aboutsummaryrefslogtreecommitdiffstatshomepage
path: root/libraries/irrlicht-1.8.1/source/Irrlicht/CSkyDomeSceneNode.cpp
blob: 0554661dfe71815e06f5575a7ab4076ae49c6ef7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
// Copyright (C) 2002-2012 Nikolaus Gebhardt
// This file is part of the "Irrlicht Engine".
// For conditions of distribution and use, see copyright notice in irrlicht.h
// Code for this scene node has been contributed by Anders la Cour-Harbo (alc)

#include "CSkyDomeSceneNode.h"
#include "IVideoDriver.h"
#include "ISceneManager.h"
#include "ICameraSceneNode.h"
#include "IAnimatedMesh.h"
#include "os.h"

namespace irr
{
namespace scene
{

/* horiRes and vertRes:
	Controls the number of faces along the horizontal axis (30 is a good value)
	and the number of faces along the vertical axis (8 is a good value).

	texturePercentage:
	Only the top texturePercentage of the image is used, e.g. 0.8 uses the top 80% of the image,
	1.0 uses the entire image. This is useful as some landscape images have a small banner
	at the bottom that you don't want.

	spherePercentage:
	This controls how far around the sphere the sky dome goes. For value 1.0 you get exactly the upper
	hemisphere, for 1.1 you get slightly more, and for 2.0 you get a full sphere. It is sometimes useful
	to use a value slightly bigger than 1 to avoid a gap between some ground place and the sky. This
	parameters stretches the image to fit the chosen "sphere-size". */

CSkyDomeSceneNode::CSkyDomeSceneNode(video::ITexture* sky, u32 horiRes, u32 vertRes,
		f32 texturePercentage, f32 spherePercentage, f32 radius,
		ISceneNode* parent, ISceneManager* mgr, s32 id)
	: ISceneNode(parent, mgr, id), Buffer(0),
	  HorizontalResolution(horiRes), VerticalResolution(vertRes),
	  TexturePercentage(texturePercentage),
	  SpherePercentage(spherePercentage), Radius(radius)
{
	#ifdef _DEBUG
	setDebugName("CSkyDomeSceneNode");
	#endif

	setAutomaticCulling(scene::EAC_OFF);

	Buffer = new SMeshBuffer();
	Buffer->Material.Lighting = false;
	Buffer->Material.ZBuffer = video::ECFN_NEVER;
	Buffer->Material.ZWriteEnable = false;
	Buffer->Material.AntiAliasing = video::EAAM_OFF;
	Buffer->Material.setTexture(0, sky);
	Buffer->BoundingBox.MaxEdge.set(0,0,0);
	Buffer->BoundingBox.MinEdge.set(0,0,0);

	// regenerate the mesh
	generateMesh();
}


CSkyDomeSceneNode::~CSkyDomeSceneNode()
{
	if (Buffer)
		Buffer->drop();
}


void CSkyDomeSceneNode::generateMesh()
{
	f32 azimuth;
	u32 k;

	Buffer->Vertices.clear();
	Buffer->Indices.clear();

	const f32 azimuth_step = (core::PI * 2.f) / HorizontalResolution;
	if (SpherePercentage < 0.f)
		SpherePercentage = -SpherePercentage;
	if (SpherePercentage > 2.f)
		SpherePercentage = 2.f;
	const f32 elevation_step = SpherePercentage * core::HALF_PI / (f32)VerticalResolution;

	Buffer->Vertices.reallocate( (HorizontalResolution + 1) * (VerticalResolution + 1) );
	Buffer->Indices.reallocate(3 * (2*VerticalResolution - 1) * HorizontalResolution);

	video::S3DVertex vtx;
	vtx.Color.set(255,255,255,255);
	vtx.Normal.set(0.0f,-1.f,0.0f);

	const f32 tcV = TexturePercentage / VerticalResolution;
	for (k = 0, azimuth = 0; k <= HorizontalResolution; ++k)
	{
		f32 elevation = core::HALF_PI;
		const f32 tcU = (f32)k / (f32)HorizontalResolution;
		const f32 sinA = sinf(azimuth);
		const f32 cosA = cosf(azimuth);
		for (u32 j = 0; j <= VerticalResolution; ++j)
		{
			const f32 cosEr = Radius * cosf(elevation);
			vtx.Pos.set(cosEr*sinA, Radius*sinf(elevation), cosEr*cosA);
			vtx.TCoords.set(tcU, j*tcV);

			vtx.Normal = -vtx.Pos;
			vtx.Normal.normalize();

			Buffer->Vertices.push_back(vtx);
			elevation -= elevation_step;
		}
		azimuth += azimuth_step;
	}

	for (k = 0; k < HorizontalResolution; ++k)
	{
		Buffer->Indices.push_back(VerticalResolution + 2 + (VerticalResolution + 1)*k);
		Buffer->Indices.push_back(1 + (VerticalResolution + 1)*k);
		Buffer->Indices.push_back(0 + (VerticalResolution + 1)*k);

		for (u32 j = 1; j < VerticalResolution; ++j)
		{
			Buffer->Indices.push_back(VerticalResolution + 2 + (VerticalResolution + 1)*k + j);
			Buffer->Indices.push_back(1 + (VerticalResolution + 1)*k + j);
			Buffer->Indices.push_back(0 + (VerticalResolution + 1)*k + j);

			Buffer->Indices.push_back(VerticalResolution + 1 + (VerticalResolution + 1)*k + j);
			Buffer->Indices.push_back(VerticalResolution + 2 + (VerticalResolution + 1)*k + j);
			Buffer->Indices.push_back(0 + (VerticalResolution + 1)*k + j);
		}
	}
	Buffer->setHardwareMappingHint(scene::EHM_STATIC);
}


//! renders the node.
void CSkyDomeSceneNode::render()
{
	video::IVideoDriver* driver = SceneManager->getVideoDriver();
	scene::ICameraSceneNode* camera = SceneManager->getActiveCamera();

	if (!camera || !driver)
		return;

	if ( !camera->isOrthogonal() )
	{
		core::matrix4 mat(AbsoluteTransformation);
		mat.setTranslation(camera->getAbsolutePosition());

		driver->setTransform(video::ETS_WORLD, mat);

		driver->setMaterial(Buffer->Material);
		driver->drawMeshBuffer(Buffer);
	}

	// for debug purposes only:
	if ( DebugDataVisible )
	{
		video::SMaterial m;
		m.Lighting = false;
		driver->setMaterial(m);

		if ( DebugDataVisible & scene::EDS_NORMALS )
		{
			// draw normals
			const f32 debugNormalLength = SceneManager->getParameters()->getAttributeAsFloat(DEBUG_NORMAL_LENGTH);
			const video::SColor debugNormalColor = SceneManager->getParameters()->getAttributeAsColor(DEBUG_NORMAL_COLOR);
			driver->drawMeshBufferNormals(Buffer, debugNormalLength, debugNormalColor);
		}

		// show mesh
		if ( DebugDataVisible & scene::EDS_MESH_WIRE_OVERLAY )
		{
			m.Wireframe = true;
			driver->setMaterial(m);

			driver->drawMeshBuffer(Buffer);
		}
	}
}


//! returns the axis aligned bounding box of this node
const core::aabbox3d<f32>& CSkyDomeSceneNode::getBoundingBox() const
{
	return Buffer->BoundingBox;
}


void CSkyDomeSceneNode::OnRegisterSceneNode()
{
	if (IsVisible)
	{
		SceneManager->registerNodeForRendering(this, ESNRP_SKY_BOX );
	}

	ISceneNode::OnRegisterSceneNode();
}


//! returns the material based on the zero based index i. To get the amount
//! of materials used by this scene node, use getMaterialCount().
//! This function is needed for inserting the node into the scene hirachy on a
//! optimal position for minimizing renderstate changes, but can also be used
//! to directly modify the material of a scene node.
video::SMaterial& CSkyDomeSceneNode::getMaterial(u32 i)
{
	return Buffer->Material;
}


//! returns amount of materials used by this scene node.
u32 CSkyDomeSceneNode::getMaterialCount() const
{
	return 1;
}


//! Writes attributes of the scene node.
void CSkyDomeSceneNode::serializeAttributes(io::IAttributes* out, io::SAttributeReadWriteOptions* options) const
{
	ISceneNode::serializeAttributes(out, options);

	out->addInt  ("HorizontalResolution", HorizontalResolution);
	out->addInt  ("VerticalResolution",   VerticalResolution);
	out->addFloat("TexturePercentage",    TexturePercentage);
	out->addFloat("SpherePercentage",     SpherePercentage);
	out->addFloat("Radius",               Radius);
}


//! Reads attributes of the scene node.
void CSkyDomeSceneNode::deserializeAttributes(io::IAttributes* in, io::SAttributeReadWriteOptions* options)
{
	HorizontalResolution = in->getAttributeAsInt  ("HorizontalResolution");
	VerticalResolution   = in->getAttributeAsInt  ("VerticalResolution");
	TexturePercentage    = in->getAttributeAsFloat("TexturePercentage");
	SpherePercentage     = in->getAttributeAsFloat("SpherePercentage");
	Radius               = in->getAttributeAsFloat("Radius");

	ISceneNode::deserializeAttributes(in, options);

	// regenerate the mesh
	generateMesh();
}

//! Creates a clone of this scene node and its children.
ISceneNode* CSkyDomeSceneNode::clone(ISceneNode* newParent, ISceneManager* newManager)
{
	if (!newParent)
		newParent = Parent;
	if (!newManager)
		newManager = SceneManager;

	CSkyDomeSceneNode* nb = new CSkyDomeSceneNode(Buffer->Material.TextureLayer[0].Texture, HorizontalResolution, VerticalResolution, TexturePercentage,
		SpherePercentage, Radius, newParent, newManager, ID);

	nb->cloneMembers(this, newManager);

	if ( newParent )
		nb->drop();
	return nb;
}


} // namespace scene
} // namespace irr