->hash[0] += v[0]; ctx->hash[1] += v[1]; ctx->hash[2] += v[2]; ctx->hash[3] += v[3];
    ctx->hash[4] += v[4]; ctx->hash[5] += v[5]; ctx->hash[6] += v[6]; ctx->hash[7] += v[7];
}

/* Compile 128 bytes of hash data into SHA256 digest value  */
/* NOTE: this routine assumes that the byte order in the    */
/* ctx->wbuf[] at this point is in such an order that low   */
/* address bytes in the ORIGINAL byte stream placed in this */
/* buffer will now go to the high end of words on BOTH big  */
/* and little endian systems                                */

sha2_void sha512_hash(const unsigned char data[], unsigned long len, sha512_ctx ctx[1])
{   sha2_32t pos = (sha2_32t)(ctx->count[0] & SHA512_MASK), 
             space = SHA512_BLOCK_SIZE - pos;
    const unsigned char *sp = data;

    if((ctx->count[0] += len) < len)
        ++(ctx->count[1]);

    while(len >= space)     /* tranfer whole blocks while possible  */
    {
        memcpy(((unsigned char*)ctx->wbuf) + pos, sp, space);
        sp += space; len -= space; space = SHA512_BLOCK_SIZE; pos = 0; 
        bsw_64(ctx->wbuf, SHA512_BLOCK_SIZE >> 3);        
        sha512_compile(ctx);
    }

    memcpy(((unsigned char*)ctx->wbuf) + pos, sp, len);
}

/* SHA384/512 Final padding and digest calculation  */

static sha2_64t  m2[8] =
{
    n_u64(0000000000000000), n_u64(ff00000000000000), 
    n_u64(ffff000000000000), n_u64(ffffff0000000000),
    n_u64(ffffffff00000000), n_u64(ffffffffff000000),
    n_u64(ffffffffffff0000), n_u64(ffffffffffffff00)
};

static sha2_64t  b2[8] =
{
    n_u64(8000000000000000), n_u64(0080000000000000), 
    n_u64(0000800000000000), n_u64(0000008000000000),
    n_u64(0000000080000000), n_u64(0000000000800000), 
    n_u64(0000000000008000), n_u64(0000000000000080)
};

static void sha_end(unsigned char hval[], sha512_ctx ctx[1], const unsigned int hlen)
{   sha2_32t    i = (sha2_32t)(ctx->count[0] & SHA512_MASK);

    bsw_64(ctx->wbuf, (i + 7) >> 3);

    /* bytes in the buffer are now in an order in which references  */
    /* to 64-bit words will put bytes with lower addresses into the */
    /* top of 64 bit words on BOTH big and little endian machines   */
    
    /* we now need to mask valid bytes and add the padding which is */
    /* a single 1 bit and as many zero bits as necessary.           */
    ctx->wbuf[i >> 3] = (ctx->wbuf[i >> 3] & m2[i & 7]) | b2[i & 7];

    /* we need 17 or more empty byte positions, one for the padding */
    /* byte (above) and sixteen for the length count.  If there is  */
    /* not enough space pad and empty the buffer                    */
    if(i > SHA512_BLOCK_SIZE - 17)
    {
        if(i < 120) ctx->wbuf[15] = 0;
        sha512_compile(ctx);
        i = 0;
    }
    else
        i = (i >> 3) + 1;

    while(i < 14)
        ctx->wbuf[i++] = 0;
    
    /* the following 64-bit length fields are assembled in the      */
    /* wrong byte order on little endian machines but this is       */
    /* corrected later since they are only ever used as 64-bit      */
    /* word values.                                                 */

    ctx->wbuf[14] = (ctx->count[1] << 3) | (ctx->count[0] >> 61);
    ctx->wbuf[15] = ctx->count[0] << 3;

    sha512_compile(ctx);

    /* extract the hash value as bytes in case the hash buffer is   */
    /* misaligned for 32-bit words                                  */
    for(i = 0; i < hlen; ++i)
        hval[i] = (unsigned char)(ctx->hash[i >> 3] >> (8 * (~i & 7)));
}

#endif

#if defined(SHA_2) || defined(SHA_384)

/* SHA384 initialisation data   */

const sha2_64t  i384[80] = 
{
    n_u64(cbbb9d5dc1059ed8), n_u64(629a292a367cd507),
    n_u64(9159015a3070dd17), n_u64(152fecd8f70e5939),
    n_u64(67332667ffc00b31), n_u64(8eb44a8768581511),
    n_u64(db0c2e0d64f98fa7), n_u64(47b5481dbefa4fa4)
};

sha2_void sha384_begin(sha384_ctx ctx[1])
{
    ctx->count[0] = ctx->count[1] = 0;
    memcpy(ctx->hash, i384, 8 * sizeof(sha2_64t));
}

sha2_void sha384_end(unsigned char hval[], sha384_ctx ctx[1])
{
    sha_end(hval, ctx, SHA384_DIGEST_SIZE);
}

sha2_void sha384(unsigned char hval[], const unsigned char data[], unsigned long len)
{   sha384_ctx  cx[1];
    
    sha384_begin(cx); sha384_hash(data, len, cx); sha384_end(hval, cx);
}

#endif

#if defined(SHA_2) || defined(SHA_512)

/* SHA512 initialisation data   */

const sha2_64t  i512[80] = 
{
    n_u64(6a09e667f3bcc908), n_u64(bb67ae8584caa73b),
    n_u64(3c6ef372fe94f82b), n_u64(a54ff53a5f1d36f1),
    n_u64(510e527fade682d1), n_u64(9b05688c2b3e6c1f),
    n_u64(1f83d9abfb41bd6b), n_u64(5be0cd19137e2179)
};

sha2_void sha512_begin(sha512_ctx ctx[1])
{
    ctx->count[0] = ctx->count[1] = 0;
    memcpy(ctx->hash, i512, 8 * sizeof(sha2_64t));
}

sha2_void sha512_end(unsigned char hval[], sha512_ctx ctx[1])
{
    sha_end(hval, ctx, SHA512_DIGEST_SIZE);
}

sha2_void sha512(unsigned char hval[], const unsigned char data[], unsigned long len) 
{   sha512_ctx  cx[1];
    
    sha512_begin(cx); sha512_hash(data, len, cx); sha512_end(hval, cx);
}

#endif

#if defined(SHA_2)

#define CTX_256(x)  ((x)->uu->ctx256)
#define CTX_384(x)  ((x)->uu->ctx512)
#define CTX_512(x)  ((x)->uu->ctx512)

/* SHA2 initialisation */

sha2_int sha2_begin(unsigned long len, sha2_ctx ctx[1])
{   unsigned long   l = len;
    switch(len)
    {
        case 256:   l = len >> 3;
        case  32:   CTX_256(ctx)->count[0] = CTX_256(ctx)->count[1] = 0;
                    memcpy(CTX_256(ctx)->hash, i256, 32); break;
        case 384:   l = len >> 3;
        case  48:   CTX_384(ctx)->count[0] = CTX_384(ctx)->count[1] = 0;
                    memcpy(CTX_384(ctx)->hash, i384, 64); break;
        case 512:   l = len >> 3;
        case  64:   CTX_512(ctx)->count[0] = CTX_512(ctx)->count[1] = 0;
                    memcpy(CTX_512(ctx)->hash, i512, 64); break;
        default:    return SHA2_BAD;
    }
    
    ctx->sha2_len = l; return SHA2_GOOD;
}

sha2_void sha2_hash(const unsigned char data[], unsigned long len, sha2_ctx ctx[1])
{
    switch(ctx->sha2_len)
    {
        case 32: sha256_hash(data, len, CTX_256(ctx)); return;
        case 48: sha384_hash(data, len, CTX_384(ctx)); return;
        case 64: sha512_hash(data, len, CTX_512(ctx)); return;
    }
}

sha2_void sha2_end(unsigned char hval[], sha2_ctx ctx[1])
{
    switch(ctx->sha2_len)
    {
        case 32: sha256_end(hval, CTX_256(ctx)); return;
        case 48: sha_end(hval, CTX_384(ctx), SHA384_DIGEST_SIZE); return;
        case 64: sha_end(hval, CTX_512(ctx), SHA512_DIGEST_SIZE); return;
    }
}

sha2_int sha2(unsigned char hval[], unsigned long size,
                                const unsigned char data[], unsigned long len)
{   sha2_ctx    cx[1];

    if(sha2_begin(size, cx) == SHA2_GOOD)
    {
        sha2_hash(data, len, cx); sha2_end(hval, cx); return SHA2_GOOD;
    }
    else
        return SHA2_BAD;
}

#endif