1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<title>Lua 5.1 Reference Manual</title>
<link rel="stylesheet" type="text/css" href="lua.css">
<link rel="stylesheet" type="text/css" href="manual.css">
<META HTTP-EQUIV="content-type" CONTENT="text/html; charset=iso-8859-1">
</head>
<body>
<hr>
<h1>
<a href="http://www.lua.org/"><img src="logo.gif" alt="" border="0"></a>
Lua 5.1 Reference Manual
</h1>
by Roberto Ierusalimschy, Luiz Henrique de Figueiredo, Waldemar Celes
<p>
<small>
Copyright © 2006-2008 Lua.org, PUC-Rio.
Freely available under the terms of the
<a href="http://www.lua.org/license.html#5">Lua license</a>.
</small>
<hr>
<p>
<a href="contents.html#contents">contents</A>
·
<a href="contents.html#index">index</A>
<!-- ====================================================================== -->
<p>
<!-- $Id: manual.of,v 1.48 2008/08/18 15:24:20 roberto Exp $ -->
<h1>1 - <a name="1">Introduction</a></h1>
<p>
Lua is an extension programming language designed to support
general procedural programming with data description
facilities.
It also offers good support for object-oriented programming,
functional programming, and data-driven programming.
Lua is intended to be used as a powerful, light-weight
scripting language for any program that needs one.
Lua is implemented as a library, written in <em>clean</em> C
(that is, in the common subset of ANSI C and C++).
<p>
Being an extension language, Lua has no notion of a "main" program:
it only works <em>embedded</em> in a host client,
called the <em>embedding program</em> or simply the <em>host</em>.
This host program can invoke functions to execute a piece of Lua code,
can write and read Lua variables,
and can register C functions to be called by Lua code.
Through the use of C functions, Lua can be augmented to cope with
a wide range of different domains,
thus creating customized programming languages sharing a syntactical framework.
The Lua distribution includes a sample host program called <code>lua</code>,
which uses the Lua library to offer a complete, stand-alone Lua interpreter.
<p>
Lua is free software,
and is provided as usual with no guarantees,
as stated in its license.
The implementation described in this manual is available
at Lua's official web site, <code>www.lua.org</code>.
<p>
Like any other reference manual,
this document is dry in places.
For a discussion of the decisions behind the design of Lua,
see the technical papers available at Lua's web site.
For a detailed introduction to programming in Lua,
see Roberto's book, <em>Programming in Lua (Second Edition)</em>.
<h1>2 - <a name="2">The Language</a></h1>
<p>
This section describes the lexis, the syntax, and the semantics of Lua.
In other words,
this section describes
which tokens are valid,
how they can be combined,
and what their combinations mean.
<p>
The language constructs will be explained using the usual extended BNF notation,
in which
{<em>a</em>} means 0 or more <em>a</em>'s, and
[<em>a</em>] means an optional <em>a</em>.
Non-terminals are shown like non-terminal,
keywords are shown like <b>kword</b>,
and other terminal symbols are shown like `<b>=</b>´.
The complete syntax of Lua can be found in <a href="#8">§8</a>
at the end of this manual.
<h2>2.1 - <a name="2.1">Lexical Conventions</a></h2>
<p>
<em>Names</em>
(also called <em>identifiers</em>)
in Lua can be any string of letters,
digits, and underscores,
not beginning with a digit.
This coincides with the definition of names in most languages.
(The definition of letter depends on the current locale:
any character considered alphabetic by the current locale
can be used in an identifier.)
Identifiers are used to name variables and table fields.
<p>
The following <em>keywords</em> are reserved
and cannot be used as names:
<pre>
and break do else elseif
end false for function if
in local nil not or
repeat return then true until while
</pre>
<p>
Lua is a case-sensitive language:
<code>and</code> is a reserved word, but <code>And</code> and <code>AND</code>
are two different, valid names.
As a convention, names starting with an underscore followed by
uppercase letters (such as <a href="#pdf-_VERSION"><code>_VERSION</code></a>)
are reserved for internal global variables used by Lua.
<p>
The following strings denote other tokens:
<pre>
+ - * / % ^ #
== ~= <= >= < > =
( ) { } [ ]
; : , . .. ...
</pre>
<p>
<em>Literal strings</em>
can be delimited by matching single or double quotes,
and can contain the following C-like escape sequences:
'<code>\a</code>' (bell),
'<code>\b</code>' (backspace),
'<code>\f</code>' (form feed),
'<code>\n</code>' (newline),
'<code>\r</code>' (carriage return),
'<code>\t</code>' (horizontal tab),
'<code>\v</code>' (vertical tab),
'<code>\\</code>' (backslash),
'<code>\"</code>' (quotation mark [double quote]),
and '<code>\'</code>' (apostrophe [single quote]).
Moreover, a backslash followed by a real newline
results in a newline in the string.
A character in a string can also be specified by its numerical value
using the escape sequence <code>\<em>ddd</em></code>,
where <em>ddd</em> is a sequence of up to three decimal digits.
(Note that if a numerical escape is to be followed by a digit,
it must be expressed using exactly three digits.)
Strings in Lua can contain any 8-bit value, including embedded zeros,
which can be specified as '<code>\0</code>'.
<p>
Literal strings can also be defined using a long format
enclosed by <em>long brackets</em>.
We define an <em>opening long bracket of level <em>n</em></em> as an opening
square bracket followed by <em>n</em> equal signs followed by another
opening square bracket.
So, an opening long bracket of level 0 is written as <code>[[</code>,
an opening long bracket of level 1 is written as <code>[=[</code>,
and so on.
A <em>closing long bracket</em> is defined similarly;
for instance, a closing long bracket of level 4 is written as <code>]====]</code>.
A long string starts with an opening long bracket of any level and
ends at the first closing long bracket of the same level.
Literals in this bracketed form can run for several lines,
do not interpret any escape sequences,
and ignore long brackets of any other level.
They can contain anything except a closing bracket of the proper level.
<p>
For convenience,
when the opening long bracket is immediately followed by a newline,
the newline is not included in the string.
As an example, in a system using ASCII
(in which '<code>a</code>' is coded as 97,
newline is coded as 10, and '<code>1</code>' is coded as 49),
the five literal strings below denote the same string:
<pre>
a = 'alo\n123"'
a = "alo\n123\""
a = '\97lo\10\04923"'
a = [[alo
123"]]
a = [==[
alo
123"]==]
</pre>
<p>
A <em>numerical constant</em> can be written with an optional decimal part
and an optional decimal exponent.
Lua also accepts integer hexadecimal constants,
by prefixing them with <code>0x</code>.
Examples of valid numerical constants are
<pre>
3 3.0 3.1416 314.16e-2 0.31416E1 0xff 0x56
</pre>
<p>
A <em>comment</em> starts with a double hyphen (<code>--</code>)
anywhere outside a string.
If the text immediately after <code>--</code> is not an opening long bracket,
the comment is a <em>short comment</em>,
which runs until the end of the line.
Otherwise, it is a <em>long comment</em>,
which runs until the corresponding closing long bracket.
Long comments are frequently used to disable code temporarily.
<h2>2.2 - <a name="2.2">Values and Types</a></h2>
<p>
Lua is a <em>dynamically typed language</em>.
This means that
variables do not have types; only values do.
There are no type definitions in the language.
All values carry their own type.
<p>
All values in Lua are <em>first-class values</em>.
This means that all values can be stored in variables,
passed as arguments to other functions, and returned as results.
<p>
There are eight basic types in Lua:
<em>nil</em>, <em>boolean</em>, <em>number</em>,
<em>string</em>, <em>function</em>, <em>userdata</em>,
<em>thread</em>, and <em>table</em>.
<em>Nil</em> is the type of the value <b>nil</b>,
whose main property is to be different from any other value;
it usually represents the absence of a useful value.
<em>Boolean</em> is the type of the values <b>false</b> and <b>true</b>.
Both <b>nil</b> and <b>false</b> make a condition false;
any other value makes it true.
<em>Number</em> represents real (double-precision floating-point) numbers.
(It is easy to build Lua interpreters that use other
internal representations for numbers,
such as single-precision float or long integers;
see file <code>luaconf.h</code>.)
<em>String</em> represents arrays of characters.
Lua is 8-bit clean:
strings can contain any 8-bit character,
including embedded zeros ('<code>\0</code>') (see <a href="#2.1">§2.1</a>).
<p>
Lua can call (and manipulate) functions written in Lua and
functions written in C
(see <a href="#2.5.8">§2.5.8</a>).
<p>
The type <em>userdata</em> is provided to allow arbitrary C data to
be stored in Lua variables.
This type corresponds to a block of raw memory
and has no pre-defined operations in Lua,
except assignment and identity test.
However, by using <em>metatables</em>,
the programmer can define operations for userdata values
(see <a href="#2.8">§2.8</a>).
Userdata values cannot be created or modified in Lua,
only through the C API.
This guarantees the integrity of data owned by the host program.
<p>
The type <em>thread</em> represents independent threads of execution
and it is used to implement coroutines (see <a href="#2.11">§2.11</a>).
Do not confuse Lua threads with operating-system threads.
Lua supports coroutines on all systems,
even those that do not support threads.
<p>
The type <em>table</em> implements associative arrays,
that is, arrays that can be indexed not only with numbers,
but with any value (except <b>nil</b>).
Tables can be <em>heterogeneous</em>;
that is, they can contain values of all types (except <b>nil</b>).
Tables are the sole data structuring mechanism in Lua;
they can be used to represent ordinary arrays,
symbol tables, sets, records, graphs, trees, etc.
To represent records, Lua uses the field name as an index.
The language supports this representation by
providing <code>a.name</code> as syntactic sugar for <code>a["name"]</code>.
There are several convenient ways to create tables in Lua
(see <a href="#2.5.7">§2.5.7</a>).
<p>
Like indices,
the value of a table field can be of any type (except <b>nil</b>).
In particular,
because functions are first-class values,
table fields can contain functions.
Thus tables can also carry <em>methods</em> (see <a href="#2.5.9">§2.5.9</a>).
<p>
Tables, functions, threads, and (full) userdata values are <em>objects</em>:
variables do not actually <em>contain</em> these values,
only <em>references</em> to them.
Assignment, parameter passing, and function returns
always manipulate references to such values;
these operations do not imply any kind of copy.
<p>
The library function <a href="#pdf-type"><code>type</code></a> returns a string describing the type
of a given value.
<h3>2.2.1 - <a name="2.2.1">Coercion</a></h3>
<p>
Lua provides automatic conversion between
string and number values at run time.
Any arithmetic operation applied to a string tries to convert
this string to a number, following the usual conversion rules.
Conversely, whenever a number is used where a string is expected,
the number is converted to a string, in a reasonable format.
For complete control over how numbers are converted to strings,
use the <code>format</code> function from the string library
(see <a href="#pdf-string.format"><code>string.format</code></a>).
<h2>2.3 - <a name="2.3">Variables</a></h2>
<p>
Variables are places that store values.
There are three kinds of variables in Lua:
global variables, local variables, and table fields.
<p>
A single name can denote a global variable or a local variable
(or a function's formal parameter,
which is a particular kind of local variable):
<pre>
var ::= Name
</pre><p>
Name denotes identifiers, as defined in <a href="#2.1">§2.1</a>.
<p>
Any variable is assumed to be global unless explicitly declared
as a local (see <a href="#2.4.7">§2.4.7</a>).
Local variables are <em>lexically scoped</em>:
local variables can be freely accessed by functions
defined inside their scope (see <a href="#2.6">§2.6</a>).
<p>
Before the first assignment to a variable, its value is <b>nil</b>.
<p>
Square brackets are used to index a table:
<pre>
var ::= prefixexp `<b>[</b>´ exp `<b>]</b>´
</pre><p>
The meaning of accesses to global variables
and table fields can be changed via metatables.
An access to an indexed variable <code>t[i]</code> is equivalent to
a call <code>gettable_event(t,i)</code>.
(See <a href="#2.8">§2.8</a> for a complete description of the
<code>gettable_event</code> function.
This function is not defined or callable in Lua.
We use it here only for explanatory purposes.)
<p>
The syntax <code>var.Name</code> is just syntactic sugar for
<code>var["Name"]</code>:
<pre>
var ::= prefixexp `<b>.</b>´ Name
</pre>
<p>
All global variables live as fields in ordinary Lua tables,
called <em>environment tables</em> or simply
<em>environments</em> (see <a href="#2.9">§2.9</a>).
Each function has its own reference to an environment,
so that all global variables in this function
will refer to this environment table.
When a function is created,
it inherits the environment from the function that created it.
To get the environment table of a Lua function,
you call <a href="#pdf-getfenv"><code>getfenv</code></a>.
To replace it,
you call <a href="#pdf-setfenv"><code>setfenv</code></a>.
(You can only manipulate the environment of C functions
through the debug library; (see <a href="#5.9">§5.9</a>).)
<p>
An access to a global variable <code>x</code>
is equivalent to <code>_env.x</code>,
which in turn is equivalent to
<pre>
gettable_event(_env, "x")
</pre><p>
where <code>_env</code> is the environment of the running function.
(See <a href="#2.8">§2.8</a> for a complete description of the
<code>gettable_event</code> function.
This function is not defined or callable in Lua.
Similarly, the <code>_env</code> variable is not defined in Lua.
We use them here only for explanatory purposes.)
<h2>2.4 - <a name="2.4">Statements</a></h2>
<p>
Lua supports an almost conventional set of statements,
similar to those in Pascal or C.
This set includes
assignments, control structures, function calls,
and variable declarations.
<h3>2.4.1 - <a name="2.4.1">Chunks</a></h3>
<p>
The unit of execution of Lua is called a <em>chunk</em>.
A chunk is simply a sequence of statements,
which are executed sequentially.
Each statement can be optionally followed by a semicolon:
<pre>
chunk ::= {stat [`<b>;</b>´]}
</pre><p>
There are no empty statements and thus '<code>;;</code>' is not legal.
<p>
Lua handles a chunk as the body of an anonymous function
with a variable number of arguments
(see <a href="#2.5.9">§2.5.9</a>).
As such, chunks can define local variables,
receive arguments, and return values.
<p>
A chunk can be stored in a file or in a string inside the host program.
To execute a chunk,
Lua first pre-compiles the chunk into instructions for a virtual machine,
and then it executes the compiled code
with an interpreter for the virtual machine.
<p>
Chunks can also be pre-compiled into binary form;
see program <code>luac</code> for details.
Programs in source and compiled forms are interchangeable;
Lua automatically detects the file type and acts accordingly.
<h3>2.4.2 - <a name="2.4.2">Blocks</a></h3><p>
A block is a list of statements;
syntactically, a block is the same as a chunk:
<pre>
block ::= chunk
</pre>
<p>
A block can be explicitly delimited to produce a single statement:
<pre>
stat ::= <b>do</b> block <b>end</b>
</pre><p>
Explicit blocks are useful
to control the scope of variable declarations.
Explicit blocks are also sometimes used to
add a <b>return</b> or <b>break</b> statement in the middle
of another block (see <a href="#2.4.4">§2.4.4</a>).
<h3>2.4.3 - <a name="2.4.3">Assignment</a></h3>
<p>
Lua allows multiple assignments.
Therefore, the syntax for assignment
defines a list of variables on the left side
and a list of expressions on the right side.
The elements in both lists are separated by commas:
<pre>
stat ::= varlist `<b>=</b>´ explist
varlist ::= var {`<b>,</b>´ var}
explist ::= exp {`<b>,</b>´ exp}
</pre><p>
Expressions are discussed in <a href="#2.5">§2.5</a>.
<p>
Before the assignment,
the list of values is <em>adjusted</em> to the length of
the list of variables.
If there are more values than needed,
the excess values are thrown away.
If there are fewer values than needed,
the list is extended with as many <b>nil</b>'s as needed.
If the list of expressions ends with a function call,
then all values returned by that call enter the list of values,
before the adjustment
(except when the call is enclosed in parentheses; see <a href="#2.5">§2.5</a>).
<p>
The assignment statement first evaluates all its expressions
and only then are the assignments performed.
Thus the code
<pre>
i = 3
i, a[i] = i+1, 20
</pre><p>
sets <code>a[3]</code> to 20, without affecting <code>a[4]</code>
because the <code>i</code> in <code>a[i]</code> is evaluated (to 3)
before it is assigned 4.
Similarly, the line
<pre>
x, y = y, x
</pre><p>
exchanges the values of <code>x</code> and <code>y</code>,
and
<pre>
x, y, z = y, z, x
</pre><p>
cyclically permutes the values of <code>x</code>, <code>y</code>, and <code>z</code>.
<p>
The meaning of assignments to global variables
and table fields can be changed via metatables.
An assignment to an indexed variable <code>t[i] = val</code> is equivalent to
<code>settable_event(t,i,val)</code>.
(See <a href="#2.8">§2.8</a> for a complete description of the
<code>settable_event</code> function.
This function is not defined or callable in Lua.
We use it here only for explanatory purposes.)
<p>
An assignment to a global variable <code>x = val</code>
is equivalent to the assignment
<code>_env.x = val</code>,
which in turn is equivalent to
<pre>
settable_event(_env, "x", val)
</pre><p>
where <code>_env</code> is the environment of the running function.
(The <code>_env</code> variable is not defined in Lua.
We use it here only for explanatory purposes.)
<h3>2.4.4 - <a name="2.4.4">Control Structures</a></h3><p>
The control structures
<b>if</b>, <b>while</b>, and <b>repeat</b> have the usual meaning and
familiar syntax:
<pre>
stat ::= <b>while</b> exp <b>do</b> block <b>end</b>
stat ::= <b>repeat</b> block <b>until</b> exp
stat ::= <b>if</b> exp <b>then</b> block {<b>elseif</b> exp <b>then</b> block} [<b>else</b> block] <b>end</b>
</pre><p>
Lua also has a <b>for</b> statement, in two flavors (see <a href="#2.4.5">§2.4.5</a>).
<p>
The condition expression of a
control structure can return any value.
Both <b>false</b> and <b>nil</b> are considered false.
All values different from <b>nil</b> and <b>false</b> are considered true
(in particular, the number 0 and the empty string are also true).
<p>
In the <b>repeat</b>–<b>until</b> loop,
the inner block does not end at the <b>until</b> keyword,
but only after the condition.
So, the condition can refer to local variables
declared inside the loop block.
<p>
The <b>return</b> statement is used to return values
from a function or a chunk (which is just a function).
Functions and chunks can return more than one value,
and so the syntax for the <b>return</b> statement is
<pre>
stat ::= <b>return</b> [explist]
</pre>
<p>
The <b>break</b> statement is used to terminate the execution of a
<b>while</b>, <b>repeat</b>, or <b>for</b> loop,
skipping to the next statement after the loop:
<pre>
stat ::= <b>break</b>
</pre><p>
A <b>break</b> ends the innermost enclosing loop.
<p>
The <b>return</b> and <b>break</b>
statements can only be written as the <em>last</em> statement of a block.
If it is really necessary to <b>return</b> or <b>break</b> in the
middle of a block,
then an explicit inner block can be used,
as in the idioms
<code>do return end</code> and <code>do break end</code>,
because now <b>return</b> and <b>break</b> are the last statements in
their (inner) blocks.
<h3>2.4.5 - <a name="2.4.5">For Statement</a></h3>
<p>
The <b>for</b> statement has two forms:
one numeric and one generic.
<p>
The numeric <b>for</b> loop repeats a block of code while a
control variable runs through an arithmetic progression.
It has the following syntax:
<pre>
stat ::= <b>for</b> Name `<b>=</b>´ exp `<b>,</b>´ exp [`<b>,</b>´ exp] <b>do</b> block <b>end</b>
</pre><p>
The <em>block</em> is repeated for <em>name</em> starting at the value of
the first <em>exp</em>, until it passes the second <em>exp</em> by steps of the
third <em>exp</em>.
More precisely, a <b>for</b> statement like
<pre>
for v = <em>e1</em>, <em>e2</em>, <em>e3</em> do <em>block</em> end
</pre><p>
is equivalent to the code:
<pre>
do
local <em>var</em>, <em>limit</em>, <em>step</em> = tonumber(<em>e1</em>), tonumber(<em>e2</em>), tonumber(<em>e3</em>)
if not (<em>var</em> and <em>limit</em> and <em>step</em>) then error() end
while (<em>step</em> > 0 and <em>var</em> <= <em>limit</em>) or (<em>step</em> <= 0 and <em>var</em> >= <em>limit</em>) do
local v = <em>var</em>
<em>block</em>
<em>var</em> = <em>var</em> + <em>step</em>
end
end
</pre><p>
Note the following:
<ul>
<li>
All three control expressions are evaluated only once,
before the loop starts.
They must all result in numbers.
</li>
<li>
<code><em>var</em></code>, <code><em>limit</em></code>, and <code><em>step</em></code> are invisible variables.
The names shown here are for explanatory purposes only.
</li>
<li>
If the third expression (the step) is absent,
then a step of 1 is used.
</li>
<li>
You can use <b>break</b> to exit a <b>for</b> loop.
</li>
<li>
The loop variable <code>v</code> is local to the loop;
you cannot use its value after the <b>for</b> ends or is broken.
If you need this value,
assign it to another variable before breaking or exiting the loop.
</li>
</ul>
<p>
The generic <b>for</b> statement works over functions,
called <em>iterators</em>.
On each iteration, the iterator function is called to produce a new value,
stopping when this new value is <b>nil</b>.
The generic <b>for</b> loop has the following syntax:
<pre>
stat ::= <b>for</b> namelist <b>in</b> explist <b>do</b> block <b>end</b>
namelist ::= Name {`<b>,</b>´ Name}
</pre><p>
A <b>for</b> statement like
<pre>
for <em>var_1</em>, ···, <em>var_n</em> in <em>explist</em> do <em>block</em> end
</pre><p>
is equivalent to the code:
<pre>
do
local <em>f</em>, <em>s</em>, <em>var</em> = <em>explist</em>
while true do
local <em>var_1</em>, ···, <em>var_n</em> = <em>f</em>(<em>s</em>, <em>var</em>)
<em>var</em> = <em>var_1</em>
if <em>var</em> == nil then break end
<em>block</em>
end
end
</pre><p>
Note the following:
<ul>
<li>
<code><em>explist</em></code> is evaluated only once.
Its results are an <em>iterator</em> function,
a <em>state</em>,
and an initial value for the first <em>iterator variable</em>.
</li>
<li>
<code><em>f</em></code>, <code><em>s</em></code>, and <code><em>var</em></code> are invisible variables.
The names are here for explanatory purposes only.
</li>
<li>
You can use <b>break</b> to exit a <b>for</b> loop.
</li>
<li>
The loop variables <code><em>var_i</em></code> are local to the loop;
you cannot use their values after the <b>for</b> ends.
If you need these values,
then assign them to other variables before breaking or exiting the loop.
</li>
</ul>
<h3>2.4.6 - <a name="2.4.6">Function Calls as Statements</a></h3><p>
To allow possible side-effects,
function calls can be executed as statements:
<pre>
stat ::= functioncall
</pre><p>
In this case, all returned values are thrown away.
Function calls are explained in <a href="#2.5.8">§2.5.8</a>.
<h3>2.4.7 - <a name="2.4.7">Local Declarations</a></h3><p>
Local variables can be declared anywhere inside a block.
The declaration can include an initial assignment:
<pre>
stat ::= <b>local</b> namelist [`<b>=</b>´ explist]
</pre><p>
If present, an initial assignment has the same semantics
of a multiple assignment (see <a href="#2.4.3">§2.4.3</a>).
Otherwise, all variables are initialized with <b>nil</b>.
<p>
A chunk is also a block (see <a href="#2.4.1">§2.4.1</a>),
and so local variables can be declared in a chunk outside any explicit block.
The scope of such local variables extends until the end of the chunk.
<p>
The visibility rules for local variables are explained in <a href="#2.6">§2.6</a>.
<h2>2.5 - <a name="2.5">Expressions</a></h2>
<p>
The basic expressions in Lua are the following:
<pre>
exp ::= prefixexp
exp ::= <b>nil</b> | <b>false</b> | <b>true</b>
exp ::= Number
exp ::= String
exp ::= function
exp ::= tableconstructor
exp ::= `<b>...</b>´
exp ::= exp binop exp
exp ::= unop exp
prefixexp ::= var | functioncall | `<b>(</b>´ exp `<b>)</b>´
</pre>
<p>
Numbers and literal strings are explained in <a href="#2.1">§2.1</a>;
variables are explained in <a href="#2.3">§2.3</a>;
function definitions are explained in <a href="#2.5.9">§2.5.9</a>;
function calls are explained in <a href="#2.5.8">§2.5.8</a>;
table constructors are explained in <a href="#2.5.7">§2.5.7</a>.
Vararg expressions,
denoted by three dots ('<code>...</code>'), can only be used when
directly inside a vararg function;
they are explained in <a href="#2.5.9">§2.5.9</a>.
<p>
Binary operators comprise arithmetic operators (see <a href="#2.5.1">§2.5.1</a>),
relational operators (see <a href="#2.5.2">§2.5.2</a>), logical operators (see <a href="#2.5.3">§2.5.3</a>),
and the concatenation operator (see <a href="#2.5.4">§2.5.4</a>).
Unary operators comprise the unary minus (see <a href="#2.5.1">§2.5.1</a>),
the unary <b>not</b> (see <a href="#2.5.3">§2.5.3</a>),
and the unary <em>length operator</em> (see <a href="#2.5.5">§2.5.5</a>).
<p>
Both function calls and vararg expressions can result in multiple values.
If an expression is used as a statement
(only possible for function calls (see <a href="#2.4.6">§2.4.6</a>)),
then its return list is adjusted to zero elements,
thus discarding all returned values.
If an expression is used as the last (or the only) element
of a list of expressions,
then no adjustment is made
(unless the call is enclosed in parentheses).
In all other contexts,
Lua adjusts the result list to one element,
discarding all values except the first one.
<p>
Here are some examples:
<pre>
f() -- adjusted to 0 results
g(f(), x) -- f() is adjusted to 1 result
g(x, f()) -- g gets x plus all results from f()
a,b,c = f(), x -- f() is adjusted to 1 result (c gets nil)
a,b = ... -- a gets the first vararg parameter, b gets
-- the second (both a and b can get nil if there
-- is no corresponding vararg parameter)
a,b,c = x, f() -- f() is adjusted to 2 results
a,b,c = f() -- f() is adjusted to 3 results
return f() -- returns all results from f()
return ... -- returns all received vararg parameters
return x,y,f() -- returns x, y, and all results from f()
{f()} -- creates a list with all results from f()
{...} -- creates a list with all vararg parameters
{f(), nil} -- f() is adjusted to 1 result
</pre>
<p>
Any expression enclosed in parentheses always results in only one value.
Thus,
<code>(f(x,y,z))</code> is always a single value,
even if <code>f</code> returns several values.
(The value of <code>(f(x,y,z))</code> is the first value returned by <code>f</code>
or <b>nil</b> if <code>f</code> does not return any values.)
<h3>2.5.1 - <a name="2.5.1">Arithmetic Operators</a></h3><p>
Lua supports the usual arithmetic operators:
the binary <code>+</code> (addition),
<code>-</code> (subtraction), <code>*</code> (multiplication),
<code>/</code> (division), <code>%</code> (modulo), and <code>^</code> (exponentiation);
and unary <code>-</code> (negation).
If the operands are numbers, or strings that can be converted to
numbers (see <a href="#2.2.1">§2.2.1</a>),
then all operations have the usual meaning.
Exponentiation works for any exponent.
For instance, <code>x^(-0.5)</code> computes the inverse of the square root of <code>x</code>.
Modulo is defined as
<pre>
a % b == a - math.floor(a/b)*b
</pre><p>
That is, it is the remainder of a division that rounds
the quotient towards minus infinity.
<h3>2.5.2 - <a name="2.5.2">Relational Operators</a></h3><p>
The relational operators in Lua are
<pre>
== ~= < > <= >=
</pre><p>
These operators always result in <b>false</b> or <b>true</b>.
<p>
Equality (<code>==</code>) first compares the type of its operands.
If the types are different, then the result is <b>false</b>.
Otherwise, the values of the operands are compared.
Numbers and strings are compared in the usual way.
Objects (tables, userdata, threads, and functions)
are compared by <em>reference</em>:
two objects are considered equal only if they are the <em>same</em> object.
Every time you create a new object
(a table, userdata, thread, or function),
this new object is different from any previously existing object.
<p>
You can change the way that Lua compares tables and userdata
by using the "eq" metamethod (see <a href="#2.8">§2.8</a>).
<p>
The conversion rules of <a href="#2.2.1">§2.2.1</a>
<em>do not</em> apply to equality comparisons.
Thus, <code>"0"==0</code> evaluates to <b>false</b>,
and <code>t[0]</code> and <code>t["0"]</code> denote different
entries in a table.
<p>
The operator <code>~=</code> is exactly the negation of equality (<code>==</code>).
<p>
The order operators work as follows.
If both arguments are numbers, then they are compared as such.
Otherwise, if both arguments are strings,
then their values are compared according to the current locale.
Otherwise, Lua tries to call the "lt" or the "le"
metamethod (see <a href="#2.8">§2.8</a>).
A comparison <code>a > b</code> is translated to <code>b < a</code>
and <code>a >= b</code> is translated to <code>b <= a</code>.
<h3>2.5.3 - <a name="2.5.3">Logical Operators</a></h3><p>
The logical operators in Lua are
<b>and</b>, <b>or</b>, and <b>not</b>.
Like the control structures (see <a href="#2.4.4">§2.4.4</a>),
all logical operators consider both <b>false</b> and <b>nil</b> as false
and anything else as true.
<p>
The negation operator <b>not</b> always returns <b>false</b> or <b>true</b>.
The conjunction operator <b>and</b> returns its first argument
if this value is <b>false</b> or <b>nil</b>;
otherwise, <b>and</b> returns its second argument.
The disjunction operator <b>or</b> returns its first argument
if this value is different from <b>nil</b> and <b>false</b>;
otherwise, <b>or</b> returns its second argument.
Both <b>and</b> and <b>or</b> use short-cut evaluation;
that is,
the second operand is evaluated only if necessary.
Here are some examples:
<pre>
10 or 20 --> 10
10 or error() --> 10
nil or "a" --> "a"
nil and 10 --> nil
false and error() --> false
false and nil --> false
false or nil --> nil
10 and 20 --> 20
</pre><p>
(In this manual,
<code>--></code> indicates the result of the preceding expression.)
<h3>2.5.4 - <a name="2.5.4">Concatenation</a></h3><p>
The string concatenation operator in Lua is
denoted by two dots ('<code>..</code>').
If both operands are strings or numbers, then they are converted to
strings according to the rules mentioned in <a href="#2.2.1">§2.2.1</a>.
Otherwise, the "concat" metamethod is called (see <a href="#2.8">§2.8</a>).
<h3>2.5.5 - <a name="2.5.5">The Length Operator</a></h3>
<p>
The length operator is denoted by the unary operator <code>#</code>.
The length of a string is its number of bytes
(that is, the usual meaning of string length when each
character is one byte).
<p>
The length of a table <code>t</code> is defined to be any
integer index <code>n</code>
such that <code>t[n]</code> is not <b>nil</b> and <code>t[n+1]</code> is <b>nil</b>;
moreover, if <code>t[1]</code> is <b>nil</b>, <code>n</code> can be zero.
For a regular array, with non-nil values from 1 to a given <code>n</code>,
its length is exactly that <code>n</code>,
the index of its last value.
If the array has "holes"
(that is, <b>nil</b> values between other non-nil values),
then <code>#t</code> can be any of the indices that
directly precedes a <b>nil</b> value
(that is, it may consider any such <b>nil</b> value as the end of
the array).
<h3>2.5.6 - <a name="2.5.6">Precedence</a></h3><p>
Operator precedence in Lua follows the table below,
from lower to higher priority:
<pre>
or
and
< > <= >= ~= ==
..
+ -
* / %
not # - (unary)
^
</pre><p>
As usual,
you can use parentheses to change the precedences of an expression.
The concatenation ('<code>..</code>') and exponentiation ('<code>^</code>')
operators are right associative.
All other binary operators are left associative.
<h3>2.5.7 - <a name="2.5.7">Table Constructors</a></h3><p>
Table constructors are expressions that create tables.
Every time a constructor is evaluated, a new table is created.
A constructor can be used to create an empty table
or to create a table and initialize some of its fields.
The general syntax for constructors is
<pre>
tableconstructor ::= `<b>{</b>´ [fieldlist] `<b>}</b>´
fieldlist ::= field {fieldsep field} [fieldsep]
field ::= `<b>[</b>´ exp `<b>]</b>´ `<b>=</b>´ exp | Name `<b>=</b>´ exp | exp
fieldsep ::= `<b>,</b>´ | `<b>;</b>´
</pre>
<p>
Each field of the form <code>[exp1] = exp2</code> adds to the new table an entry
with key <code>exp1</code> and value <code>exp2</code>.
A field of the form <code>name = exp</code> is equivalent to
<code>["name"] = exp</code>.
Finally, fields of the form <code>exp</code> are equivalent to
<code>[i] = exp</code>, where <code>i</code> are consecutive numerical integers,
starting with 1.
Fields in the other formats do not affect this counting.
For example,
<pre>
a = { [f(1)] = g; "x", "y"; x = 1, f(x), [30] = 23; 45 }
</pre><p>
is equivalent to
<pre>
do
local t = {}
t[f(1)] = g
t[1] = "x" -- 1st exp
t[2] = "y" -- 2nd exp
t.x = 1 -- t["x"] = 1
t[3] = f(x) -- 3rd exp
t[30] = 23
t[4] = 45 -- 4th exp
a = t
end
</pre>
<p>
If the last field in the list has the form <code>exp</code>
and the expression is a function call or a vararg expression,
then all values returned by this expression enter the list consecutively
(see <a href="#2.5.8">§2.5.8</a>).
To avoid this,
enclose the function call or the vararg expression
in parentheses (see <a href="#2.5">§2.5</a>).
<p>
The field list can have an optional trailing separator,
as a convenience for machine-generated code.
<h3>2.5.8 - <a name="2.5.8">Function Calls</a></h3><p>
A function call in Lua has the following syntax:
<pre>
functioncall ::= prefixexp args
</pre><p>
In a function call,
first prefixexp and args are evaluated.
If the value of prefixexp has type <em>function</em>,
then this function is called
with the given arguments.
Otherwise, the prefixexp "call" metamethod is called,
having as first parameter the value of prefixexp,
followed by the original call arguments
(see <a href="#2.8">§2.8</a>).
<p>
The form
<pre>
functioncall ::= prefixexp `<b>:</b>´ Name args
</pre><p>
can be used to call "methods".
A call <code>v:name(<em>args</em>)</code>
is syntactic sugar for <code>v.name(v,<em>args</em>)</code>,
except that <code>v</code> is evaluated only once.
<p>
Arguments have the following syntax:
<pre>
args ::= `<b>(</b>´ [explist] `<b>)</b>´
args ::= tableconstructor
args ::= String
</pre><p>
All argument expressions are evaluated before the call.
A call of the form <code>f{<em>fields</em>}</code> is
syntactic sugar for <code>f({<em>fields</em>})</code>;
that is, the argument list is a single new table.
A call of the form <code>f'<em>string</em>'</code>
(or <code>f"<em>string</em>"</code> or <code>f[[<em>string</em>]]</code>)
is syntactic sugar for <code>f('<em>string</em>')</code>;
that is, the argument list is a single literal string.
<p>
As an exception to the free-format syntax of Lua,
you cannot put a line break before the '<code>(</code>' in a function call.
This restriction avoids some ambiguities in the language.
If you write
<pre>
a = f
(g).x(a)
</pre><p>
Lua would see that as a single statement, <code>a = f(g).x(a)</code>.
So, if you want two statements, you must add a semi-colon between them.
If you actually want to call <code>f</code>,
you must remove the line break before <code>(g)</code>.
<p>
A call of the form <code>return</code> <em>functioncall</em> is called
a <em>tail call</em>.
Lua implements <em>proper tail calls</em>
(or <em>proper tail recursion</em>):
in a tail call,
the called function reuses the stack entry of the calling function.
Therefore, there is no limit on the number of nested tail calls that
a program can execute.
However, a tail call erases any debug information about the
calling function.
Note that a tail call only happens with a particular syntax,
where the <b>return</b> has one single function call as argument;
this syntax makes the calling function return exactly
the returns of the called function.
So, none of the following examples are tail calls:
<pre>
return (f(x)) -- results adjusted to 1
return 2 * f(x)
return x, f(x) -- additional results
f(x); return -- results discarded
return x or f(x) -- results adjusted to 1
</pre>
<h3>2.5.9 - <a name="2.5.9">Function Definitions</a></h3>
<p>
The syntax for function definition is
<pre>
function ::= <b>function</b> funcbody
funcbody ::= `<b>(</b>´ [parlist] `<b>)</b>´ block <b>end</b>
</pre>
<p>
The following syntactic sugar simplifies function definitions:
<pre>
stat ::= <b>function</b> funcname funcbody
stat ::= <b>local</b> <b>function</b> Name funcbody
funcname ::= Name {`<b>.</b>´ Name} [`<b>:</b>´ Name]
</pre><p>
The statement
<pre>
function f () <em>body</em> end
</pre><p>
translates to
<pre>
f = function () <em>body</em> end
</pre><p>
The statement
<pre>
function t.a.b.c.f () <em>body</em> end
</pre><p>
translates to
<pre>
t.a.b.c.f = function () <em>body</em> end
</pre><p>
The statement
<pre>
local function f () <em>body</em> end
</pre><p>
translates to
<pre>
local f; f = function () <em>body</em> end
</pre><p>
<em>not</em> to
<pre>
local f = function () <em>body</em> end
</pre><p>
(This only makes a difference when the body of the function
contains references to <code>f</code>.)
<p>
A function definition is an executable expression,
whose value has type <em>function</em>.
When Lua pre-compiles a chunk,
all its function bodies are pre-compiled too.
Then, whenever Lua executes the function definition,
the function is <em>instantiated</em> (or <em>closed</em>).
This function instance (or <em>closure</em>)
is the final value of the expression.
Different instances of the same function
can refer to different external local variables
and can have different environment tables.
<p>
Parameters act as local variables that are
initialized with the argument values:
<pre>
parlist ::= namelist [`<b>,</b>´ `<b>...</b>´] | `<b>...</b>´
</pre><p>
When a function is called,
the list of arguments is adjusted to
the length of the list of parameters,
unless the function is a variadic or <em>vararg function</em>,
which is
indicated by three dots ('<code>...</code>') at the end of its parameter list.
A vararg function does not adjust its argument list;
instead, it collects all extra arguments and supplies them
to the function through a <em>vararg expression</em>,
which is also written as three dots.
The value of this expression is a list of all actual extra arguments,
similar to a function with multiple results.
If a vararg expression is used inside another expression
or in the middle of a list of expressions,
then its return list is adjusted to one element.
If the expression is used as the last element of a list of expressions,
then no adjustment is made
(unless that last expression is enclosed in parentheses).
<p>
As an example, consider the following definitions:
<pre>
function f(a, b) end
function g(a, b, ...) end
function r() return 1,2,3 end
</pre><p>
Then, we have the following mapping from arguments to parameters and
to the vararg expression:
<pre>
CALL PARAMETERS
f(3) a=3, b=nil
f(3, 4) a=3, b=4
f(3, 4, 5) a=3, b=4
f(r(), 10) a=1, b=10
f(r()) a=1, b=2
g(3) a=3, b=nil, ... --> (nothing)
g(3, 4) a=3, b=4, ... --> (nothing)
g(3, 4, 5, 8) a=3, b=4, ... --> 5 8
g(5, r()) a=5, b=1, ... --> 2 3
</pre>
<p>
Results are returned using the <b>return</b> statement (see <a href="#2.4.4">§2.4.4</a>).
If control reaches the end of a function
without encountering a <b>return</b> statement,
then the function returns with no results.
<p>
The <em>colon</em> syntax
is used for defining <em>methods</em>,
that is, functions that have an implicit extra parameter <code>self</code>.
Thus, the statement
<pre>
function t.a.b.c:f (<em>params</em>) <em>body</em> end
</pre><p>
is syntactic sugar for
<pre>
t.a.b.c.f = function (self, <em>params</em>) <em>body</em> end
</pre>
<h2>2.6 - <a name="2.6">Visibility Rules</a></h2>
<p>
Lua is a lexically scoped language.
The scope of variables begins at the first statement <em>after</em>
their declaration and lasts until the end of the innermost block that
includes the declaration.
Consider the following example:
<pre>
x = 10 -- global variable
do -- new block
local x = x -- new 'x', with value 10
print(x) --> 10
x = x+1
do -- another block
local x = x+1 -- another 'x'
print(x) --> 12
end
print(x) --> 11
end
print(x) --> 10 (the global one)
</pre>
<p>
Notice that, in a declaration like <code>local x = x</code>,
the new <code>x</code> being declared is not in scope yet,
and so the second <code>x</code> refers to the outside variable.
<p>
Because of the lexical scoping rules,
local variables can be freely accessed by functions
defined inside their scope.
A local variable used by an inner function is called
an <em>upvalue</em>, or <em>external local variable</em>,
inside the inner function.
<p>
Notice that each execution of a <b>local</b> statement
defines new local variables.
Consider the following example:
<pre>
a = {}
local x = 20
for i=1,10 do
local y = 0
a[i] = function () y=y+1; return x+y end
end
</pre><p>
The loop creates ten closures
(that is, ten instances of the anonymous function).
Each of these closures uses a different <code>y</code> variable,
while all of them share the same <code>x</code>.
<h2>2.7 - <a name="2.7">Error Handling</a></h2>
<p>
Because Lua is an embedded extension language,
all Lua actions start from C code in the host program
calling a function from the Lua library (see <a href="#lua_pcall"><code>lua_pcall</code></a>).
Whenever an error occurs during Lua compilation or execution,
control returns to C,
which can take appropriate measures
(such as printing an error message).
<p>
Lua code can explicitly generate an error by calling the
<a href="#pdf-error"><code>error</code></a> function.
If you need to catch errors in Lua,
you can use the <a href="#pdf-pcall"><code>pcall</code></a> function.
<h2>2.8 - <a name="2.8">Metatables</a></h2>
<p>
Every value in Lua can have a <em>metatable</em>.
This <em>metatable</em> is an ordinary Lua table
that defines the behavior of the original value
under certain special operations.
You can change several aspects of the behavior
of operations over a value by setting specific fields in its metatable.
For instance, when a non-numeric value is the operand of an addition,
Lua checks for a function in the field <code>"__add"</code> in its metatable.
If it finds one,
Lua calls this function to perform the addition.
<p>
We call the keys in a metatable <em>events</em>
and the values <em>metamethods</em>.
In the previous example, the event is <code>"add"</code>
and the metamethod is the function that performs the addition.
<p>
You can query the metatable of any value
through the <a href="#pdf-getmetatable"><code>getmetatable</code></a> function.
<p>
You can replace the metatable of tables
through the <a href="#pdf-setmetatable"><code>setmetatable</code></a>
function.
You cannot change the metatable of other types from Lua
(except by using the debug library);
you must use the C API for that.
<p>
Tables and full userdata have individual metatables
(although multiple tables and userdata can share their metatables).
Values of all other types share one single metatable per type;
that is, there is one single metatable for all numbers,
one for all strings, etc.
<p>
A metatable controls how an object behaves in arithmetic operations,
order comparisons, concatenation, length operation, and indexing.
A metatable also can define a function to be called when a userdata
is garbage collected.
For each of these operations Lua associates a specific key
called an <em>event</em>.
When Lua performs one of these operations over a value,
it checks whether this value has a metatable with the corresponding event.
If so, the value associated with that key (the metamethod)
controls how Lua will perform the operation.
<p>
Metatables control the operations listed next.
Each operation is identified by its corresponding name.
The key for each operation is a string with its name prefixed by
two underscores, '<code>__</code>';
for instance, the key for operation "add" is the
string <code>"__add"</code>.
The semantics of these operations is better explained by a Lua function
describing how the interpreter executes the operation.
<p>
The code shown here in Lua is only illustrative;
the real behavior is hard coded in the interpreter
and it is much more efficient than this simulation.
All functions used in these descriptions
(<a href="#pdf-rawget"><code>rawget</code></a>, <a href="#pdf-tonumber"><code>tonumber</code></a>, etc.)
are described in <a href="#5.1">§5.1</a>.
In particular, to retrieve the metamethod of a given object,
we use the expression
<pre>
metatable(obj)[event]
</pre><p>
This should be read as
<pre>
rawget(getmetatable(obj) or {}, event)
</pre><p>
That is, the access to a metamethod does not invoke other metamethods,
and the access to objects with no metatables does not fail
(it simply results in <b>nil</b>).
<ul>
<li><b>"add":</b>
the <code>+</code> operation.
<p>
The function <code>getbinhandler</code> below defines how Lua chooses a handler
for a binary operation.
First, Lua tries the first operand.
If its type does not define a handler for the operation,
then Lua tries the second operand.
<pre>
function getbinhandler (op1, op2, event)
return metatable(op1)[event] or metatable(op2)[event]
end
</pre><p>
By using this function,
the behavior of the <code>op1 + op2</code> is
<pre>
function add_event (op1, op2)
local o1, o2 = tonumber(op1), tonumber(op2)
if o1 and o2 then -- both operands are numeric?
return o1 + o2 -- '+' here is the primitive 'add'
else -- at least one of the operands is not numeric
local h = getbinhandler(op1, op2, "__add")
if h then
-- call the handler with both operands
return (h(op1, op2))
else -- no handler available: default behavior
error(···)
end
end
end
</pre><p>
</li>
<li><b>"sub":</b>
the <code>-</code> operation.
Behavior similar to the "add" operation.
</li>
<li><b>"mul":</b>
the <code>*</code> operation.
Behavior similar to the "add" operation.
</li>
<li><b>"div":</b>
the <code>/</code> operation.
Behavior similar to the "add" operation.
</li>
<li><b>"mod":</b>
the <code>%</code> operation.
Behavior similar to the "add" operation,
with the operation
<code>o1 - floor(o1/o2)*o2</code> as the primitive operation.
</li>
<li><b>"pow":</b>
the <code>^</code> (exponentiation) operation.
Behavior similar to the "add" operation,
with the function <code>pow</code> (from the C math library)
as the primitive operation.
</li>
<li><b>"unm":</b>
the unary <code>-</code> operation.
<pre>
function unm_event (op)
local o = tonumber(op)
if o then -- operand is numeric?
return -o -- '-' here is the primitive 'unm'
else -- the operand is not numeric.
-- Try to get a handler from the operand
local h = metatable(op).__unm
if h then
-- call the handler with the operand
return (h(op))
else -- no handler available: default behavior
error(···)
end
end
end
</pre><p>
</li>
<li><b>"concat":</b>
the <code>..</code> (concatenation) operation.
<pre>
function concat_event (op1, op2)
if (type(op1) == "string" or type(op1) == "number") and
(type(op2) == "string" or type(op2) == "number") then
return op1 .. op2 -- primitive string concatenation
else
local h = getbinhandler(op1, op2, "__concat")
if h then
return (h(op1, op2))
else
error(···)
end
end
end
</pre><p>
</li>
<li><b>"len":</b>
the <code>#</code> operation.
<pre>
function len_event (op)
if type(op) == "string" then
return strlen(op) -- primitive string length
elseif type(op) == "table" then
return #op -- primitive table length
else
local h = metatable(op).__len
if h then
-- call the handler with the operand
return (h(op))
else -- no handler available: default behavior
error(···)
end
end
end
</pre><p>
See <a href="#2.5.5">§2.5.5</a> for a description of the length of a table.
</li>
<li><b>"eq":</b>
the <code>==</code> operation.
The function <code>getcomphandler</code> defines how Lua chooses a metamethod
for comparison operators.
A metamethod only is selected when both objects
being compared have the same type
and the same metamethod for the selected operation.
<pre>
function getcomphandler (op1, op2, event)
if type(op1) ~= type(op2) then return nil end
local mm1 = metatable(op1)[event]
local mm2 = metatable(op2)[event]
if mm1 == mm2 then return mm1 else return nil end
end
</pre><p>
The "eq" event is defined as follows:
<pre>
function eq_event (op1, op2)
if type(op1) ~= type(op2) then -- different types?
return false -- different objects
end
if op1 == op2 then -- primitive equal?
return true -- objects are equal
end
-- try metamethod
local h = getcomphandler(op1, op2, "__eq")
if h then
return (h(op1, op2))
else
return false
end
end
</pre><p>
<code>a ~= b</code> is equivalent to <code>not (a == b)</code>.
</li>
<li><b>"lt":</b>
the <code><</code> operation.
<pre>
function lt_event (op1, op2)
if type(op1) == "number" and type(op2) == "number" then
return op1 < op2 -- numeric comparison
elseif type(op1) == "string" and type(op2) == "string" then
return op1 < op2 -- lexicographic comparison
else
local h = getcomphandler(op1, op2, "__lt")
if h then
return (h(op1, op2))
else
error(···)
end
end
end
</pre><p>
<code>a > b</code> is equivalent to <code>b < a</code>.
</li>
<li><b>"le":</b>
the <code><=</code> operation.
<pre>
function le_event (op1, op2)
if type(op1) == "number" and type(op2) == "number" then
return op1 <= op2 -- numeric comparison
elseif type(op1) == "string" and type(op2) == "string" then
return op1 <= op2 -- lexicographic comparison
else
local h = getcomphandler(op1, op2, "__le")
if h then
return (h(op1, op2))
else
h = getcomphandler(op1, op2, "__lt")
if h then
return not h(op2, op1)
else
error(···)
end
end
end
end
</pre><p>
<code>a >= b</code> is equivalent to <code>b <= a</code>.
Note that, in the absence of a "le" metamethod,
Lua tries the "lt", assuming that <code>a <= b</code> is
equivalent to <code>not (b < a)</code>.
</li>
<li><b>"index":</b>
The indexing access <code>table[key]</code>.
<pre>
function gettable_event (table, key)
local h
if type(table) == "table" then
local v = rawget(table, key)
if v ~= nil then return v end
h = metatable(table).__index
if h == nil then return nil end
else
h = metatable(table).__index
if h == nil then
error(···)
end
end
if type(h) == "function" then
return (h(table, key)) -- call the handler
else return h[key] -- or repeat operation on it
end
end
</pre><p>
</li>
<li><b>"newindex":</b>
The indexing assignment <code>table[key] = value</code>.
<pre>
function settable_event (table, key, value)
local h
if type(table) == "table" then
local v = rawget(table, key)
if v ~= nil then rawset(table, key, value); return end
h = metatable(table).__newindex
if h == nil then rawset(table, key, value); return end
else
h = metatable(table).__newindex
if h == nil then
error(···)
end
end
if type(h) == "function" then
h(table, key,value) -- call the handler
else h[key] = value -- or repeat operation on it
end
end
</pre><p>
</li>
<li><b>"call":</b>
called when Lua calls a value.
<pre>
function function_event (func, ...)
if type(func) == "function" then
return func(...) -- primitive call
else
local h = metatable(func).__call
if h then
return h(func, ...)
else
error(···)
end
end
end
</pre><p>
</li>
</ul>
<h2>2.9 - <a name="2.9">Environments</a></h2>
<p>
Besides metatables,
objects of types thread, function, and userdata
have another table associated with them,
called their <em>environment</em>.
Like metatables, environments are regular tables and
multiple objects can share the same environment.
<p>
Threads are created sharing the environment of the creating thread.
Userdata and C functions are created sharing the environment
of the creating C function.
Non-nested Lua functions
(created by <a href="#pdf-loadfile"><code>loadfile</code></a>, <a href="#pdf-loadstring"><code>loadstring</code></a> or <a href="#pdf-load"><code>load</code></a>)
are created sharing the environment of the creating thread.
Nested Lua functions are created sharing the environment of
the creating Lua function.
<p>
Environments associated with userdata have no meaning for Lua.
It is only a convenience feature for programmers to associate a table to
a userdata.
<p>
Environments associated with threads are called
<em>global environments</em>.
They are used as the default environment for threads and
non-nested Lua functions created by the thread
and can be directly accessed by C code (see <a href="#3.3">§3.3</a>).
<p>
The environment associated with a C function can be directly
accessed by C code (see <a href="#3.3">§3.3</a>).
It is used as the default environment for other C functions
and userdata created by the function.
<p>
Environments associated with Lua functions are used to resolve
all accesses to global variables within the function (see <a href="#2.3">§2.3</a>).
They are used as the default environment for nested Lua functions
created by the function.
<p>
You can change the environment of a Lua function or the
running thread by calling <a href="#pdf-setfenv"><code>setfenv</code></a>.
You can get the environment of a Lua function or the running thread
by calling <a href="#pdf-getfenv"><code>getfenv</code></a>.
To manipulate the environment of other objects
(userdata, C functions, other threads) you must
use the C API.
<h2>2.10 - <a name="2.10">Garbage Collection</a></h2>
<p>
Lua performs automatic memory management.
This means that
you have to worry neither about allocating memory for new objects
nor about freeing it when the objects are no longer needed.
Lua manages memory automatically by running
a <em>garbage collector</em> from time to time
to collect all <em>dead objects</em>
(that is, objects that are no longer accessible from Lua).
All memory used by Lua is subject to automatic management:
tables, userdata, functions, threads, strings, etc.
<p>
Lua implements an incremental mark-and-sweep collector.
It uses two numbers to control its garbage-collection cycles:
the <em>garbage-collector pause</em> and
the <em>garbage-collector step multiplier</em>.
Both use percentage points as units
(so that a value of 100 means an internal value of 1).
<p>
The garbage-collector pause
controls how long the collector waits before starting a new cycle.
Larger values make the collector less aggressive.
Values smaller than 100 mean the collector will not wait to
start a new cycle.
A value of 200 means that the collector waits for the total memory in use
to double before starting a new cycle.
<p>
The step multiplier
controls the relative speed of the collector relative to
memory allocation.
Larger values make the collector more aggressive but also increase
the size of each incremental step.
Values smaller than 100 make the collector too slow and
can result in the collector never finishing a cycle.
The default, 200, means that the collector runs at "twice"
the speed of memory allocation.
<p>
You can change these numbers by calling <a href="#lua_gc"><code>lua_gc</code></a> in C
or <a href="#pdf-collectgarbage"><code>collectgarbage</code></a> in Lua.
With these functions you can also control
the collector directly (e.g., stop and restart it).
<h3>2.10.1 - <a name="2.10.1">Garbage-Collection Metamethods</a></h3>
<p>
Using the C API,
you can set garbage-collector metamethods for userdata (see <a href="#2.8">§2.8</a>).
These metamethods are also called <em>finalizers</em>.
Finalizers allow you to coordinate Lua's garbage collection
with external resource management
(such as closing files, network or database connections,
or freeing your own memory).
<p>
Garbage userdata with a field <code>__gc</code> in their metatables are not
collected immediately by the garbage collector.
Instead, Lua puts them in a list.
After the collection,
Lua does the equivalent of the following function
for each userdata in that list:
<pre>
function gc_event (udata)
local h = metatable(udata).__gc
if h then
h(udata)
end
end
</pre>
<p>
At the end of each garbage-collection cycle,
the finalizers for userdata are called in <em>reverse</em>
order of their creation,
among those collected in that cycle.
That is, the first finalizer to be called is the one associated
with the userdata created last in the program.
The userdata itself is freed only in the next garbage-collection cycle.
<h3>2.10.2 - <a name="2.10.2">Weak Tables</a></h3>
<p>
A <em>weak table</em> is a table whose elements are
<em>weak references</em>.
A weak reference is ignored by the garbage collector.
In other words,
if the only references to an object are weak references,
then the garbage collector will collect this object.
<p>
A weak table can have weak keys, weak values, or both.
A table with weak keys allows the collection of its keys,
but prevents the collection of its values.
A table with both weak keys and weak values allows the collection of
both keys and values.
In any case, if either the key or the value is collected,
the whole pair is removed from the table.
The weakness of a table is controlled by the
<code>__mode</code> field of its metatable.
If the <code>__mode</code> field is a string containing the character '<code>k</code>',
the keys in the table are weak.
If <code>__mode</code> contains '<code>v</code>',
the values in the table are weak.
<p>
After you use a table as a metatable,
you should not change the value of its <code>__mode</code> field.
Otherwise, the weak behavior of the tables controlled by this
metatable is undefined.
<h2>2.11 - <a name="2.11">Coroutines</a></h2>
<p>
Lua supports coroutines,
also called <em>collaborative multithreading</em>.
A coroutine in Lua represents an independent thread of execution.
Unlike threads in multithread systems, however,
a coroutine only suspends its execution by explicitly calling
a yield function.
<p>
You create a coroutine with a call to <a href="#pdf-coroutine.create"><code>coroutine.create</code></a>.
Its sole argument is a function
that is the main function of the coroutine.
The <code>create</code> function only creates a new coroutine and
returns a handle to it (an object of type <em>thread</em>);
it does not start the coroutine execution.
<p>
When you first call <a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a>,
passing as its first argument
a thread returned by <a href="#pdf-coroutine.create"><code>coroutine.create</code></a>,
the coroutine starts its execution,
at the first line of its main function.
Extra arguments passed to <a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a> are passed on
to the coroutine main function.
After the coroutine starts running,
it runs until it terminates or <em>yields</em>.
<p>
A coroutine can terminate its execution in two ways:
normally, when its main function returns
(explicitly or implicitly, after the last instruction);
and abnormally, if there is an unprotected error.
In the first case, <a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a> returns <b>true</b>,
plus any values returned by the coroutine main function.
In case of errors, <a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a> returns <b>false</b>
plus an error message.
<p>
A coroutine yields by calling <a href="#pdf-coroutine.yield"><code>coroutine.yield</code></a>.
When a coroutine yields,
the corresponding <a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a> returns immediately,
even if the yield happens inside nested function calls
(that is, not in the main function,
but in a function directly or indirectly called by the main function).
In the case of a yield, <a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a> also returns <b>true</b>,
plus any values passed to <a href="#pdf-coroutine.yield"><code>coroutine.yield</code></a>.
The next time you resume the same coroutine,
it continues its execution from the point where it yielded,
with the call to <a href="#pdf-coroutine.yield"><code>coroutine.yield</code></a> returning any extra
arguments passed to <a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a>.
<p>
Like <a href="#pdf-coroutine.create"><code>coroutine.create</code></a>,
the <a href="#pdf-coroutine.wrap"><code>coroutine.wrap</code></a> function also creates a coroutine,
but instead of returning the coroutine itself,
it returns a function that, when called, resumes the coroutine.
Any arguments passed to this function
go as extra arguments to <a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a>.
<a href="#pdf-coroutine.wrap"><code>coroutine.wrap</code></a> returns all the values returned by <a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a>,
except the first one (the boolean error code).
Unlike <a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a>,
<a href="#pdf-coroutine.wrap"><code>coroutine.wrap</code></a> does not catch errors;
any error is propagated to the caller.
<p>
As an example,
consider the following code:
<pre>
function foo (a)
print("foo", a)
return coroutine.yield(2*a)
end
co = coroutine.create(function (a,b)
print("co-body", a, b)
local r = foo(a+1)
print("co-body", r)
local r, s = coroutine.yield(a+b, a-b)
print("co-body", r, s)
return b, "end"
end)
print("main", coroutine.resume(co, 1, 10))
print("main", coroutine.resume(co, "r"))
print("main", coroutine.resume(co, "x", "y"))
print("main", coroutine.resume(co, "x", "y"))
</pre><p>
When you run it, it produces the following output:
<pre>
co-body 1 10
foo 2
main true 4
co-body r
main true 11 -9
co-body x y
main true 10 end
main false cannot resume dead coroutine
</pre>
<h1>3 - <a name="3">The Application Program Interface</a></h1>
<p>
This section describes the C API for Lua, that is,
the set of C functions available to the host program to communicate
with Lua.
All API functions and related types and constants
are declared in the header file <a name="pdf-lua.h"><code>lua.h</code></a>.
<p>
Even when we use the term "function",
any facility in the API may be provided as a macro instead.
All such macros use each of their arguments exactly once
(except for the first argument, which is always a Lua state),
and so do not generate any hidden side-effects.
<p>
As in most C libraries,
the Lua API functions do not check their arguments for validity or consistency.
However, you can change this behavior by compiling Lua
with a proper definition for the macro <a name="pdf-luai_apicheck"><code>luai_apicheck</code></a>,
in file <code>luaconf.h</code>.
<h2>3.1 - <a name="3.1">The Stack</a></h2>
<p>
Lua uses a <em>virtual stack</em> to pass values to and from C.
Each element in this stack represents a Lua value
(<b>nil</b>, number, string, etc.).
<p>
Whenever Lua calls C, the called function gets a new stack,
which is independent of previous stacks and of stacks of
C functions that are still active.
This stack initially contains any arguments to the C function
and it is where the C function pushes its results
to be returned to the caller (see <a href="#lua_CFunction"><code>lua_CFunction</code></a>).
<p>
For convenience,
most query operations in the API do not follow a strict stack discipline.
Instead, they can refer to any element in the stack
by using an <em>index</em>:
A positive index represents an <em>absolute</em> stack position
(starting at 1);
a negative index represents an <em>offset</em> relative to the top of the stack.
More specifically, if the stack has <em>n</em> elements,
then index 1 represents the first element
(that is, the element that was pushed onto the stack first)
and
index <em>n</em> represents the last element;
index -1 also represents the last element
(that is, the element at the top)
and index <em>-n</em> represents the first element.
We say that an index is <em>valid</em>
if it lies between 1 and the stack top
(that is, if <code>1 ≤ abs(index) ≤ top</code>).
<h2>3.2 - <a name="3.2">Stack Size</a></h2>
<p>
When you interact with Lua API,
you are responsible for ensuring consistency.
In particular,
<em>you are responsible for controlling stack overflow</em>.
You can use the function <a href="#lua_checkstack"><code>lua_checkstack</code></a>
to grow the stack size.
<p>
Whenever Lua calls C,
it ensures that at least <a name="pdf-LUA_MINSTACK"><code>LUA_MINSTACK</code></a> stack positions are available.
<code>LUA_MINSTACK</code> is defined as 20,
so that usually you do not have to worry about stack space
unless your code has loops pushing elements onto the stack.
<p>
Most query functions accept as indices any value inside the
available stack space, that is, indices up to the maximum stack size
you have set through <a href="#lua_checkstack"><code>lua_checkstack</code></a>.
Such indices are called <em>acceptable indices</em>.
More formally, we define an <em>acceptable index</em>
as follows:
<pre>
(index < 0 && abs(index) <= top) ||
(index > 0 && index <= stackspace)
</pre><p>
Note that 0 is never an acceptable index.
<h2>3.3 - <a name="3.3">Pseudo-Indices</a></h2>
<p>
Unless otherwise noted,
any function that accepts valid indices can also be called with
<em>pseudo-indices</em>,
which represent some Lua values that are accessible to C code
but which are not in the stack.
Pseudo-indices are used to access the thread environment,
the function environment,
the registry,
and the upvalues of a C function (see <a href="#3.4">§3.4</a>).
<p>
The thread environment (where global variables live) is
always at pseudo-index <a name="pdf-LUA_GLOBALSINDEX"><code>LUA_GLOBALSINDEX</code></a>.
The environment of the running C function is always
at pseudo-index <a name="pdf-LUA_ENVIRONINDEX"><code>LUA_ENVIRONINDEX</code></a>.
<p>
To access and change the value of global variables,
you can use regular table operations over an environment table.
For instance, to access the value of a global variable, do
<pre>
lua_getfield(L, LUA_GLOBALSINDEX, varname);
</pre>
<h2>3.4 - <a name="3.4">C Closures</a></h2>
<p>
When a C function is created,
it is possible to associate some values with it,
thus creating a <em>C closure</em>;
these values are called <em>upvalues</em> and are
accessible to the function whenever it is called
(see <a href="#lua_pushcclosure"><code>lua_pushcclosure</code></a>).
<p>
Whenever a C function is called,
its upvalues are located at specific pseudo-indices.
These pseudo-indices are produced by the macro
<a name="lua_upvalueindex"><code>lua_upvalueindex</code></a>.
The first value associated with a function is at position
<code>lua_upvalueindex(1)</code>, and so on.
Any access to <code>lua_upvalueindex(<em>n</em>)</code>,
where <em>n</em> is greater than the number of upvalues of the
current function (but not greater than 256),
produces an acceptable (but invalid) index.
<h2>3.5 - <a name="3.5">Registry</a></h2>
<p>
Lua provides a <em>registry</em>,
a pre-defined table that can be used by any C code to
store whatever Lua value it needs to store.
This table is always located at pseudo-index
<a name="pdf-LUA_REGISTRYINDEX"><code>LUA_REGISTRYINDEX</code></a>.
Any C library can store data into this table,
but it should take care to choose keys different from those used
by other libraries, to avoid collisions.
Typically, you should use as key a string containing your library name
or a light userdata with the address of a C object in your code.
<p>
The integer keys in the registry are used by the reference mechanism,
implemented by the auxiliary library,
and therefore should not be used for other purposes.
<h2>3.6 - <a name="3.6">Error Handling in C</a></h2>
<p>
Internally, Lua uses the C <code>longjmp</code> facility to handle errors.
(You can also choose to use exceptions if you use C++;
see file <code>luaconf.h</code>.)
When Lua faces any error
(such as memory allocation errors, type errors, syntax errors,
and runtime errors)
it <em>raises</em> an error;
that is, it does a long jump.
A <em>protected environment</em> uses <code>setjmp</code>
to set a recover point;
any error jumps to the most recent active recover point.
<p>
Most functions in the API can throw an error,
for instance due to a memory allocation error.
The documentation for each function indicates whether
it can throw errors.
<p>
Inside a C function you can throw an error by calling <a href="#lua_error"><code>lua_error</code></a>.
<h2>3.7 - <a name="3.7">Functions and Types</a></h2>
<p>
Here we list all functions and types from the C API in
alphabetical order.
Each function has an indicator like this:
<span class="apii">[-o, +p, <em>x</em>]</span>
<p>
The first field, <code>o</code>,
is how many elements the function pops from the stack.
The second field, <code>p</code>,
is how many elements the function pushes onto the stack.
(Any function always pushes its results after popping its arguments.)
A field in the form <code>x|y</code> means the function can push (or pop)
<code>x</code> or <code>y</code> elements,
depending on the situation;
an interrogation mark '<code>?</code>' means that
we cannot know how many elements the function pops/pushes
by looking only at its arguments
(e.g., they may depend on what is on the stack).
The third field, <code>x</code>,
tells whether the function may throw errors:
'<code>-</code>' means the function never throws any error;
'<code>m</code>' means the function may throw an error
only due to not enough memory;
'<code>e</code>' means the function may throw other kinds of errors;
'<code>v</code>' means the function may throw an error on purpose.
<hr><h3><a name="lua_Alloc"><code>lua_Alloc</code></a></h3>
<pre>typedef void * (*lua_Alloc) (void *ud,
void *ptr,
size_t osize,
size_t nsize);</pre>
<p>
The type of the memory-allocation function used by Lua states.
The allocator function must provide a
functionality similar to <code>realloc</code>,
but not exactly the same.
Its arguments are
<code>ud</code>, an opaque pointer passed to <a href="#lua_newstate"><code>lua_newstate</code></a>;
<code>ptr</code>, a pointer to the block being allocated/reallocated/freed;
<code>osize</code>, the original size of the block;
<code>nsize</code>, the new size of the block.
<code>ptr</code> is <code>NULL</code> if and only if <code>osize</code> is zero.
When <code>nsize</code> is zero, the allocator must return <code>NULL</code>;
if <code>osize</code> is not zero,
it should free the block pointed to by <code>ptr</code>.
When <code>nsize</code> is not zero, the allocator returns <code>NULL</code>
if and only if it cannot fill the request.
When <code>nsize</code> is not zero and <code>osize</code> is zero,
the allocator should behave like <code>malloc</code>.
When <code>nsize</code> and <code>osize</code> are not zero,
the allocator behaves like <code>realloc</code>.
Lua assumes that the allocator never fails when
<code>osize >= nsize</code>.
<p>
Here is a simple implementation for the allocator function.
It is used in the auxiliary library by <a href="#luaL_newstate"><code>luaL_newstate</code></a>.
<pre>
static void *l_alloc (void *ud, void *ptr, size_t osize,
size_t nsize) {
(void)ud; (void)osize; /* not used */
if (nsize == 0) {
free(ptr);
return NULL;
}
else
return realloc(ptr, nsize);
}
</pre><p>
This code assumes
that <code>free(NULL)</code> has no effect and that
<code>realloc(NULL, size)</code> is equivalent to <code>malloc(size)</code>.
ANSI C ensures both behaviors.
<hr><h3><a name="lua_atpanic"><code>lua_atpanic</code></a></h3><p>
<span class="apii">[-0, +0, <em>-</em>]</span>
<pre>lua_CFunction lua_atpanic (lua_State *L, lua_CFunction panicf);</pre>
<p>
Sets a new panic function and returns the old one.
<p>
If an error happens outside any protected environment,
Lua calls a <em>panic function</em>
and then calls <code>exit(EXIT_FAILURE)</code>,
thus exiting the host application.
Your panic function can avoid this exit by
never returning (e.g., doing a long jump).
<p>
The panic function can access the error message at the top of the stack.
<hr><h3><a name="lua_call"><code>lua_call</code></a></h3><p>
<span class="apii">[-(nargs + 1), +nresults, <em>e</em>]</span>
<pre>void lua_call (lua_State *L, int nargs, int nresults);</pre>
<p>
Calls a function.
<p>
To call a function you must use the following protocol:
first, the function to be called is pushed onto the stack;
then, the arguments to the function are pushed
in direct order;
that is, the first argument is pushed first.
Finally you call <a href="#lua_call"><code>lua_call</code></a>;
<code>nargs</code> is the number of arguments that you pushed onto the stack.
All arguments and the function value are popped from the stack
when the function is called.
The function results are pushed onto the stack when the function returns.
The number of results is adjusted to <code>nresults</code>,
unless <code>nresults</code> is <a name="pdf-LUA_MULTRET"><code>LUA_MULTRET</code></a>.
In this case, <em>all</em> results from the function are pushed.
Lua takes care that the returned values fit into the stack space.
The function results are pushed onto the stack in direct order
(the first result is pushed first),
so that after the call the last result is on the top of the stack.
<p>
Any error inside the called function is propagated upwards
(with a <code>longjmp</code>).
<p>
The following example shows how the host program can do the
equivalent to this Lua code:
<pre>
a = f("how", t.x, 14)
</pre><p>
Here it is in C:
<pre>
lua_getfield(L, LUA_GLOBALSINDEX, "f"); /* function to be called */
lua_pushstring(L, "how"); /* 1st argument */
lua_getfield(L, LUA_GLOBALSINDEX, "t"); /* table to be indexed */
lua_getfield(L, -1, "x"); /* push result of t.x (2nd arg) */
lua_remove(L, -2); /* remove 't' from the stack */
lua_pushinteger(L, 14); /* 3rd argument */
lua_call(L, 3, 1); /* call 'f' with 3 arguments and 1 result */
lua_setfield(L, LUA_GLOBALSINDEX, "a"); /* set global 'a' */
</pre><p>
Note that the code above is "balanced":
at its end, the stack is back to its original configuration.
This is considered good programming practice.
<hr><h3><a name="lua_CFunction"><code>lua_CFunction</code></a></h3>
<pre>typedef int (*lua_CFunction) (lua_State *L);</pre>
<p>
Type for C functions.
<p>
In order to communicate properly with Lua,
a C function must use the following protocol,
which defines the way parameters and results are passed:
a C function receives its arguments from Lua in its stack
in direct order (the first argument is pushed first).
So, when the function starts,
<code>lua_gettop(L)</code> returns the number of arguments received by the function.
The first argument (if any) is at index 1
and its last argument is at index <code>lua_gettop(L)</code>.
To return values to Lua, a C function just pushes them onto the stack,
in direct order (the first result is pushed first),
and returns the number of results.
Any other value in the stack below the results will be properly
discarded by Lua.
Like a Lua function, a C function called by Lua can also return
many results.
<p>
As an example, the following function receives a variable number
of numerical arguments and returns their average and sum:
<pre>
static int foo (lua_State *L) {
int n = lua_gettop(L); /* number of arguments */
lua_Number sum = 0;
int i;
for (i = 1; i <= n; i++) {
if (!lua_isnumber(L, i)) {
lua_pushstring(L, "incorrect argument");
lua_error(L);
}
sum += lua_tonumber(L, i);
}
lua_pushnumber(L, sum/n); /* first result */
lua_pushnumber(L, sum); /* second result */
return 2; /* number of results */
}
</pre>
<hr><h3><a name="lua_checkstack"><code>lua_checkstack</code></a></h3><p>
<span class="apii">[-0, +0, <em>m</em>]</span>
<pre>int lua_checkstack (lua_State *L, int extra);</pre>
<p>
Ensures that there are at least <code>extra</code> free stack slots in the stack.
It returns false if it cannot grow the stack to that size.
This function never shrinks the stack;
if the stack is already larger than the new size,
it is left unchanged.
<hr><h3><a name="lua_close"><code>lua_close</code></a></h3><p>
<span class="apii">[-0, +0, <em>-</em>]</span>
<pre>void lua_close (lua_State *L);</pre>
<p>
Destroys all objects in the given Lua state
(calling the corresponding garbage-collection metamethods, if any)
and frees all dynamic memory used by this state.
On several platforms, you may not need to call this function,
because all resources are naturally released when the host program ends.
On the other hand, long-running programs,
such as a daemon or a web server,
might need to release states as soon as they are not needed,
to avoid growing too large.
<hr><h3><a name="lua_concat"><code>lua_concat</code></a></h3><p>
<span class="apii">[-n, +1, <em>e</em>]</span>
<pre>void lua_concat (lua_State *L, int n);</pre>
<p>
Concatenates the <code>n</code> values at the top of the stack,
pops them, and leaves the result at the top.
If <code>n</code> is 1, the result is the single value on the stack
(that is, the function does nothing);
if <code>n</code> is 0, the result is the empty string.
Concatenation is performed following the usual semantics of Lua
(see <a href="#2.5.4">§2.5.4</a>).
<hr><h3><a name="lua_cpcall"><code>lua_cpcall</code></a></h3><p>
<span class="apii">[-0, +(0|1), <em>-</em>]</span>
<pre>int lua_cpcall (lua_State *L, lua_CFunction func, void *ud);</pre>
<p>
Calls the C function <code>func</code> in protected mode.
<code>func</code> starts with only one element in its stack,
a light userdata containing <code>ud</code>.
In case of errors,
<a href="#lua_cpcall"><code>lua_cpcall</code></a> returns the same error codes as <a href="#lua_pcall"><code>lua_pcall</code></a>,
plus the error object on the top of the stack;
otherwise, it returns zero, and does not change the stack.
All values returned by <code>func</code> are discarded.
<hr><h3><a name="lua_createtable"><code>lua_createtable</code></a></h3><p>
<span class="apii">[-0, +1, <em>m</em>]</span>
<pre>void lua_createtable (lua_State *L, int narr, int nrec);</pre>
<p>
Creates a new empty table and pushes it onto the stack.
The new table has space pre-allocated
for <code>narr</code> array elements and <code>nrec</code> non-array elements.
This pre-allocation is useful when you know exactly how many elements
the table will have.
Otherwise you can use the function <a href="#lua_newtable"><code>lua_newtable</code></a>.
<hr><h3><a name="lua_dump"><code>lua_dump</code></a></h3><p>
<span class="apii">[-0, +0, <em>m</em>]</span>
<pre>int lua_dump (lua_State *L, lua_Writer writer, void *data);</pre>
<p>
Dumps a function as a binary chunk.
Receives a Lua function on the top of the stack
and produces a binary chunk that,
if loaded again,
results in a function equivalent to the one dumped.
As it produces parts of the chunk,
<a href="#lua_dump"><code>lua_dump</code></a> calls function <code>writer</code> (see <a href="#lua_Writer"><code>lua_Writer</code></a>)
with the given <code>data</code>
to write them.
<p>
The value returned is the error code returned by the last
call to the writer;
0 means no errors.
<p>
This function does not pop the Lua function from the stack.
<hr><h3><a name="lua_equal"><code>lua_equal</code></a></h3><p>
<span class="apii">[-0, +0, <em>e</em>]</span>
<pre>int lua_equal (lua_State *L, int index1, int index2);</pre>
<p>
Returns 1 if the two values in acceptable indices <code>index1</code> and
<code>index2</code> are equal,
following the semantics of the Lua <code>==</code> operator
(that is, may call metamethods).
Otherwise returns 0.
Also returns 0 if any of the indices is non valid.
<hr><h3><a name="lua_error"><code>lua_error</code></a></h3><p>
<span class="apii">[-1, +0, <em>v</em>]</span>
<pre>int lua_error (lua_State *L);</pre>
<p>
Generates a Lua error.
The error message (which can actually be a Lua value of any type)
must be on the stack top.
This function does a long jump,
and therefore never returns.
(see <a href="#luaL_error"><code>luaL_error</code></a>).
<hr><h3><a name="lua_gc"><code>lua_gc</code></a></h3><p>
<span class="apii">[-0, +0, <em>e</em>]</span>
<pre>int lua_gc (lua_State *L, int what, int data);</pre>
<p>
Controls the garbage collector.
<p>
This function performs several tasks,
according to the value of the parameter <code>what</code>:
<ul>
<li><b><code>LUA_GCSTOP</code>:</b>
stops the garbage collector.
</li>
<li><b><code>LUA_GCRESTART</code>:</b>
restarts the garbage collector.
</li>
<li><b><code>LUA_GCCOLLECT</code>:</b>
performs a full garbage-collection cycle.
</li>
<li><b><code>LUA_GCCOUNT</code>:</b>
returns the current amount of memory (in Kbytes) in use by Lua.
</li>
<li><b><code>LUA_GCCOUNTB</code>:</b>
returns the remainder of dividing the current amount of bytes of
memory in use by Lua by 1024.
</li>
<li><b><code>LUA_GCSTEP</code>:</b>
performs an incremental step of garbage collection.
The step "size" is controlled by <code>data</code>
(larger values mean more steps) in a non-specified way.
If you want to control the step size
you must experimentally tune the value of <code>data</code>.
The function returns 1 if the step finished a
garbage-collection cycle.
</li>
<li><b><code>LUA_GCSETPAUSE</code>:</b>
sets <code>data</code> as the new value
for the <em>pause</em> of the collector (see <a href="#2.10">§2.10</a>).
The function returns the previous value of the pause.
</li>
<li><b><code>LUA_GCSETSTEPMUL</code>:</b>
sets <code>data</code> as the new value for the <em>step multiplier</em> of
the collector (see <a href="#2.10">§2.10</a>).
The function returns the previous value of the step multiplier.
</li>
</ul>
<hr><h3><a name="lua_getallocf"><code>lua_getallocf</code></a></h3><p>
<span class="apii">[-0, +0, <em>-</em>]</span>
<pre>lua_Alloc lua_getallocf (lua_State *L, void **ud);</pre>
<p>
Returns the memory-allocation function of a given state.
If <code>ud</code> is not <code>NULL</code>, Lua stores in <code>*ud</code> the
opaque pointer passed to <a href="#lua_newstate"><code>lua_newstate</code></a>.
<hr><h3><a name="lua_getfenv"><code>lua_getfenv</code></a></h3><p>
<span class="apii">[-0, +1, <em>-</em>]</span>
<pre>void lua_getfenv (lua_State *L, int index);</pre>
<p>
Pushes onto the stack the environment table of
the value at the given index.
<hr><h3><a name="lua_getfield"><code>lua_getfield</code></a></h3><p>
<span class="apii">[-0, +1, <em>e</em>]</span>
<pre>void lua_getfield (lua_State *L, int index, const char *k);</pre>
<p>
Pushes onto the stack the value <code>t[k]</code>,
where <code>t</code> is the value at the given valid index.
As in Lua, this function may trigger a metamethod
for the "index" event (see <a href="#2.8">§2.8</a>).
<hr><h3><a name="lua_getglobal"><code>lua_getglobal</code></a></h3><p>
<span class="apii">[-0, +1, <em>e</em>]</span>
<pre>void lua_getglobal (lua_State *L, const char *name);</pre>
<p>
Pushes onto the stack the value of the global <code>name</code>.
It is defined as a macro:
<pre>
#define lua_getglobal(L,s) lua_getfield(L, LUA_GLOBALSINDEX, s)
</pre>
<hr><h3><a name="lua_getmetatable"><code>lua_getmetatable</code></a></h3><p>
<span class="apii">[-0, +(0|1), <em>-</em>]</span>
<pre>int lua_getmetatable (lua_State *L, int index);</pre>
<p>
Pushes onto the stack the metatable of the value at the given
acceptable index.
If the index is not valid,
or if the value does not have a metatable,
the function returns 0 and pushes nothing on the stack.
<hr><h3><a name="lua_gettable"><code>lua_gettable</code></a></h3><p>
<span class="apii">[-1, +1, <em>e</em>]</span>
<pre>void lua_gettable (lua_State *L, int index);</pre>
<p>
Pushes onto the stack the value <code>t[k]</code>,
where <code>t</code> is the value at the given valid index
and <code>k</code> is the value at the top of the stack.
<p>
This function pops the key from the stack
(putting the resulting value in its place).
As in Lua, this function may trigger a metamethod
for the "index" event (see <a href="#2.8">§2.8</a>).
<hr><h3><a name="lua_gettop"><code>lua_gettop</code></a></h3><p>
<span class="apii">[-0, +0, <em>-</em>]</span>
<pre>int lua_gettop (lua_State *L);</pre>
<p>
Returns the index of the top element in the stack.
Because indices start at 1,
this result is equal to the number of elements in the stack
(and so 0 means an empty stack).
<hr><h3><a name="lua_insert"><code>lua_insert</code></a></h3><p>
<span class="apii">[-1, +1, <em>-</em>]</span>
<pre>void lua_insert (lua_State *L, int index);</pre>
<p>
Moves the top element into the given valid index,
shifting up the elements above this index to open space.
Cannot be called with a pseudo-index,
because a pseudo-index is not an actual stack position.
<hr><h3><a name="lua_Integer"><code>lua_Integer</code></a></h3>
<pre>typedef ptrdiff_t lua_Integer;</pre>
<p>
The type used by the Lua API to represent integral values.
<p>
By default it is a <code>ptrdiff_t</code>,
which is usually the largest signed integral type the machine handles
"comfortably".
<hr><h3><a name="lua_isboolean"><code>lua_isboolean</code></a></h3><p>
<span class="apii">[-0, +0, <em>-</em>]</span>
<pre>int lua_isboolean (lua_State *L, int index);</pre>
<p>
Returns 1 if the value at the given acceptable index has type boolean,
and 0 otherwise.
<hr><h3><a name="lua_iscfunction"><code>lua_iscfunction</code></a></h3><p>
<span class="apii">[-0, +0, <em>-</em>]</span>
<pre>int lua_iscfunction (lua_State *L, int index);</pre>
<p>
Returns 1 if the value at the given acceptable index is a C function,
and 0 otherwise.
<hr><h3><a name="lua_isfunction"><code>lua_isfunction</code></a></h3><p>
<span class="apii">[-0, +0, <em>-</em>]</span>
<pre>int lua_isfunction (lua_State *L, int index);</pre>
<p>
Returns 1 if the value at the given acceptable index is a function
(either C or Lua), and 0 otherwise.
<hr><h3><a name="lua_islightuserdata"><code>lua_islightuserdata</code></a></h3><p>
<span class="apii">[-0, +0, <em>-</em>]</span>
<pre>int lua_islightuserdata (lua_State *L, int index);</pre>
<p>
Returns 1 if the value at the given acceptable index is a light userdata,
and 0 otherwise.
<hr><h3><a name="lua_isnil"><code>lua_isnil</code></a></h3><p>
<span class="apii">[-0, +0, <em>-</em>]</span>
<pre>int lua_isnil (lua_State *L, int index);</pre>
<p>
Returns 1 if the value at the given acceptable index is <b>nil</b>,
and 0 otherwise.
<hr><h3><a name="lua_isnone"><code>lua_isnone</code></a></h3><p>
<span class="apii">[-0, +0, <em>-</em>]</span>
<pre>int lua_isnone (lua_State *L, int index);</pre>
<p>
Returns 1 if the given acceptable index is not valid
(that is, it refers to an element outside the current stack),
and 0 otherwise.
<hr><h3><a name="lua_isnoneornil"><code>lua_isnoneornil</code></a></h3><p>
<span class="apii">[-0, +0, <em>-</em>]</span>
<pre>int lua_isnoneornil (lua_State *L, int index);</pre>
<p>
Returns 1 if the given acceptable index is not valid
(that is, it refers to an element outside the current stack)
or if the value at this index is <b>nil</b>,
and 0 otherwise.
<hr><h3><a name="lua_isnumber"><code>lua_isnumber</code></a></h3><p>
<span class="apii">[-0, +0, <em>-</em>]</span>
<pre>int lua_isnumber (lua_State *L, int index);</pre>
<p>
Returns 1 if the value at the given acceptable index is a number
or a string convertible to a number,
and 0 otherwise.
<hr><h3><a name="lua_isstring"><code>lua_isstring</code></a></h3><p>
<span class="apii">[-0, +0, <em>-</em>]</span>
<pre>int lua_isstring (lua_State *L, int index);</pre>
<p>
Returns 1 if the value at the given acceptable index is a string
or a number (which is always convertible to a string),
and 0 otherwise.
<hr><h3><a name="lua_istable"><code>lua_istable</code></a></h3><p>
<span class="apii">[-0, +0, <em>-</em>]</span>
<pre>int lua_istable (lua_State *L, int index);</pre>
<p>
Returns 1 if the value at the given acceptable index is a table,
and 0 otherwise.
<hr><h3><a name="lua_isthread"><code>lua_isthread</code></a></h3><p>
<span class="apii">[-0, +0, <em>-</em>]</span>
<pre>int lua_isthread (lua_State *L, int index);</pre>
<p>
Returns 1 if the value at the given acceptable index is a thread,
and 0 otherwise.
<hr><h3><a name="lua_isuserdata"><code>lua_isuserdata</code></a></h3><p>
<span class="apii">[-0, +0, <em>-</em>]</span>
<pre>int lua_isuserdata (lua_State *L, int index);</pre>
<p>
Returns 1 if the value at the given acceptable index is a userdata
(either full or light), and 0 otherwise.
<hr><h3><a name="lua_lessthan"><code>lua_lessthan</code></a></h3><p>
<span class="apii">[-0, +0, <em>e</em>]</span>
<pre>int lua_lessthan (lua_State *L, int index1, int index2);</pre>
<p>
Returns 1 if the value at acceptable index <code>index1</code> is smaller
than the value at acceptable index <code>index2</code>,
following the semantics of the Lua <code><</code> operator
(that is, may call metamethods).
Otherwise returns 0.
Also returns 0 if any of the indices is non valid.
<hr><h3><a name="lua_load"><code>lua_load</code></a></h3><p>
<span class="apii">[-0, +1, <em>-</em>]</span>
<pre>int lua_load (lua_State *L,
lua_Reader reader,
void *data,
const char *chunkname);</pre>
<p>
Loads a Lua chunk.
If there are no errors,
<a href="#lua_load"><code>lua_load</code></a> pushes the compiled chunk as a Lua
function on top of the stack.
Otherwise, it pushes an error message.
The return values of <a href="#lua_load"><code>lua_load</code></a> are:
<ul>
<li><b>0:</b> no errors;</li>
<li><b><a name="pdf-LUA_ERRSYNTAX"><code>LUA_ERRSYNTAX</code></a>:</b>
syntax error during pre-compilation;</li>
<li><b><a href="#pdf-LUA_ERRMEM"><code>LUA_ERRMEM</code></a>:</b>
memory allocation error.</li>
</ul>
<p>
This function only loads a chunk;
it does not run it.
<p>
<a href="#lua_load"><code>lua_load</code></a> automatically detects whether the chunk is text or binary,
and loads it accordingly (see program <code>luac</code>).
<p>
The <a href="#lua_load"><code>lua_load</code></a> function uses a user-supplied <code>reader</code> function
to read the chunk (see <a href="#lua_Reader"><code>lua_Reader</code></a>).
The <code>data</code> argument is an opaque value passed to the reader function.
<p>
The <code>chunkname</code> argument gives a name to the chunk,
which is used for error messages and in debug information (see <a href="#3.8">§3.8</a>).
<hr><h3><a name="lua_newstate"><code>lua_newstate</code></a></h3><p>
<span class="apii">[-0, +0, <em>-</em>]</span>
<pre>lua_State *lua_newstate (lua_Alloc f, void *ud);</pre>
<p>
Creates a new, independent state.
Returns <code>NULL</code> if cannot create the state
(due to lack of memory).
The argument <code>f</code> is the allocator function;
Lua does all memory allocation for this state through this function.
The second argument, <code>ud</code>, is an opaque pointer that Lua
simply passes to the allocator in every call.
<hr><h3><a name="lua_newtable"><code>lua_newtable</code></a></h3><p>
<span class="apii">[-0, +1, <em>m</em>]</span>
<pre>void lua_newtable (lua_State *L);</pre>
<p>
Creates a new empty table and pushes it onto the stack.
It is equivalent to <code>lua_createtable(L, 0, 0)</code>.
<hr><h3><a name="lua_newthread"><code>lua_newthread</code></a></h3><p>
<span class="apii">[-0, +1, <em>m</em>]</span>
<pre>lua_State *lua_newthread (lua_State *L);</pre>
<p>
Creates a new thread, pushes it on the stack,
and returns a pointer to a <a href="#lua_State"><code>lua_State</code></a> that represents this new thread.
The new state returned by this function shares with the original state
all global objects (such as tables),
but has an independent execution stack.
<p>
There is no explicit function to close or to destroy a thread.
Threads are subject to garbage collection,
like any Lua object.
<hr><h3><a name="lua_newuserdata"><code>lua_newuserdata</code></a></h3><p>
<span class="apii">[-0, +1, <em>m</em>]</span>
<pre>void *lua_newuserdata (lua_State *L, size_t size);</pre>
<p>
This function allocates a new block of memory with the given size,
pushes onto the stack a new full userdata with the block address,
and returns this address.
<p>
Userdata represent C values in Lua.
A <em>full userdata</em> represents a block of memory.
It is an object (like a table):
you must create it, it can have its own metatable,
and you can detect when it is being collected.
A full userdata is only equal to itself (under raw equality).
<p>
When Lua collects a full userdata with a <code>gc</code> metamethod,
Lua calls the metamethod and marks the userdata as finalized.
When this userdata is collected again then
Lua frees its corresponding memory.
<hr><h3><a name="lua_next"><code>lua_next</code></a></h3><p>
<span class="apii">[-1, +(2|0), <em>e</em>]</span>
<pre>int lua_next (lua_State *L, int index);</pre>
<p>
Pops a key from the stack,
and pushes a key-value pair from the table at the given index
(the "next" pair after the given key).
If there are no more elements in the table,
then <a href="#lua_next"><code>lua_next</code></a> returns 0 (and pushes nothing).
<p>
A typical traversal looks like this:
<pre>
/* table is in the stack at index 't' */
lua_pushnil(L); /* first key */
while (lua_next(L, t) != 0) {
/* uses 'key' (at index -2) and 'value' (at index -1) */
printf("%s - %s\n",
lua_typename(L, lua_type(L, -2)),
lua_typename(L, lua_type(L, -1)));
/* removes 'value'; keeps 'key' for next iteration */
lua_pop(L, 1);
}
</pre>
<p>
While traversing a table,
do not call <a href="#lua_tolstring"><code>lua_tolstring</code></a> directly on a key,
unless you know that the key is actually a string.
Recall that <a href="#lua_tolstring"><code>lua_tolstring</code></a> <em>changes</em>
the value at the given index;
this confuses the next call to <a href="#lua_next"><code>lua_next</code></a>.
<hr><h3><a name="lua_Number"><code>lua_Number</code></a></h3>
<pre>typedef double lua_Number;</pre>
<p>
The type of numbers in Lua.
By default, it is double, but that can be changed in <code>luaconf.h</code>.
<p>
Through the configuration file you can change
Lua to operate with another type for numbers (e.g., float or long).
<hr><h3><a name="lua_objlen"><code>lua_objlen</code></a></h3><p>
<span class="apii">[-0, +0, <em>-</em>]</span>
<pre>size_t lua_objlen (lua_State *L, int index);</pre>
<p>
Returns the "length" of the value at the given acceptable index:
for strings, this is the string length;
for tables, this is the result of the length operator ('<code>#</code>');
for userdata, this is the size of the block of memory allocated
for the userdata;
for other values, it is 0.
<hr><h3><a name="lua_pcall"><code>lua_pcall</code></a></h3><p>
<span class="apii">[-(nargs + 1), +(nresults|1), <em>-</em>]</span>
<pre>int lua_pcall (lua_State *L, int nargs, int nresults, int errfunc);</pre>
<p>
Calls a function in protected mode.
<p>
Both <code>nargs</code> and <code>nresults</code> have the same meaning as
in <a href="#lua_call"><code>lua_call</code></a>.
If there are no errors during the call,
<a href="#lua_pcall"><code>lua_pcall</code></a> behaves exactly like <a href="#lua_call"><code>lua_call</code></a>.
However, if there is any error,
<a href="#lua_pcall"><code>lua_pcall</code></a> catches it,
pushes a single value on the stack (the error message),
and returns an error code.
Like <a href="#lua_call"><code>lua_call</code></a>,
<a href="#lua_pcall"><code>lua_pcall</code></a> always removes the function
and its arguments from the stack.
<p>
If <code>errfunc</code> is 0,
then the error message returned on the stack
is exactly the original error message.
Otherwise, <code>errfunc</code> is the stack index of an
<em>error handler function</em>.
(In the current implementation, this index cannot be a pseudo-index.)
In case of runtime errors,
this function will be called with the error message
and its return value will be the message returned on the stack by <a href="#lua_pcall"><code>lua_pcall</code></a>.
<p>
Typically, the error handler function is used to add more debug
information to the error message, such as a stack traceback.
Such information cannot be gathered after the return of <a href="#lua_pcall"><code>lua_pcall</code></a>,
since by then the stack has unwound.
<p>
The <a href="#lua_pcall"><code>lua_pcall</code></a> function returns 0 in case of success
or one of the following error codes
(defined in <code>lua.h</code>):
<ul>
<li><b><a name="pdf-LUA_ERRRUN"><code>LUA_ERRRUN</code></a>:</b>
a runtime error.
</li>
<li><b><a name="pdf-LUA_ERRMEM"><code>LUA_ERRMEM</code></a>:</b>
memory allocation error.
For such errors, Lua does not call the error handler function.
</li>
<li><b><a name="pdf-LUA_ERRERR"><code>LUA_ERRERR</code></a>:</b>
error while running the error handler function.
</li>
</ul>
<hr><h3><a name="lua_pop"><code>lua_pop</code></a></h3><p>
<span class="apii">[-n, +0, <em>-</em>]</span>
<pre>void lua_pop (lua_State *L, int n);</pre>
<p>
Pops <code>n</code> elements from the stack.
<hr><h3><a name="lua_pushboolean"><code>lua_pushboolean</code></a></h3><p>
<span class="apii">[-0, +1, <em>-</em>]</span>
<pre>void lua_pushboolean (lua_State *L, int b);</pre>
<p>
Pushes a boolean value with value <code>b</code> onto the stack.
<hr><h3><a name="lua_pushcclosure"><code>lua_pushcclosure</code></a></h3><p>
<span class="apii">[-n, +1, <em>m</em>]</span>
<pre>void lua_pushcclosure (lua_State *L, lua_CFunction fn, int n);</pre>
<p>
Pushes a new C closure onto the stack.
<p>
When a C function is created,
it is possible to associate some values with it,
thus creating a C closure (see <a href="#3.4">§3.4</a>);
these values are then accessible to the function whenever it is called.
To associate values with a C function,
first these values should be pushed onto the stack
(when there are multiple values, the first value is pushed first).
Then <a href="#lua_pushcclosure"><code>lua_pushcclosure</code></a>
is called to create and push the C function onto the stack,
with the argument <code>n</code> telling how many values should be
associated with the function.
<a href="#lua_pushcclosure"><code>lua_pushcclosure</code></a> also pops these values from the stack.
<p>
The maximum value for <code>n</code> is 255.
<hr><h3><a name="lua_pushcfunction"><code>lua_pushcfunction</code></a></h3><p>
<span class="apii">[-0, +1, <em>m</em>]</span>
<pre>void lua_pushcfunction (lua_State *L, lua_CFunction f);</pre>
<p>
Pushes a C function onto the stack.
This function receives a pointer to a C function
and pushes onto the stack a Lua value of type <code>function</code> that,
when called, invokes the corresponding C function.
<p>
Any function to be registered in Lua must
follow the correct protocol to receive its parameters
and return its results (see <a href="#lua_CFunction"><code>lua_CFunction</code></a>).
<p>
<code>lua_pushcfunction</code> is defined as a macro:
<pre>
#define lua_pushcfunction(L,f) lua_pushcclosure(L,f,0)
</pre>
<hr><h3><a name="lua_pushfstring"><code>lua_pushfstring</code></a></h3><p>
<span class="apii">[-0, +1, <em>m</em>]</span>
<pre>const char *lua_pushfstring (lua_State *L, const char *fmt, ...);</pre>
<p>
Pushes onto the stack a formatted string
and returns a pointer to this string.
It is similar to the C function <code>sprintf</code>,
but has some important differences:
<ul>
<li>
You do not have to allocate space for the result:
the result is a Lua string and Lua takes care of memory allocation
(and deallocation, through garbage collection).
</li>
<li>
The conversion specifiers are quite restricted.
There are no flags, widths, or precisions.
The conversion specifiers can only be
'<code>%%</code>' (inserts a '<code>%</code>' in the string),
'<code>%s</code>' (inserts a zero-terminated string, with no size restrictions),
'<code>%f</code>' (inserts a <a href="#lua_Number"><code>lua_Number</code></a>),
'<code>%p</code>' (inserts a pointer as a hexadecimal numeral),
'<code>%d</code>' (inserts an <code>int</code>), and
'<code>%c</code>' (inserts an <code>int</code> as a character).
</li>
</ul>
<hr><h3><a name="lua_pushinteger"><code>lua_pushinteger</code></a></h3><p>
<span class="apii">[-0, +1, <em>-</em>]</span>
<pre>void lua_pushinteger (lua_State *L, lua_Integer n);</pre>
<p>
Pushes a number with value <code>n</code> onto the stack.
<hr><h3><a name="lua_pushlightuserdata"><code>lua_pushlightuserdata</code></a></h3><p>
<span class="apii">[-0, +1, <em>-</em>]</span>
<pre>void lua_pushlightuserdata (lua_State *L, void *p);</pre>
<p>
Pushes a light userdata onto the stack.
<p>
Userdata represent C values in Lua.
A <em>light userdata</em> represents a pointer.
It is a value (like a number):
you do not create it, it has no individual metatable,
and it is not collected (as it was never created).
A light userdata is equal to "any"
light userdata with the same C address.
<hr><h3><a name="lua_pushliteral"><code>lua_pushliteral</code></a></h3><p>
<span class="apii">[-0, +1, <em>m</em>]</span>
<pre>void lua_pushliteral (lua_State *L, const char *s);</pre>
<p>
This macro is equivalent to <a href="#lua_pushlstring"><code>lua_pushlstring</code></a>,
but can be used only when <code>s</code> is a literal string.
In these cases, it automatically provides the string length.
<hr><h3><a name="lua_pushlstring"><code>lua_pushlstring</code></a></h3><p>
<span class="apii">[-0, +1, <em>m</em>]</span>
<pre>void lua_pushlstring (lua_State *L, const char *s, size_t len);</pre>
<p>
Pushes the string pointed to by <code>s</code> with size <code>len</code>
onto the stack.
Lua makes (or reuses) an internal copy of the given string,
so the memory at <code>s</code> can be freed or reused immediately after
the function returns.
The string can contain embedded zeros.
<hr><h3><a name="lua_pushnil"><code>lua_pushnil</code></a></h3><p>
<span class="apii">[-0, +1, <em>-</em>]</span>
<pre>void lua_pushnil (lua_State *L);</pre>
<p>
Pushes a nil value onto the stack.
<hr><h3><a name="lua_pushnumber"><code>lua_pushnumber</code></a></h3><p>
<span class="apii">[-0, +1, <em>-</em>]</span>
<pre>void lua_pushnumber (lua_State *L, lua_Number n);</pre>
<p>
Pushes a number with value <code>n</code> onto the stack.
<hr><h3><a name="lua_pushstring"><code>lua_pushstring</code></a></h3><p>
<span class="apii">[-0, +1, <em>m</em>]</span>
<pre>void lua_pushstring (lua_State *L, const char *s);</pre>
<p>
Pushes the zero-terminated string pointed to by <code>s</code>
onto the stack.
Lua makes (or reuses) an internal copy of the given string,
so the memory at <code>s</code> can be freed or reused immediately after
the function returns.
The string cannot contain embedded zeros;
it is assumed to end at the first zero.
<hr><h3><a name="lua_pushthread"><code>lua_pushthread</code></a></h3><p>
<span class="apii">[-0, +1, <em>-</em>]</span>
<pre>int lua_pushthread (lua_State *L);</pre>
<p>
Pushes the thread represented by <code>L</code> onto the stack.
Returns 1 if this thread is the main thread of its state.
<hr><h3><a name="lua_pushvalue"><code>lua_pushvalue</code></a></h3><p>
<span class="apii">[-0, +1, <em>-</em>]</span>
<pre>void lua_pushvalue (lua_State *L, int index);</pre>
<p>
Pushes a copy of the element at the given valid index
onto the stack.
<hr><h3><a name="lua_pushvfstring"><code>lua_pushvfstring</code></a></h3><p>
<span class="apii">[-0, +1, <em>m</em>]</span>
<pre>const char *lua_pushvfstring (lua_State *L,
const char *fmt,
va_list argp);</pre>
<p>
Equivalent to <a href="#lua_pushfstring"><code>lua_pushfstring</code></a>, except that it receives a <code>va_list</code>
instead of a variable number of arguments.
<hr><h3><a name="lua_rawequal"><code>lua_rawequal</code></a></h3><p>
<span class="apii">[-0, +0, <em>-</em>]</span>
<pre>int lua_rawequal (lua_State *L, int index1, int index2);</pre>
<p>
Returns 1 if the two values in acceptable indices <code>index1</code> and
<code>index2</code> are primitively equal
(that is, without calling metamethods).
Otherwise returns 0.
Also returns 0 if any of the indices are non valid.
<hr><h3><a name="lua_rawget"><code>lua_rawget</code></a></h3><p>
<span class="apii">[-1, +1, <em>-</em>]</span>
<pre>void lua_rawget (lua_State *L, int index);</pre>
<p>
Similar to <a href="#lua_gettable"><code>lua_gettable</code></a>, but does a raw access
(i.e., without metamethods).
<hr><h3><a name="lua_rawgeti"><code>lua_rawgeti</code></a></h3><p>
<span class="apii">[-0, +1, <em>-</em>]</span>
<pre>void lua_rawgeti (lua_State *L, int index, int n);</pre>
<p>
Pushes onto the stack the value <code>t[n]</code>,
where <code>t</code> is the value at the given valid index.
The access is raw;
that is, it does not invoke metamethods.
<hr><h3><a name="lua_rawset"><code>lua_rawset</code></a></h3><p>
<span class="apii">[-2, +0, <em>m</em>]</span>
<pre>void lua_rawset (lua_State *L, int index);</pre>
<p>
Similar to <a href="#lua_settable"><code>lua_settable</code></a>, but does a raw assignment
(i.e., without metamethods).
<hr><h3><a name="lua_rawseti"><code>lua_rawseti</code></a></h3><p>
<span class="apii">[-1, +0, <em>m</em>]</span>
<pre>void lua_rawseti (lua_State *L, int index, int n);</pre>
<p>
Does the equivalent of <code>t[n] = v</code>,
where <code>t</code> is the value at the given valid index
and <code>v</code> is the value at the top of the stack.
<p>
This function pops the value from the stack.
The assignment is raw;
that is, it does not invoke metamethods.
<hr><h3><a name="lua_Reader"><code>lua_Reader</code></a></h3>
<pre>typedef const char * (*lua_Reader) (lua_State *L,
void *data,
size_t *size);</pre>
<p>
The reader function used by <a href="#lua_load"><code>lua_load</code></a>.
Every time it needs another piece of the chunk,
<a href="#lua_load"><code>lua_load</code></a> calls the reader,
passing along its <code>data</code> parameter.
The reader must return a pointer to a block of memory
with a new piece of the chunk
and set <code>size</code> to the block size.
The block must exist until the reader function is called again.
To signal the end of the chunk,
the reader must return <code>NULL</code> or set <code>size</code> to zero.
The reader function may return pieces of any size greater than zero.
<hr><h3><a name="lua_register"><code>lua_register</code></a></h3><p>
<span class="apii">[-0, +0, <em>e</em>]</span>
<pre>void lua_register (lua_State *L,
const char *name,
lua_CFunction f);</pre>
<p>
Sets the C function <code>f</code> as the new value of global <code>name</code>.
It is defined as a macro:
<pre>
#define lua_register(L,n,f) \
(lua_pushcfunction(L, f), lua_setglobal(L, n))
</pre>
<hr><h3><a name="lua_remove"><code>lua_remove</code></a></h3><p>
<span class="apii">[-1, +0, <em>-</em>]</span>
<pre>void lua_remove (lua_State *L, int index);</pre>
<p>
Removes the element at the given valid index,
shifting down the elements above this index to fill the gap.
Cannot be called with a pseudo-index,
because a pseudo-index is not an actual stack position.
<hr><h3><a name="lua_replace"><code>lua_replace</code></a></h3><p>
<span class="apii">[-1, +0, <em>-</em>]</span>
<pre>void lua_replace (lua_State *L, int index);</pre>
<p>
Moves the top element into the given position (and pops it),
without shifting any element
(therefore replacing the value at the given position).
<hr><h3><a name="lua_resume"><code>lua_resume</code></a></h3><p>
<span class="apii">[-?, +?, <em>-</em>]</span>
<pre>int lua_resume (lua_State *L, int narg);</pre>
<p>
Starts and resumes a coroutine in a given thread.
<p>
To start a coroutine, you first create a new thread
(see <a href="#lua_newthread"><code>lua_newthread</code></a>);
then you push onto its stack the main function plus any arguments;
then you call <a href="#lua_resume"><code>lua_resume</code></a>,
with <code>narg</code> being the number of arguments.
This call returns when the coroutine suspends or finishes its execution.
When it returns, the stack contains all values passed to <a href="#lua_yield"><code>lua_yield</code></a>,
or all values returned by the body function.
<a href="#lua_resume"><code>lua_resume</code></a> returns
<a href="#pdf-LUA_YIELD"><code>LUA_YIELD</code></a> if the coroutine yields,
0 if the coroutine finishes its execution
without errors,
or an error code in case of errors (see <a href="#lua_pcall"><code>lua_pcall</code></a>).
In case of errors,
the stack is not unwound,
so you can use the debug API over it.
The error message is on the top of the stack.
To restart a coroutine, you put on its stack only the values to
be passed as results from <code>yield</code>,
and then call <a href="#lua_resume"><code>lua_resume</code></a>.
<hr><h3><a name="lua_setallocf"><code>lua_setallocf</code></a></h3><p>
<span class="apii">[-0, +0, <em>-</em>]</span>
<pre>void lua_setallocf (lua_State *L, lua_Alloc f, void *ud);</pre>
<p>
Changes the allocator function of a given state to <code>f</code>
with user data <code>ud</code>.
<hr><h3><a name="lua_setfenv"><code>lua_setfenv</code></a></h3><p>
<span class="apii">[-1, +0, <em>-</em>]</span>
<pre>int lua_setfenv (lua_State *L, int index);</pre>
<p>
Pops a table from the stack and sets it as
the new environment for the value at the given index.
If the value at the given index is
neither a function nor a thread nor a userdata,
<a href="#lua_setfenv"><code>lua_setfenv</code></a> returns 0.
Otherwise it returns 1.
<hr><h3><a name="lua_setfield"><code>lua_setfield</code></a></h3><p>
<span class="apii">[-1, +0, <em>e</em>]</span>
<pre>void lua_setfield (lua_State *L, int index, const char *k);</pre>
<p>
Does the equivalent to <code>t[k] = v</code>,
where <code>t</code> is the value at the given valid index
and <code>v</code> is the value at the top of the stack.
<p>
This function pops the value from the stack.
As in Lua, this function may trigger a metamethod
for the "newindex" event (see <a href="#2.8">§2.8</a>).
<hr><h3><a name="lua_setglobal"><code>lua_setglobal</code></a></h3><p>
<span class="apii">[-1, +0, <em>e</em>]</span>
<pre>void lua_setglobal (lua_State *L, const char *name);</pre>
<p>
Pops a value from the stack and
sets it as the new value of global <code>name</code>.
It is defined as a macro:
<pre>
#define lua_setglobal(L,s) lua_setfield(L, LUA_GLOBALSINDEX, s)
</pre>
<hr><h3><a name="lua_setmetatable"><code>lua_setmetatable</code></a></h3><p>
<span class="apii">[-1, +0, <em>-</em>]</span>
<pre>int lua_setmetatable (lua_State *L, int index);</pre>
<p>
Pops a table from the stack and
sets it as the new metatable for the value at the given
acceptable index.
<hr><h3><a name="lua_settable"><code>lua_settable</code></a></h3><p>
<span class="apii">[-2, +0, <em>e</em>]</span>
<pre>void lua_settable (lua_State *L, int index);</pre>
<p>
Does the equivalent to <code>t[k] = v</code>,
where <code>t</code> is the value at the given valid index,
<code>v</code> is the value at the top of the stack,
and <code>k</code> is the value just below the top.
<p>
This function pops both the key and the value from the stack.
As in Lua, this function may trigger a metamethod
for the "newindex" event (see <a href="#2.8">§2.8</a>).
<hr><h3><a name="lua_settop"><code>lua_settop</code></a></h3><p>
<span class="apii">[-?, +?, <em>-</em>]</span>
<pre>void lua_settop (lua_State *L, int index);</pre>
<p>
Accepts any acceptable index, or 0,
and sets the stack top to this index.
If the new top is larger than the old one,
then the new elements are filled with <b>nil</b>.
If <code>index</code> is 0, then all stack elements are removed.
<hr><h3><a name="lua_State"><code>lua_State</code></a></h3>
<pre>typedef struct lua_State lua_State;</pre>
<p>
Opaque structure that keeps the whole state of a Lua interpreter.
The Lua library is fully reentrant:
it has no global variables.
All information about a state is kept in this structure.
<p>
A pointer to this state must be passed as the first argument to
every function in the library, except to <a href="#lua_newstate"><code>lua_newstate</code></a>,
which creates a Lua state from scratch.
<hr><h3><a name="lua_status"><code>lua_status</code></a></h3><p>
<span class="apii">[-0, +0, <em>-</em>]</span>
<pre>int lua_status (lua_State *L);</pre>
<p>
Returns the status of the thread <code>L</code>.
<p>
The status can be 0 for a normal thread,
an error code if the thread finished its execution with an error,
or <a name="pdf-LUA_YIELD"><code>LUA_YIELD</code></a> if the thread is suspended.
<hr><h3><a name="lua_toboolean"><code>lua_toboolean</code></a></h3><p>
<span class="apii">[-0, +0, <em>-</em>]</span>
<pre>int lua_toboolean (lua_State *L, int index);</pre>
<p>
Converts the Lua value at the given acceptable index to a C boolean
value (0 or 1).
Like all tests in Lua,
<a href="#lua_toboolean"><code>lua_toboolean</code></a> returns 1 for any Lua value
different from <b>false</b> and <b>nil</b>;
otherwise it returns 0.
It also returns 0 when called with a non-valid index.
(If you want to accept only actual boolean values,
use <a href="#lua_isboolean"><code>lua_isboolean</code></a> to test the value's type.)
<hr><h3><a name="lua_tocfunction"><code>lua_tocfunction</code></a></h3><p>
<span class="apii">[-0, +0, <em>-</em>]</span>
<pre>lua_CFunction lua_tocfunction (lua_State *L, int index);</pre>
<p>
Converts a value at the given acceptable index to a C function.
That value must be a C function;
otherwise, returns <code>NULL</code>.
<hr><h3><a name="lua_tointeger"><code>lua_tointeger</code></a></h3><p>
<span class="apii">[-0, +0, <em>-</em>]</span>
<pre>lua_Integer lua_tointeger (lua_State *L, int index);</pre>
<p>
Converts the Lua value at the given acceptable index
to the signed integral type <a href="#lua_Integer"><code>lua_Integer</code></a>.
The Lua value must be a number or a string convertible to a number
(see <a href="#2.2.1">§2.2.1</a>);
otherwise, <a href="#lua_tointeger"><code>lua_tointeger</code></a> returns 0.
<p>
If the number is not an integer,
it is truncated in some non-specified way.
<hr><h3><a name="lua_tolstring"><code>lua_tolstring</code></a></h3><p>
<span class="apii">[-0, +0, <em>m</em>]</span>
<pre>const char *lua_tolstring (lua_State *L, int index, size_t *len);</pre>
<p>
Converts the Lua value at the given acceptable index to a C string.
If <code>len</code> is not <code>NULL</code>,
it also sets <code>*len</code> with the string length.
The Lua value must be a string or a number;
otherwise, the function returns <code>NULL</code>.
If the value is a number,
then <a href="#lua_tolstring"><code>lua_tolstring</code></a> also
<em>changes the actual value in the stack to a string</em>.
(This change confuses <a href="#lua_next"><code>lua_next</code></a>
when <a href="#lua_tolstring"><code>lua_tolstring</code></a> is applied to keys during a table traversal.)
<p>
<a href="#lua_tolstring"><code>lua_tolstring</code></a> returns a fully aligned pointer
to a string inside the Lua state.
This string always has a zero ('<code>\0</code>')
after its last character (as in C),
but can contain other zeros in its body.
Because Lua has garbage collection,
there is no guarantee that the pointer returned by <a href="#lua_tolstring"><code>lua_tolstring</code></a>
will be valid after the corresponding value is removed from the stack.
<hr><h3><a name="lua_tonumber"><code>lua_tonumber</code></a></h3><p>
<span class="apii">[-0, +0, <em>-</em>]</span>
<pre>lua_Number lua_tonumber (lua_State *L, int index);</pre>
<p>
Converts the Lua value at the given acceptable index
to the C type <a href="#lua_Number"><code>lua_Number</code></a> (see <a href="#lua_Number"><code>lua_Number</code></a>).
The Lua value must be a number or a string convertible to a number
(see <a href="#2.2.1">§2.2.1</a>);
otherwise, <a href="#lua_tonumber"><code>lua_tonumber</code></a> returns 0.
<hr><h3><a name="lua_topointer"><code>lua_topointer</code></a></h3><p>
<span class="apii">[-0, +0, <em>-</em>]</span>
<pre>const void *lua_topointer (lua_State *L, int index);</pre>
<p>
Converts the value at the given acceptable index to a generic
C pointer (<code>void*</code>).
The value can be a userdata, a table, a thread, or a function;
otherwise, <a href="#lua_topointer"><code>lua_topointer</code></a> returns <code>NULL</code>.
Different objects will give different pointers.
There is no way to convert the pointer back to its original value.
<p>
Typically this function is used only for debug information.
<hr><h3><a name="lua_tostring"><code>lua_tostring</code></a></h3><p>
<span class="apii">[-0, +0, <em>m</em>]</span>
<pre>const char *lua_tostring (lua_State *L, int index);</pre>
<p>
Equivalent to <a href="#lua_tolstring"><code>lua_tolstring</code></a> with <code>len</code> equal to <code>NULL</code>.
<hr><h3><a name="lua_tothread"><code>lua_tothread</code></a></h3><p>
<span class="apii">[-0, +0, <em>-</em>]</span>
<pre>lua_State *lua_tothread (lua_State *L, int index);</pre>
<p>
Converts the value at the given acceptable index to a Lua thread
(represented as <code>lua_State*</code>).
This value must be a thread;
otherwise, the function returns <code>NULL</code>.
<hr><h3><a name="lua_touserdata"><code>lua_touserdata</code></a></h3><p>
<span class="apii">[-0, +0, <em>-</em>]</span>
<pre>void *lua_touserdata (lua_State *L, int index);</pre>
<p>
If the value at the given acceptable index is a full userdata,
returns its block address.
If the value is a light userdata,
returns its pointer.
Otherwise, returns <code>NULL</code>.
<hr><h3><a name="lua_type"><code>lua_type</code></a></h3><p>
<span class="apii">[-0, +0, <em>-</em>]</span>
<pre>int lua_type (lua_State *L, int index);</pre>
<p>
Returns the type of the value in the given acceptable index,
or <code>LUA_TNONE</code> for a non-valid index
(that is, an index to an "empty" stack position).
The types returned by <a href="#lua_type"><code>lua_type</code></a> are coded by the following constants
defined in <code>lua.h</code>:
<code>LUA_TNIL</code>,
<code>LUA_TNUMBER</code>,
<code>LUA_TBOOLEAN</code>,
<code>LUA_TSTRING</code>,
<code>LUA_TTABLE</code>,
<code>LUA_TFUNCTION</code>,
<code>LUA_TUSERDATA</code>,
<code>LUA_TTHREAD</code>,
and
<code>LUA_TLIGHTUSERDATA</code>.
<hr><h3><a name="lua_typename"><code>lua_typename</code></a></h3><p>
<span class="apii">[-0, +0, <em>-</em>]</span>
<pre>const char *lua_typename (lua_State *L, int tp);</pre>
<p>
Returns the name of the type encoded by the value <code>tp</code>,
which must be one the values returned by <a href="#lua_type"><code>lua_type</code></a>.
<hr><h3><a name="lua_Writer"><code>lua_Writer</code></a></h3>
<pre>typedef int (*lua_Writer) (lua_State *L,
const void* p,
size_t sz,
void* ud);</pre>
<p>
The type of the writer function used by <a href="#lua_dump"><code>lua_dump</code></a>.
Every time it produces another piece of chunk,
<a href="#lua_dump"><code>lua_dump</code></a> calls the writer,
passing along the buffer to be written (<code>p</code>),
its size (<code>sz</code>),
and the <code>data</code> parameter supplied to <a href="#lua_dump"><code>lua_dump</code></a>.
<p>
The writer returns an error code:
0 means no errors;
any other value means an error and stops <a href="#lua_dump"><code>lua_dump</code></a> from
calling the writer again.
<hr><h3><a name="lua_xmove"><code>lua_xmove</code></a></h3><p>
<span class="apii">[-?, +?, <em>-</em>]</span>
<pre>void lua_xmove (lua_State *from, lua_State *to, int n);</pre>
<p>
Exchange values between different threads of the <em>same</em> global state.
<p>
This function pops <code>n</code> values from the stack <code>from</code>,
and pushes them onto the stack <code>to</code>.
<hr><h3><a name="lua_yield"><code>lua_yield</code></a></h3><p>
<span class="apii">[-?, +?, <em>-</em>]</span>
<pre>int lua_yield (lua_State *L, int nresults);</pre>
<p>
Yields a coroutine.
<p>
This function should only be called as the
return expression of a C function, as follows:
<pre>
return lua_yield (L, nresults);
</pre><p>
When a C function calls <a href="#lua_yield"><code>lua_yield</code></a> in that way,
the running coroutine suspends its execution,
and the call to <a href="#lua_resume"><code>lua_resume</code></a> that started this coroutine returns.
The parameter <code>nresults</code> is the number of values from the stack
that are passed as results to <a href="#lua_resume"><code>lua_resume</code></a>.
<h2>3.8 - <a name="3.8">The Debug Interface</a></h2>
<p>
Lua has no built-in debugging facilities.
Instead, it offers a special interface
by means of functions and <em>hooks</em>.
This interface allows the construction of different
kinds of debuggers, profilers, and other tools
that need "inside information" from the interpreter.
<hr><h3><a name="lua_Debug"><code>lua_Debug</code></a></h3>
<pre>typedef struct lua_Debug {
int event;
const char *name; /* (n) */
const char *namewhat; /* (n) */
const char *what; /* (S) */
const char *source; /* (S) */
int currentline; /* (l) */
int nups; /* (u) number of upvalues */
int linedefined; /* (S) */
int lastlinedefined; /* (S) */
char short_src[LUA_IDSIZE]; /* (S) */
/* private part */
<em>other fields</em>
} lua_Debug;</pre>
<p>
A structure used to carry different pieces of
information about an active function.
<a href="#lua_getstack"><code>lua_getstack</code></a> fills only the private part
of this structure, for later use.
To fill the other fields of <a href="#lua_Debug"><code>lua_Debug</code></a> with useful information,
call <a href="#lua_getinfo"><code>lua_getinfo</code></a>.
<p>
The fields of <a href="#lua_Debug"><code>lua_Debug</code></a> have the following meaning:
<ul>
<li><b><code>source</code>:</b>
If the function was defined in a string,
then <code>source</code> is that string.
If the function was defined in a file,
then <code>source</code> starts with a '<code>@</code>' followed by the file name.
</li>
<li><b><code>short_src</code>:</b>
a "printable" version of <code>source</code>, to be used in error messages.
</li>
<li><b><code>linedefined</code>:</b>
the line number where the definition of the function starts.
</li>
<li><b><code>lastlinedefined</code>:</b>
the line number where the definition of the function ends.
</li>
<li><b><code>what</code>:</b>
the string <code>"Lua"</code> if the function is a Lua function,
<code>"C"</code> if it is a C function,
<code>"main"</code> if it is the main part of a chunk,
and <code>"tail"</code> if it was a function that did a tail call.
In the latter case,
Lua has no other information about the function.
</li>
<li><b><code>currentline</code>:</b>
the current line where the given function is executing.
When no line information is available,
<code>currentline</code> is set to -1.
</li>
<li><b><code>name</code>:</b>
a reasonable name for the given function.
Because functions in Lua are first-class values,
they do not have a fixed name:
some functions can be the value of multiple global variables,
while others can be stored only in a table field.
The <code>lua_getinfo</code> function checks how the function was
called to find a suitable name.
If it cannot find a name,
then <code>name</code> is set to <code>NULL</code>.
</li>
<li><b><code>namewhat</code>:</b>
explains the <code>name</code> field.
The value of <code>namewhat</code> can be
<code>"global"</code>, <code>"local"</code>, <code>"method"</code>,
<code>"field"</code>, <code>"upvalue"</code>, or <code>""</code> (the empty string),
according to how the function was called.
(Lua uses the empty string when no other option seems to apply.)
</li>
<li><b><code>nups</code>:</b>
the number of upvalues of the function.
</li>
</ul>
<hr><h3><a name="lua_gethook"><code>lua_gethook</code></a></h3><p>
<span class="apii">[-0, +0, <em>-</em>]</span>
<pre>lua_Hook lua_gethook (lua_State *L);</pre>
<p>
Returns the current hook function.
<hr><h3><a name="lua_gethookcount"><code>lua_gethookcount</code></a></h3><p>
<span class="apii">[-0, +0, <em>-</em>]</span>
<pre>int lua_gethookcount (lua_State *L);</pre>
<p>
Returns the current hook count.
<hr><h3><a name="lua_gethookmask"><code>lua_gethookmask</code></a></h3><p>
<span class="apii">[-0, +0, <em>-</em>]</span>
<pre>int lua_gethookmask (lua_State *L);</pre>
<p>
Returns the current hook mask.
<hr><h3><a name="lua_getinfo"><code>lua_getinfo</code></a></h3><p>
<span class="apii">[-(0|1), +(0|1|2), <em>m</em>]</span>
<pre>int lua_getinfo (lua_State *L, const char *what, lua_Debug *ar);</pre>
<p>
Returns information about a specific function or function invocation.
<p>
To get information about a function invocation,
the parameter <code>ar</code> must be a valid activation record that was
filled by a previous call to <a href="#lua_getstack"><code>lua_getstack</code></a> or
given as argument to a hook (see <a href="#lua_Hook"><code>lua_Hook</code></a>).
<p>
To get information about a function you push it onto the stack
and start the <code>what</code> string with the character '<code>></code>'.
(In that case,
<code>lua_getinfo</code> pops the function in the top of the stack.)
For instance, to know in which line a function <code>f</code> was defined,
you can write the following code:
<pre>
lua_Debug ar;
lua_getfield(L, LUA_GLOBALSINDEX, "f"); /* get global 'f' */
lua_getinfo(L, ">S", &ar);
printf("%d\n", ar.linedefined);
</pre>
<p>
Each character in the string <code>what</code>
selects some fields of the structure <code>ar</code> to be filled or
a value to be pushed on the stack:
<ul>
<li><b>'<code>n</code>':</b> fills in the field <code>name</code> and <code>namewhat</code>;
</li>
<li><b>'<code>S</code>':</b>
fills in the fields <code>source</code>, <code>short_src</code>,
<code>linedefined</code>, <code>lastlinedefined</code>, and <code>what</code>;
</li>
<li><b>'<code>l</code>':</b> fills in the field <code>currentline</code>;
</li>
<li><b>'<code>u</code>':</b> fills in the field <code>nups</code>;
</li>
<li><b>'<code>f</code>':</b>
pushes onto the stack the function that is
running at the given level;
</li>
<li><b>'<code>L</code>':</b>
pushes onto the stack a table whose indices are the
numbers of the lines that are valid on the function.
(A <em>valid line</em> is a line with some associated code,
that is, a line where you can put a break point.
Non-valid lines include empty lines and comments.)
</li>
</ul>
<p>
This function returns 0 on error
(for instance, an invalid option in <code>what</code>).
<hr><h3><a name="lua_getlocal"><code>lua_getlocal</code></a></h3><p>
<span class="apii">[-0, +(0|1), <em>-</em>]</span>
<pre>const char *lua_getlocal (lua_State *L, lua_Debug *ar, int n);</pre>
<p>
Gets information about a local variable of a given activation record.
The parameter <code>ar</code> must be a valid activation record that was
filled by a previous call to <a href="#lua_getstack"><code>lua_getstack</code></a> or
given as argument to a hook (see <a href="#lua_Hook"><code>lua_Hook</code></a>).
The index <code>n</code> selects which local variable to inspect
(1 is the first parameter or active local variable, and so on,
until the last active local variable).
<a href="#lua_getlocal"><code>lua_getlocal</code></a> pushes the variable's value onto the stack
and returns its name.
<p>
Variable names starting with '<code>(</code>' (open parentheses)
represent internal variables
(loop control variables, temporaries, and C function locals).
<p>
Returns <code>NULL</code> (and pushes nothing)
when the index is greater than
the number of active local variables.
<hr><h3><a name="lua_getstack"><code>lua_getstack</code></a></h3><p>
<span class="apii">[-0, +0, <em>-</em>]</span>
<pre>int lua_getstack (lua_State *L, int level, lua_Debug *ar);</pre>
<p>
Get information about the interpreter runtime stack.
<p>
This function fills parts of a <a href="#lua_Debug"><code>lua_Debug</code></a> structure with
an identification of the <em>activation record</em>
of the function executing at a given level.
Level 0 is the current running function,
whereas level <em>n+1</em> is the function that has called level <em>n</em>.
When there are no errors, <a href="#lua_getstack"><code>lua_getstack</code></a> returns 1;
when called with a level greater than the stack depth,
it returns 0.
<hr><h3><a name="lua_getupvalue"><code>lua_getupvalue</code></a></h3><p>
<span class="apii">[-0, +(0|1), <em>-</em>]</span>
<pre>const char *lua_getupvalue (lua_State *L, int funcindex, int n);</pre>
<p>
Gets information about a closure's upvalue.
(For Lua functions,
upvalues are the external local variables that the function uses,
and that are consequently included in its closure.)
<a href="#lua_getupvalue"><code>lua_getupvalue</code></a> gets the index <code>n</code> of an upvalue,
pushes the upvalue's value onto the stack,
and returns its name.
<code>funcindex</code> points to the closure in the stack.
(Upvalues have no particular order,
as they are active through the whole function.
So, they are numbered in an arbitrary order.)
<p>
Returns <code>NULL</code> (and pushes nothing)
when the index is greater than the number of upvalues.
For C functions, this function uses the empty string <code>""</code>
as a name for all upvalues.
<hr><h3><a name="lua_Hook"><code>lua_Hook</code></a></h3>
<pre>typedef void (*lua_Hook) (lua_State *L, lua_Debug *ar);</pre>
<p>
Type for debugging hook functions.
<p>
Whenever a hook is called, its <code>ar</code> argument has its field
<code>event</code> set to the specific event that triggered the hook.
Lua identifies these events with the following constants:
<a name="pdf-LUA_HOOKCALL"><code>LUA_HOOKCALL</code></a>, <a name="pdf-LUA_HOOKRET"><code>LUA_HOOKRET</code></a>,
<a name="pdf-LUA_HOOKTAILRET"><code>LUA_HOOKTAILRET</code></a>, <a name="pdf-LUA_HOOKLINE"><code>LUA_HOOKLINE</code></a>,
and <a name="pdf-LUA_HOOKCOUNT"><code>LUA_HOOKCOUNT</code></a>.
Moreover, for line events, the field <code>currentline</code> is also set.
To get the value of any other field in <code>ar</code>,
the hook must call <a href="#lua_getinfo"><code>lua_getinfo</code></a>.
For return events, <code>event</code> can be <code>LUA_HOOKRET</code>,
the normal value, or <code>LUA_HOOKTAILRET</code>.
In the latter case, Lua is simulating a return from
a function that did a tail call;
in this case, it is useless to call <a href="#lua_getinfo"><code>lua_getinfo</code></a>.
<p>
While Lua is running a hook, it disables other calls to hooks.
Therefore, if a hook calls back Lua to execute a function or a chunk,
this execution occurs without any calls to hooks.
<hr><h3><a name="lua_sethook"><code>lua_sethook</code></a></h3><p>
<span class="apii">[-0, +0, <em>-</em>]</span>
<pre>int lua_sethook (lua_State *L, lua_Hook f, int mask, int count);</pre>
<p>
Sets the debugging hook function.
<p>
Argument <code>f</code> is the hook function.
<code>mask</code> specifies on which events the hook will be called:
it is formed by a bitwise or of the constants
<a name="pdf-LUA_MASKCALL"><code>LUA_MASKCALL</code></a>,
<a name="pdf-LUA_MASKRET"><code>LUA_MASKRET</code></a>,
<a name="pdf-LUA_MASKLINE"><code>LUA_MASKLINE</code></a>,
and <a name="pdf-LUA_MASKCOUNT"><code>LUA_MASKCOUNT</code></a>.
The <code>count</code> argument is only meaningful when the mask
includes <code>LUA_MASKCOUNT</code>.
For each event, the hook is called as explained below:
<ul>
<li><b>The call hook:</b> is called when the interpreter calls a function.
The hook is called just after Lua enters the new function,
before the function gets its arguments.
</li>
<li><b>The return hook:</b> is called when the interpreter returns from a function.
The hook is called just before Lua leaves the function.
You have no access to the values to be returned by the function.
</li>
<li><b>The line hook:</b> is called when the interpreter is about to
start the execution of a new line of code,
or when it jumps back in the code (even to the same line).
(This event only happens while Lua is executing a Lua function.)
</li>
<li><b>The count hook:</b> is called after the interpreter executes every
<code>count</code> instructions.
(This event only happens while Lua is executing a Lua function.)
</li>
</ul>
<p>
A hook is disabled by setting <code>mask</code> to zero.
<hr><h3><a name="lua_setlocal"><code>lua_setlocal</code></a></h3><p>
<span class="apii">[-(0|1), +0, <em>-</em>]</span>
<pre>const char *lua_setlocal (lua_State *L, lua_Debug *ar, int n);</pre>
<p>
Sets the value of a local variable of a given activation record.
Parameters <code>ar</code> and <code>n</code> are as in <a href="#lua_getlocal"><code>lua_getlocal</code></a>
(see <a href="#lua_getlocal"><code>lua_getlocal</code></a>).
<a href="#lua_setlocal"><code>lua_setlocal</code></a> assigns the value at the top of the stack
to the variable and returns its name.
It also pops the value from the stack.
<p>
Returns <code>NULL</code> (and pops nothing)
when the index is greater than
the number of active local variables.
<hr><h3><a name="lua_setupvalue"><code>lua_setupvalue</code></a></h3><p>
<span class="apii">[-(0|1), +0, <em>-</em>]</span>
<pre>const char *lua_setupvalue (lua_State *L, int funcindex, int n);</pre>
<p>
Sets the value of a closure's upvalue.
It assigns the value at the top of the stack
to the upvalue and returns its name.
It also pops the value from the stack.
Parameters <code>funcindex</code> and <code>n</code> are as in the <a href="#lua_getupvalue"><code>lua_getupvalue</code></a>
(see <a href="#lua_getupvalue"><code>lua_getupvalue</code></a>).
<p>
Returns <code>NULL</code> (and pops nothing)
when the index is greater than the number of upvalues.
<h1>4 - <a name="4">The Auxiliary Library</a></h1>
<p>
The <em>auxiliary library</em> provides several convenient functions
to interface C with Lua.
While the basic API provides the primitive functions for all
interactions between C and Lua,
the auxiliary library provides higher-level functions for some
common tasks.
<p>
All functions from the auxiliary library
are defined in header file <code>lauxlib.h</code> and
have a prefix <code>luaL_</code>.
<p>
All functions in the auxiliary library are built on
top of the basic API,
and so they provide nothing that cannot be done with this API.
<p>
Several functions in the auxiliary library are used to
check C function arguments.
Their names are always <code>luaL_check*</code> or <code>luaL_opt*</code>.
All of these functions throw an error if the check is not satisfied.
Because the error message is formatted for arguments
(e.g., "<code>bad argument #1</code>"),
you should not use these functions for other stack values.
<h2>4.1 - <a name="4.1">Functions and Types</a></h2>
<p>
Here we list all functions and types from the auxiliary library
in alphabetical order.
<hr><h3><a name="luaL_addchar"><code>luaL_addchar</code></a></h3><p>
<span class="apii">[-0, +0, <em>m</em>]</span>
<pre>void luaL_addchar (luaL_Buffer *B, char c);</pre>
<p>
Adds the character <code>c</code> to the buffer <code>B</code>
(see <a href="#luaL_Buffer"><code>luaL_Buffer</code></a>).
<hr><h3><a name="luaL_addlstring"><code>luaL_addlstring</code></a></h3><p>
<span class="apii">[-0, +0, <em>m</em>]</span>
<pre>void luaL_addlstring (luaL_Buffer *B, const char *s, size_t l);</pre>
<p>
Adds the string pointed to by <code>s</code> with length <code>l</code> to
the buffer <code>B</code>
(see <a href="#luaL_Buffer"><code>luaL_Buffer</code></a>).
The string may contain embedded zeros.
<hr><h3><a name="luaL_addsize"><code>luaL_addsize</code></a></h3><p>
<span class="apii">[-0, +0, <em>m</em>]</span>
<pre>void luaL_addsize (luaL_Buffer *B, size_t n);</pre>
<p>
Adds to the buffer <code>B</code> (see <a href="#luaL_Buffer"><code>luaL_Buffer</code></a>)
a string of length <code>n</code> previously copied to the
buffer area (see <a href="#luaL_prepbuffer"><code>luaL_prepbuffer</code></a>).
<hr><h3><a name="luaL_addstring"><code>luaL_addstring</code></a></h3><p>
<span class="apii">[-0, +0, <em>m</em>]</span>
<pre>void luaL_addstring (luaL_Buffer *B, const char *s);</pre>
<p>
Adds the zero-terminated string pointed to by <code>s</code>
to the buffer <code>B</code>
(see <a href="#luaL_Buffer"><code>luaL_Buffer</code></a>).
The string may not contain embedded zeros.
<hr><h3><a name="luaL_addvalue"><code>luaL_addvalue</code></a></h3><p>
<span class="apii">[-1, +0, <em>m</em>]</span>
<pre>void luaL_addvalue (luaL_Buffer *B);</pre>
<p>
Adds the value at the top of the stack
to the buffer <code>B</code>
(see <a href="#luaL_Buffer"><code>luaL_Buffer</code></a>).
Pops the value.
<p>
This is the only function on string buffers that can (and must)
be called with an extra element on the stack,
which is the value to be added to the buffer.
<hr><h3><a name="luaL_argcheck"><code>luaL_argcheck</code></a></h3><p>
<span class="apii">[-0, +0, <em>v</em>]</span>
<pre>void luaL_argcheck (lua_State *L,
int cond,
int narg,
const char *extramsg);</pre>
<p>
Checks whether <code>cond</code> is true.
If not, raises an error with the following message,
where <code>func</code> is retrieved from the call stack:
<pre>
bad argument #<narg> to <func> (<extramsg>)
</pre>
<hr><h3><a name="luaL_argerror"><code>luaL_argerror</code></a></h3><p>
<span class="apii">[-0, +0, <em>v</em>]</span>
<pre>int luaL_argerror (lua_State *L, int narg, const char *extramsg);</pre>
<p>
Raises an error with the following message,
where <code>func</code> is retrieved from the call stack:
<pre>
bad argument #<narg> to <func> (<extramsg>)
</pre>
<p>
This function never returns,
but it is an idiom to use it in C functions
as <code>return luaL_argerror(<em>args</em>)</code>.
<hr><h3><a name="luaL_Buffer"><code>luaL_Buffer</code></a></h3>
<pre>typedef struct luaL_Buffer luaL_Buffer;</pre>
<p>
Type for a <em>string buffer</em>.
<p>
A string buffer allows C code to build Lua strings piecemeal.
Its pattern of use is as follows:
<ul>
<li>First you declare a variable <code>b</code> of type <a href="#luaL_Buffer"><code>luaL_Buffer</code></a>.</li>
<li>Then you initialize it with a call <code>luaL_buffinit(L, &b)</code>.</li>
<li>
Then you add string pieces to the buffer calling any of
the <code>luaL_add*</code> functions.
</li>
<li>
You finish by calling <code>luaL_pushresult(&b)</code>.
This call leaves the final string on the top of the stack.
</li>
</ul>
<p>
During its normal operation,
a string buffer uses a variable number of stack slots.
So, while using a buffer, you cannot assume that you know where
the top of the stack is.
You can use the stack between successive calls to buffer operations
as long as that use is balanced;
that is,
when you call a buffer operation,
the stack is at the same level
it was immediately after the previous buffer operation.
(The only exception to this rule is <a href="#luaL_addvalue"><code>luaL_addvalue</code></a>.)
After calling <a href="#luaL_pushresult"><code>luaL_pushresult</code></a> the stack is back to its
level when the buffer was initialized,
plus the final string on its top.
<hr><h3><a name="luaL_buffinit"><code>luaL_buffinit</code></a></h3><p>
<span class="apii">[-0, +0, <em>-</em>]</span>
<pre>void luaL_buffinit (lua_State *L, luaL_Buffer *B);</pre>
<p>
Initializes a buffer <code>B</code>.
This function does not allocate any space;
the buffer must be declared as a variable
(see <a href="#luaL_Buffer"><code>luaL_Buffer</code></a>).
<hr><h3><a name="luaL_callmeta"><code>luaL_callmeta</code></a></h3><p>
<span class="apii">[-0, +(0|1), <em>e</em>]</span>
<pre>int luaL_callmeta (lua_State *L, int obj, const char *e);</pre>
<p>
Calls a metamethod.
<p>
If the object at index <code>obj</code> has a metatable and this
metatable has a field <code>e</code>,
this function calls this field and passes the object as its only argument.
In this case this function returns 1 and pushes onto the
stack the value returned by the call.
If there is no metatable or no metamethod,
this function returns 0 (without pushing any value on the stack).
<hr><h3><a name="luaL_checkany"><code>luaL_checkany</code></a></h3><p>
<span class="apii">[-0, +0, <em>v</em>]</span>
<pre>void luaL_checkany (lua_State *L, int narg);</pre>
<p>
Checks whether the function has an argument
of any type (including <b>nil</b>) at position <code>narg</code>.
<hr><h3><a name="luaL_checkint"><code>luaL_checkint</code></a></h3><p>
<span class="apii">[-0, +0, <em>v</em>]</span>
<pre>int luaL_checkint (lua_State *L, int narg);</pre>
<p>
Checks whether the function argument <code>narg</code> is a number
and returns this number cast to an <code>int</code>.
<hr><h3><a name="luaL_checkinteger"><code>luaL_checkinteger</code></a></h3><p>
<span class="apii">[-0, +0, <em>v</em>]</span>
<pre>lua_Integer luaL_checkinteger (lua_State *L, int narg);</pre>
<p>
Checks whether the function argument <code>narg</code> is a number
and returns this number cast to a <a href="#lua_Integer"><code>lua_Integer</code></a>.
<hr><h3><a name="luaL_checklong"><code>luaL_checklong</code></a></h3><p>
<span class="apii">[-0, +0, <em>v</em>]</span>
<pre>long luaL_checklong (lua_State *L, int narg);</pre>
<p>
Checks whether the function argument <code>narg</code> is a number
and returns this number cast to a <code>long</code>.
<hr><h3><a name="luaL_checklstring"><code>luaL_checklstring</code></a></h3><p>
<span class="apii">[-0, +0, <em>v</em>]</span>
<pre>const char *luaL_checklstring (lua_State *L, int narg, size_t *l);</pre>
<p>
Checks whether the function argument <code>narg</code> is a string
and returns this string;
if <code>l</code> is not <code>NULL</code> fills <code>*l</code>
with the string's length.
<p>
This function uses <a href="#lua_tolstring"><code>lua_tolstring</code></a> to get its result,
so all conversions and caveats of that function apply here.
<hr><h3><a name="luaL_checknumber"><code>luaL_checknumber</code></a></h3><p>
<span class="apii">[-0, +0, <em>v</em>]</span>
<pre>lua_Number luaL_checknumber (lua_State *L, int narg);</pre>
<p>
Checks whether the function argument <code>narg</code> is a number
and returns this number.
<hr><h3><a name="luaL_checkoption"><code>luaL_checkoption</code></a></h3><p>
<span class="apii">[-0, +0, <em>v</em>]</span>
<pre>int luaL_checkoption (lua_State *L,
int narg,
const char *def,
const char *const lst[]);</pre>
<p>
Checks whether the function argument <code>narg</code> is a string and
searches for this string in the array <code>lst</code>
(which must be NULL-terminated).
Returns the index in the array where the string was found.
Raises an error if the argument is not a string or
if the string cannot be found.
<p>
If <code>def</code> is not <code>NULL</code>,
the function uses <code>def</code> as a default value when
there is no argument <code>narg</code> or if this argument is <b>nil</b>.
<p>
This is a useful function for mapping strings to C enums.
(The usual convention in Lua libraries is
to use strings instead of numbers to select options.)
<hr><h3><a name="luaL_checkstack"><code>luaL_checkstack</code></a></h3><p>
<span class="apii">[-0, +0, <em>v</em>]</span>
<pre>void luaL_checkstack (lua_State *L, int sz, const char *msg);</pre>
<p>
Grows the stack size to <code>top + sz</code> elements,
raising an error if the stack cannot grow to that size.
<code>msg</code> is an additional text to go into the error message.
<hr><h3><a name="luaL_checkstring"><code>luaL_checkstring</code></a></h3><p>
<span class="apii">[-0, +0, <em>v</em>]</span>
<pre>const char *luaL_checkstring (lua_State *L, int narg);</pre>
<p>
Checks whether the function argument <code>narg</code> is a string
and returns this string.
<p>
This function uses <a href="#lua_tolstring"><code>lua_tolstring</code></a> to get its result,
so all conversions and caveats of that function apply here.
<hr><h3><a name="luaL_checktype"><code>luaL_checktype</code></a></h3><p>
<span class="apii">[-0, +0, <em>v</em>]</span>
<pre>void luaL_checktype (lua_State *L, int narg, int t);</pre>
<p>
Checks whether the function argument <code>narg</code> has type <code>t</code>.
See <a href="#lua_type"><code>lua_type</code></a> for the encoding of types for <code>t</code>.
<hr><h3><a name="luaL_checkudata"><code>luaL_checkudata</code></a></h3><p>
<span class="apii">[-0, +0, <em>v</em>]</span>
<pre>void *luaL_checkudata (lua_State *L, int narg, const char *tname);</pre>
<p>
Checks whether the function argument <code>narg</code> is a userdata
of the type <code>tname</code> (see <a href="#luaL_newmetatable"><code>luaL_newmetatable</code></a>).
<hr><h3><a name="luaL_dofile"><code>luaL_dofile</code></a></h3><p>
<span class="apii">[-0, +?, <em>m</em>]</span>
<pre>int luaL_dofile (lua_State *L, const char *filename);</pre>
<p>
Loads and runs the given file.
It is defined as the following macro:
<pre>
(luaL_loadfile(L, filename) || lua_pcall(L, 0, LUA_MULTRET, 0))
</pre><p>
It returns 0 if there are no errors
or 1 in case of errors.
<hr><h3><a name="luaL_dostring"><code>luaL_dostring</code></a></h3><p>
<span class="apii">[-0, +?, <em>m</em>]</span>
<pre>int luaL_dostring (lua_State *L, const char *str);</pre>
<p>
Loads and runs the given string.
It is defined as the following macro:
<pre>
(luaL_loadstring(L, str) || lua_pcall(L, 0, LUA_MULTRET, 0))
</pre><p>
It returns 0 if there are no errors
or 1 in case of errors.
<hr><h3><a name="luaL_error"><code>luaL_error</code></a></h3><p>
<span class="apii">[-0, +0, <em>v</em>]</span>
<pre>int luaL_error (lua_State *L, const char *fmt, ...);</pre>
<p>
Raises an error.
The error message format is given by <code>fmt</code>
plus any extra arguments,
following the same rules of <a href="#lua_pushfstring"><code>lua_pushfstring</code></a>.
It also adds at the beginning of the message the file name and
the line number where the error occurred,
if this information is available.
<p>
This function never returns,
but it is an idiom to use it in C functions
as <code>return luaL_error(<em>args</em>)</code>.
<hr><h3><a name="luaL_getmetafield"><code>luaL_getmetafield</code></a></h3><p>
<span class="apii">[-0, +(0|1), <em>m</em>]</span>
<pre>int luaL_getmetafield (lua_State *L, int obj, const char *e);</pre>
<p>
Pushes onto the stack the field <code>e</code> from the metatable
of the object at index <code>obj</code>.
If the object does not have a metatable,
or if the metatable does not have this field,
returns 0 and pushes nothing.
<hr><h3><a name="luaL_getmetatable"><code>luaL_getmetatable</code></a></h3><p>
<span class="apii">[-0, +1, <em>-</em>]</span>
<pre>void luaL_getmetatable (lua_State *L, const char *tname);</pre>
<p>
Pushes onto the stack the metatable associated with name <code>tname</code>
in the registry (see <a href="#luaL_newmetatable"><code>luaL_newmetatable</code></a>).
<hr><h3><a name="luaL_gsub"><code>luaL_gsub</code></a></h3><p>
<span class="apii">[-0, +1, <em>m</em>]</span>
<pre>const char *luaL_gsub (lua_State *L,
const char *s,
const char *p,
const char *r);</pre>
<p>
Creates a copy of string <code>s</code> by replacing
any occurrence of the string <code>p</code>
with the string <code>r</code>.
Pushes the resulting string on the stack and returns it.
<hr><h3><a name="luaL_loadbuffer"><code>luaL_loadbuffer</code></a></h3><p>
<span class="apii">[-0, +1, <em>m</em>]</span>
<pre>int luaL_loadbuffer (lua_State *L,
const char *buff,
size_t sz,
const char *name);</pre>
<p>
Loads a buffer as a Lua chunk.
This function uses <a href="#lua_load"><code>lua_load</code></a> to load the chunk in the
buffer pointed to by <code>buff</code> with size <code>sz</code>.
<p>
This function returns the same results as <a href="#lua_load"><code>lua_load</code></a>.
<code>name</code> is the chunk name,
used for debug information and error messages.
<hr><h3><a name="luaL_loadfile"><code>luaL_loadfile</code></a></h3><p>
<span class="apii">[-0, +1, <em>m</em>]</span>
<pre>int luaL_loadfile (lua_State *L, const char *filename);</pre>
<p>
Loads a file as a Lua chunk.
This function uses <a href="#lua_load"><code>lua_load</code></a> to load the chunk in the file
named <code>filename</code>.
If <code>filename</code> is <code>NULL</code>,
then it loads from the standard input.
The first line in the file is ignored if it starts with a <code>#</code>.
<p>
This function returns the same results as <a href="#lua_load"><code>lua_load</code></a>,
but it has an extra error code <a name="pdf-LUA_ERRFILE"><code>LUA_ERRFILE</code></a>
if it cannot open/read the file.
<p>
As <a href="#lua_load"><code>lua_load</code></a>, this function only loads the chunk;
it does not run it.
<hr><h3><a name="luaL_loadstring"><code>luaL_loadstring</code></a></h3><p>
<span class="apii">[-0, +1, <em>m</em>]</span>
<pre>int luaL_loadstring (lua_State *L, const char *s);</pre>
<p>
Loads a string as a Lua chunk.
This function uses <a href="#lua_load"><code>lua_load</code></a> to load the chunk in
the zero-terminated string <code>s</code>.
<p>
This function returns the same results as <a href="#lua_load"><code>lua_load</code></a>.
<p>
Also as <a href="#lua_load"><code>lua_load</code></a>, this function only loads the chunk;
it does not run it.
<hr><h3><a name="luaL_newmetatable"><code>luaL_newmetatable</code></a></h3><p>
<span class="apii">[-0, +1, <em>m</em>]</span>
<pre>int luaL_newmetatable (lua_State *L, const char *tname);</pre>
<p>
If the registry already has the key <code>tname</code>,
returns 0.
Otherwise,
creates a new table to be used as a metatable for userdata,
adds it to the registry with key <code>tname</code>,
and returns 1.
<p>
In both cases pushes onto the stack the final value associated
with <code>tname</code> in the registry.
<hr><h3><a name="luaL_newstate"><code>luaL_newstate</code></a></h3><p>
<span class="apii">[-0, +0, <em>-</em>]</span>
<pre>lua_State *luaL_newstate (void);</pre>
<p>
Creates a new Lua state.
It calls <a href="#lua_newstate"><code>lua_newstate</code></a> with an
allocator based on the standard C <code>realloc</code> function
and then sets a panic function (see <a href="#lua_atpanic"><code>lua_atpanic</code></a>) that prints
an error message to the standard error output in case of fatal
errors.
<p>
Returns the new state,
or <code>NULL</code> if there is a memory allocation error.
<hr><h3><a name="luaL_openlibs"><code>luaL_openlibs</code></a></h3><p>
<span class="apii">[-0, +0, <em>m</em>]</span>
<pre>void luaL_openlibs (lua_State *L);</pre>
<p>
Opens all standard Lua libraries into the given state.
<hr><h3><a name="luaL_optint"><code>luaL_optint</code></a></h3><p>
<span class="apii">[-0, +0, <em>v</em>]</span>
<pre>int luaL_optint (lua_State *L, int narg, int d);</pre>
<p>
If the function argument <code>narg</code> is a number,
returns this number cast to an <code>int</code>.
If this argument is absent or is <b>nil</b>,
returns <code>d</code>.
Otherwise, raises an error.
<hr><h3><a name="luaL_optinteger"><code>luaL_optinteger</code></a></h3><p>
<span class="apii">[-0, +0, <em>v</em>]</span>
<pre>lua_Integer luaL_optinteger (lua_State *L,
int narg,
lua_Integer d);</pre>
<p>
If the function argument <code>narg</code> is a number,
returns this number cast to a <a href="#lua_Integer"><code>lua_Integer</code></a>.
If this argument is absent or is <b>nil</b>,
returns <code>d</code>.
Otherwise, raises an error.
<hr><h3><a name="luaL_optlong"><code>luaL_optlong</code></a></h3><p>
<span class="apii">[-0, +0, <em>v</em>]</span>
<pre>long luaL_optlong (lua_State *L, int narg, long d);</pre>
<p>
If the function argument <code>narg</code> is a number,
returns this number cast to a <code>long</code>.
If this argument is absent or is <b>nil</b>,
returns <code>d</code>.
Otherwise, raises an error.
<hr><h3><a name="luaL_optlstring"><code>luaL_optlstring</code></a></h3><p>
<span class="apii">[-0, +0, <em>v</em>]</span>
<pre>const char *luaL_optlstring (lua_State *L,
int narg,
const char *d,
size_t *l);</pre>
<p>
If the function argument <code>narg</code> is a string,
returns this string.
If this argument is absent or is <b>nil</b>,
returns <code>d</code>.
Otherwise, raises an error.
<p>
If <code>l</code> is not <code>NULL</code>,
fills the position <code>*l</code> with the results's length.
<hr><h3><a name="luaL_optnumber"><code>luaL_optnumber</code></a></h3><p>
<span class="apii">[-0, +0, <em>v</em>]</span>
<pre>lua_Number luaL_optnumber (lua_State *L, int narg, lua_Number d);</pre>
<p>
If the function argument <code>narg</code> is a number,
returns this number.
If this argument is absent or is <b>nil</b>,
returns <code>d</code>.
Otherwise, raises an error.
<hr><h3><a name="luaL_optstring"><code>luaL_optstring</code></a></h3><p>
<span class="apii">[-0, +0, <em>v</em>]</span>
<pre>const char *luaL_optstring (lua_State *L,
int narg,
const char *d);</pre>
<p>
If the function argument <code>narg</code> is a string,
returns this string.
If this argument is absent or is <b>nil</b>,
returns <code>d</code>.
Otherwise, raises an error.
<hr><h3><a name="luaL_prepbuffer"><code>luaL_prepbuffer</code></a></h3><p>
<span class="apii">[-0, +0, <em>-</em>]</span>
<pre>char *luaL_prepbuffer (luaL_Buffer *B);</pre>
<p>
Returns an address to a space of size <a name="pdf-LUAL_BUFFERSIZE"><code>LUAL_BUFFERSIZE</code></a>
where you can copy a string to be added to buffer <code>B</code>
(see <a href="#luaL_Buffer"><code>luaL_Buffer</code></a>).
After copying the string into this space you must call
<a href="#luaL_addsize"><code>luaL_addsize</code></a> with the size of the string to actually add
it to the buffer.
<hr><h3><a name="luaL_pushresult"><code>luaL_pushresult</code></a></h3><p>
<span class="apii">[-?, +1, <em>m</em>]</span>
<pre>void luaL_pushresult (luaL_Buffer *B);</pre>
<p>
Finishes the use of buffer <code>B</code> leaving the final string on
the top of the stack.
<hr><h3><a name="luaL_ref"><code>luaL_ref</code></a></h3><p>
<span class="apii">[-1, +0, <em>m</em>]</span>
<pre>int luaL_ref (lua_State *L, int t);</pre>
<p>
Creates and returns a <em>reference</em>,
in the table at index <code>t</code>,
for the object at the top of the stack (and pops the object).
<p>
A reference is a unique integer key.
As long as you do not manually add integer keys into table <code>t</code>,
<a href="#luaL_ref"><code>luaL_ref</code></a> ensures the uniqueness of the key it returns.
You can retrieve an object referred by reference <code>r</code>
by calling <code>lua_rawgeti(L, t, r)</code>.
Function <a href="#luaL_unref"><code>luaL_unref</code></a> frees a reference and its associated object.
<p>
If the object at the top of the stack is <b>nil</b>,
<a href="#luaL_ref"><code>luaL_ref</code></a> returns the constant <a name="pdf-LUA_REFNIL"><code>LUA_REFNIL</code></a>.
The constant <a name="pdf-LUA_NOREF"><code>LUA_NOREF</code></a> is guaranteed to be different
from any reference returned by <a href="#luaL_ref"><code>luaL_ref</code></a>.
<hr><h3><a name="luaL_Reg"><code>luaL_Reg</code></a></h3>
<pre>typedef struct luaL_Reg {
const char *name;
lua_CFunction func;
} luaL_Reg;</pre>
<p>
Type for arrays of functions to be registered by
<a href="#luaL_register"><code>luaL_register</code></a>.
<code>name</code> is the function name and <code>func</code> is a pointer to
the function.
Any array of <a href="#luaL_Reg"><code>luaL_Reg</code></a> must end with an sentinel entry
in which both <code>name</code> and <code>func</code> are <code>NULL</code>.
<hr><h3><a name="luaL_register"><code>luaL_register</code></a></h3><p>
<span class="apii">[-(0|1), +1, <em>m</em>]</span>
<pre>void luaL_register (lua_State *L,
const char *libname,
const luaL_Reg *l);</pre>
<p>
Opens a library.
<p>
When called with <code>libname</code> equal to <code>NULL</code>,
it simply registers all functions in the list <code>l</code>
(see <a href="#luaL_Reg"><code>luaL_Reg</code></a>) into the table on the top of the stack.
<p>
When called with a non-null <code>libname</code>,
<code>luaL_register</code> creates a new table <code>t</code>,
sets it as the value of the global variable <code>libname</code>,
sets it as the value of <code>package.loaded[libname]</code>,
and registers on it all functions in the list <code>l</code>.
If there is a table in <code>package.loaded[libname]</code> or in
variable <code>libname</code>,
reuses this table instead of creating a new one.
<p>
In any case the function leaves the table
on the top of the stack.
<hr><h3><a name="luaL_typename"><code>luaL_typename</code></a></h3><p>
<span class="apii">[-0, +0, <em>-</em>]</span>
<pre>const char *luaL_typename (lua_State *L, int index);</pre>
<p>
Returns the name of the type of the value at the given index.
<hr><h3><a name="luaL_typerror"><code>luaL_typerror</code></a></h3><p>
<span class="apii">[-0, +0, <em>v</em>]</span>
<pre>int luaL_typerror (lua_State *L, int narg, const char *tname);</pre>
<p>
Generates an error with a message like the following:
<pre>
<em>location</em>: bad argument <em>narg</em> to '<em>func</em>' (<em>tname</em> expected, got <em>rt</em>)
</pre><p>
where <code><em>location</em></code> is produced by <a href="#luaL_where"><code>luaL_where</code></a>,
<code><em>func</em></code> is the name of the current function,
and <code><em>rt</em></code> is the type name of the actual argument.
<hr><h3><a name="luaL_unref"><code>luaL_unref</code></a></h3><p>
<span class="apii">[-0, +0, <em>-</em>]</span>
<pre>void luaL_unref (lua_State *L, int t, int ref);</pre>
<p>
Releases reference <code>ref</code> from the table at index <code>t</code>
(see <a href="#luaL_ref"><code>luaL_ref</code></a>).
The entry is removed from the table,
so that the referred object can be collected.
The reference <code>ref</code> is also freed to be used again.
<p>
If <code>ref</code> is <a href="#pdf-LUA_NOREF"><code>LUA_NOREF</code></a> or <a href="#pdf-LUA_REFNIL"><code>LUA_REFNIL</code></a>,
<a href="#luaL_unref"><code>luaL_unref</code></a> does nothing.
<hr><h3><a name="luaL_where"><code>luaL_where</code></a></h3><p>
<span class="apii">[-0, +1, <em>m</em>]</span>
<pre>void luaL_where (lua_State *L, int lvl);</pre>
<p>
Pushes onto the stack a string identifying the current position
of the control at level <code>lvl</code> in the call stack.
Typically this string has the following format:
<pre>
<em>chunkname</em>:<em>currentline</em>:
</pre><p>
Level 0 is the running function,
level 1 is the function that called the running function,
etc.
<p>
This function is used to build a prefix for error messages.
<h1>5 - <a name="5">Standard Libraries</a></h1>
<p>
The standard Lua libraries provide useful functions
that are implemented directly through the C API.
Some of these functions provide essential services to the language
(e.g., <a href="#pdf-type"><code>type</code></a> and <a href="#pdf-getmetatable"><code>getmetatable</code></a>);
others provide access to "outside" services (e.g., I/O);
and others could be implemented in Lua itself,
but are quite useful or have critical performance requirements that
deserve an implementation in C (e.g., <a href="#pdf-table.sort"><code>table.sort</code></a>).
<p>
All libraries are implemented through the official C API
and are provided as separate C modules.
Currently, Lua has the following standard libraries:
<ul>
<li>basic library,</li> which includes the coroutine sub-library;
<li>package library;</li>
<li>string manipulation;</li>
<li>table manipulation;</li>
<li>mathematical functions (sin, log, etc.);</li>
<li>input and output;</li>
<li>operating system facilities;</li>
<li>debug facilities.</li>
</ul><p>
Except for the basic and package libraries,
each library provides all its functions as fields of a global table
or as methods of its objects.
<p>
To have access to these libraries,
the C host program should call the <a href="#luaL_openlibs"><code>luaL_openlibs</code></a> function,
which opens all standard libraries.
Alternatively,
it can open them individually by calling
<a name="pdf-luaopen_base"><code>luaopen_base</code></a> (for the basic library),
<a name="pdf-luaopen_package"><code>luaopen_package</code></a> (for the package library),
<a name="pdf-luaopen_string"><code>luaopen_string</code></a> (for the string library),
<a name="pdf-luaopen_table"><code>luaopen_table</code></a> (for the table library),
<a name="pdf-luaopen_math"><code>luaopen_math</code></a> (for the mathematical library),
<a name="pdf-luaopen_io"><code>luaopen_io</code></a> (for the I/O library),
<a name="pdf-luaopen_os"><code>luaopen_os</code></a> (for the Operating System library),
and <a name="pdf-luaopen_debug"><code>luaopen_debug</code></a> (for the debug library).
These functions are declared in <a name="pdf-lualib.h"><code>lualib.h</code></a>
and should not be called directly:
you must call them like any other Lua C function,
e.g., by using <a href="#lua_call"><code>lua_call</code></a>.
<h2>5.1 - <a name="5.1">Basic Functions</a></h2>
<p>
The basic library provides some core functions to Lua.
If you do not include this library in your application,
you should check carefully whether you need to provide
implementations for some of its facilities.
<p>
<hr><h3><a name="pdf-assert"><code>assert (v [, message])</code></a></h3>
Issues an error when
the value of its argument <code>v</code> is false (i.e., <b>nil</b> or <b>false</b>);
otherwise, returns all its arguments.
<code>message</code> is an error message;
when absent, it defaults to "assertion failed!"
<p>
<hr><h3><a name="pdf-collectgarbage"><code>collectgarbage (opt [, arg])</code></a></h3>
<p>
This function is a generic interface to the garbage collector.
It performs different functions according to its first argument, <code>opt</code>:
<ul>
<li><b>"stop":</b>
stops the garbage collector.
</li>
<li><b>"restart":</b>
restarts the garbage collector.
</li>
<li><b>"collect":</b>
performs a full garbage-collection cycle.
</li>
<li><b>"count":</b>
returns the total memory in use by Lua (in Kbytes).
</li>
<li><b>"step":</b>
performs a garbage-collection step.
The step "size" is controlled by <code>arg</code>
(larger values mean more steps) in a non-specified way.
If you want to control the step size
you must experimentally tune the value of <code>arg</code>.
Returns <b>true</b> if the step finished a collection cycle.
</li>
<li><b>"setpause":</b>
sets <code>arg</code> as the new value for the <em>pause</em> of
the collector (see <a href="#2.10">§2.10</a>).
Returns the previous value for <em>pause</em>.
</li>
<li><b>"setstepmul":</b>
sets <code>arg</code> as the new value for the <em>step multiplier</em> of
the collector (see <a href="#2.10">§2.10</a>).
Returns the previous value for <em>step</em>.
</li>
</ul>
<p>
<hr><h3><a name="pdf-dofile"><code>dofile (filename)</code></a></h3>
Opens the named file and executes its contents as a Lua chunk.
When called without arguments,
<code>dofile</code> executes the contents of the standard input (<code>stdin</code>).
Returns all values returned by the chunk.
In case of errors, <code>dofile</code> propagates the error
to its caller (that is, <code>dofile</code> does not run in protected mode).
<p>
<hr><h3><a name="pdf-error"><code>error (message [, level])</code></a></h3>
Terminates the last protected function called
and returns <code>message</code> as the error message.
Function <code>error</code> never returns.
<p>
Usually, <code>error</code> adds some information about the error position
at the beginning of the message.
The <code>level</code> argument specifies how to get the error position.
With level 1 (the default), the error position is where the
<code>error</code> function was called.
Level 2 points the error to where the function
that called <code>error</code> was called; and so on.
Passing a level 0 avoids the addition of error position information
to the message.
<p>
<hr><h3><a name="pdf-_G"><code>_G</code></a></h3>
A global variable (not a function) that
holds the global environment (that is, <code>_G._G = _G</code>).
Lua itself does not use this variable;
changing its value does not affect any environment,
nor vice-versa.
(Use <a href="#pdf-setfenv"><code>setfenv</code></a> to change environments.)
<p>
<hr><h3><a name="pdf-getfenv"><code>getfenv ([f])</code></a></h3>
Returns the current environment in use by the function.
<code>f</code> can be a Lua function or a number
that specifies the function at that stack level:
Level 1 is the function calling <code>getfenv</code>.
If the given function is not a Lua function,
or if <code>f</code> is 0,
<code>getfenv</code> returns the global environment.
The default for <code>f</code> is 1.
<p>
<hr><h3><a name="pdf-getmetatable"><code>getmetatable (object)</code></a></h3>
<p>
If <code>object</code> does not have a metatable, returns <b>nil</b>.
Otherwise,
if the object's metatable has a <code>"__metatable"</code> field,
returns the associated value.
Otherwise, returns the metatable of the given object.
<p>
<hr><h3><a name="pdf-ipairs"><code>ipairs (t)</code></a></h3>
<p>
Returns three values: an iterator function, the table <code>t</code>, and 0,
so that the construction
<pre>
for i,v in ipairs(t) do <em>body</em> end
</pre><p>
will iterate over the pairs (<code>1,t[1]</code>), (<code>2,t[2]</code>), ···,
up to the first integer key absent from the table.
<p>
<hr><h3><a name="pdf-load"><code>load (func [, chunkname])</code></a></h3>
<p>
Loads a chunk using function <code>func</code> to get its pieces.
Each call to <code>func</code> must return a string that concatenates
with previous results.
A return of an empty string, <b>nil</b>, or no value signals the end of the chunk.
<p>
If there are no errors,
returns the compiled chunk as a function;
otherwise, returns <b>nil</b> plus the error message.
The environment of the returned function is the global environment.
<p>
<code>chunkname</code> is used as the chunk name for error messages
and debug information.
When absent,
it defaults to "<code>=(load)</code>".
<p>
<hr><h3><a name="pdf-loadfile"><code>loadfile ([filename])</code></a></h3>
<p>
Similar to <a href="#pdf-load"><code>load</code></a>,
but gets the chunk from file <code>filename</code>
or from the standard input,
if no file name is given.
<p>
<hr><h3><a name="pdf-loadstring"><code>loadstring (string [, chunkname])</code></a></h3>
<p>
Similar to <a href="#pdf-load"><code>load</code></a>,
but gets the chunk from the given string.
<p>
To load and run a given string, use the idiom
<pre>
assert(loadstring(s))()
</pre>
<p>
When absent,
<code>chunkname</code> defaults to the given string.
<p>
<hr><h3><a name="pdf-next"><code>next (table [, index])</code></a></h3>
<p>
Allows a program to traverse all fields of a table.
Its first argument is a table and its second argument
is an index in this table.
<code>next</code> returns the next index of the table
and its associated value.
When called with <b>nil</b> as its second argument,
<code>next</code> returns an initial index
and its associated value.
When called with the last index,
or with <b>nil</b> in an empty table,
<code>next</code> returns <b>nil</b>.
If the second argument is absent, then it is interpreted as <b>nil</b>.
In particular,
you can use <code>next(t)</code> to check whether a table is empty.
<p>
The order in which the indices are enumerated is not specified,
<em>even for numeric indices</em>.
(To traverse a table in numeric order,
use a numerical <b>for</b> or the <a href="#pdf-ipairs"><code>ipairs</code></a> function.)
<p>
The behavior of <code>next</code> is <em>undefined</em> if,
during the traversal,
you assign any value to a non-existent field in the table.
You may however modify existing fields.
In particular, you may clear existing fields.
<p>
<hr><h3><a name="pdf-pairs"><code>pairs (t)</code></a></h3>
<p>
Returns three values: the <a href="#pdf-next"><code>next</code></a> function, the table <code>t</code>, and <b>nil</b>,
so that the construction
<pre>
for k,v in pairs(t) do <em>body</em> end
</pre><p>
will iterate over all key–value pairs of table <code>t</code>.
<p>
See function <a href="#pdf-next"><code>next</code></a> for the caveats of modifying
the table during its traversal.
<p>
<hr><h3><a name="pdf-pcall"><code>pcall (f, arg1, ···)</code></a></h3>
<p>
Calls function <code>f</code> with
the given arguments in <em>protected mode</em>.
This means that any error inside <code>f</code> is not propagated;
instead, <code>pcall</code> catches the error
and returns a status code.
Its first result is the status code (a boolean),
which is true if the call succeeds without errors.
In such case, <code>pcall</code> also returns all results from the call,
after this first result.
In case of any error, <code>pcall</code> returns <b>false</b> plus the error message.
<p>
<hr><h3><a name="pdf-print"><code>print (···)</code></a></h3>
Receives any number of arguments,
and prints their values to <code>stdout</code>,
using the <a href="#pdf-tostring"><code>tostring</code></a> function to convert them to strings.
<code>print</code> is not intended for formatted output,
but only as a quick way to show a value,
typically for debugging.
For formatted output, use <a href="#pdf-string.format"><code>string.format</code></a>.
<p>
<hr><h3><a name="pdf-rawequal"><code>rawequal (v1, v2)</code></a></h3>
Checks whether <code>v1</code> is equal to <code>v2</code>,
without invoking any metamethod.
Returns a boolean.
<p>
<hr><h3><a name="pdf-rawget"><code>rawget (table, index)</code></a></h3>
Gets the real value of <code>table[index]</code>,
without invoking any metamethod.
<code>table</code> must be a table;
<code>index</code> may be any value.
<p>
<hr><h3><a name="pdf-rawset"><code>rawset (table, index, value)</code></a></h3>
Sets the real value of <code>table[index]</code> to <code>value</code>,
without invoking any metamethod.
<code>table</code> must be a table,
<code>index</code> any value different from <b>nil</b>,
and <code>value</code> any Lua value.
<p>
This function returns <code>table</code>.
<p>
<hr><h3><a name="pdf-select"><code>select (index, ···)</code></a></h3>
<p>
If <code>index</code> is a number,
returns all arguments after argument number <code>index</code>.
Otherwise, <code>index</code> must be the string <code>"#"</code>,
and <code>select</code> returns the total number of extra arguments it received.
<p>
<hr><h3><a name="pdf-setfenv"><code>setfenv (f, table)</code></a></h3>
<p>
Sets the environment to be used by the given function.
<code>f</code> can be a Lua function or a number
that specifies the function at that stack level:
Level 1 is the function calling <code>setfenv</code>.
<code>setfenv</code> returns the given function.
<p>
As a special case, when <code>f</code> is 0 <code>setfenv</code> changes
the environment of the running thread.
In this case, <code>setfenv</code> returns no values.
<p>
<hr><h3><a name="pdf-setmetatable"><code>setmetatable (table, metatable)</code></a></h3>
<p>
Sets the metatable for the given table.
(You cannot change the metatable of other types from Lua, only from C.)
If <code>metatable</code> is <b>nil</b>,
removes the metatable of the given table.
If the original metatable has a <code>"__metatable"</code> field,
raises an error.
<p>
This function returns <code>table</code>.
<p>
<hr><h3><a name="pdf-tonumber"><code>tonumber (e [, base])</code></a></h3>
Tries to convert its argument to a number.
If the argument is already a number or a string convertible
to a number, then <code>tonumber</code> returns this number;
otherwise, it returns <b>nil</b>.
<p>
An optional argument specifies the base to interpret the numeral.
The base may be any integer between 2 and 36, inclusive.
In bases above 10, the letter '<code>A</code>' (in either upper or lower case)
represents 10, '<code>B</code>' represents 11, and so forth,
with '<code>Z</code>' representing 35.
In base 10 (the default), the number can have a decimal part,
as well as an optional exponent part (see <a href="#2.1">§2.1</a>).
In other bases, only unsigned integers are accepted.
<p>
<hr><h3><a name="pdf-tostring"><code>tostring (e)</code></a></h3>
Receives an argument of any type and
converts it to a string in a reasonable format.
For complete control of how numbers are converted,
use <a href="#pdf-string.format"><code>string.format</code></a>.
<p>
If the metatable of <code>e</code> has a <code>"__tostring"</code> field,
then <code>tostring</code> calls the corresponding value
with <code>e</code> as argument,
and uses the result of the call as its result.
<p>
<hr><h3><a name="pdf-type"><code>type (v)</code></a></h3>
Returns the type of its only argument, coded as a string.
The possible results of this function are
"<code>nil</code>" (a string, not the value <b>nil</b>),
"<code>number</code>",
"<code>string</code>",
"<code>boolean</code>",
"<code>table</code>",
"<code>function</code>",
"<code>thread</code>",
and "<code>userdata</code>".
<p>
<hr><h3><a name="pdf-unpack"><code>unpack (list [, i [, j]])</code></a></h3>
Returns the elements from the given table.
This function is equivalent to
<pre>
return list[i], list[i+1], ···, list[j]
</pre><p>
except that the above code can be written only for a fixed number
of elements.
By default, <code>i</code> is 1 and <code>j</code> is the length of the list,
as defined by the length operator (see <a href="#2.5.5">§2.5.5</a>).
<p>
<hr><h3><a name="pdf-_VERSION"><code>_VERSION</code></a></h3>
A global variable (not a function) that
holds a string containing the current interpreter version.
The current contents of this variable is "<code>Lua 5.1</code>".
<p>
<hr><h3><a name="pdf-xpcall"><code>xpcall (f, err)</code></a></h3>
<p>
This function is similar to <a href="#pdf-pcall"><code>pcall</code></a>,
except that you can set a new error handler.
<p>
<code>xpcall</code> calls function <code>f</code> in protected mode,
using <code>err</code> as the error handler.
Any error inside <code>f</code> is not propagated;
instead, <code>xpcall</code> catches the error,
calls the <code>err</code> function with the original error object,
and returns a status code.
Its first result is the status code (a boolean),
which is true if the call succeeds without errors.
In this case, <code>xpcall</code> also returns all results from the call,
after this first result.
In case of any error,
<code>xpcall</code> returns <b>false</b> plus the result from <code>err</code>.
<h2>5.2 - <a name="5.2">Coroutine Manipulation</a></h2>
<p>
The operations related to coroutines comprise a sub-library of
the basic library and come inside the table <a name="pdf-coroutine"><code>coroutine</code></a>.
See <a href="#2.11">§2.11</a> for a general description of coroutines.
<p>
<hr><h3><a name="pdf-coroutine.create"><code>coroutine.create (f)</code></a></h3>
<p>
Creates a new coroutine, with body <code>f</code>.
<code>f</code> must be a Lua function.
Returns this new coroutine,
an object with type <code>"thread"</code>.
<p>
<hr><h3><a name="pdf-coroutine.resume"><code>coroutine.resume (co [, val1, ···])</code></a></h3>
<p>
Starts or continues the execution of coroutine <code>co</code>.
The first time you resume a coroutine,
it starts running its body.
The values <code>val1</code>, ··· are passed
as the arguments to the body function.
If the coroutine has yielded,
<code>resume</code> restarts it;
the values <code>val1</code>, ··· are passed
as the results from the yield.
<p>
If the coroutine runs without any errors,
<code>resume</code> returns <b>true</b> plus any values passed to <code>yield</code>
(if the coroutine yields) or any values returned by the body function
(if the coroutine terminates).
If there is any error,
<code>resume</code> returns <b>false</b> plus the error message.
<p>
<hr><h3><a name="pdf-coroutine.running"><code>coroutine.running ()</code></a></h3>
<p>
Returns the running coroutine,
or <b>nil</b> when called by the main thread.
<p>
<hr><h3><a name="pdf-coroutine.status"><code>coroutine.status (co)</code></a></h3>
<p>
Returns the status of coroutine <code>co</code>, as a string:
<code>"running"</code>,
if the coroutine is running (that is, it called <code>status</code>);
<code>"suspended"</code>, if the coroutine is suspended in a call to <code>yield</code>,
or if it has not started running yet;
<code>"normal"</code> if the coroutine is active but not running
(that is, it has resumed another coroutine);
and <code>"dead"</code> if the coroutine has finished its body function,
or if it has stopped with an error.
<p>
<hr><h3><a name="pdf-coroutine.wrap"><code>coroutine.wrap (f)</code></a></h3>
<p>
Creates a new coroutine, with body <code>f</code>.
<code>f</code> must be a Lua function.
Returns a function that resumes the coroutine each time it is called.
Any arguments passed to the function behave as the
extra arguments to <code>resume</code>.
Returns the same values returned by <code>resume</code>,
except the first boolean.
In case of error, propagates the error.
<p>
<hr><h3><a name="pdf-coroutine.yield"><code>coroutine.yield (···)</code></a></h3>
<p>
Suspends the execution of the calling coroutine.
The coroutine cannot be running a C function,
a metamethod, or an iterator.
Any arguments to <code>yield</code> are passed as extra results to <code>resume</code>.
<h2>5.3 - <a name="5.3">Modules</a></h2>
<p>
The package library provides basic
facilities for loading and building modules in Lua.
It exports two of its functions directly in the global environment:
<a href="#pdf-require"><code>require</code></a> and <a href="#pdf-module"><code>module</code></a>.
Everything else is exported in a table <a name="pdf-package"><code>package</code></a>.
<p>
<hr><h3><a name="pdf-module"><code>module (name [, ···])</code></a></h3>
<p>
Creates a module.
If there is a table in <code>package.loaded[name]</code>,
this table is the module.
Otherwise, if there is a global table <code>t</code> with the given name,
this table is the module.
Otherwise creates a new table <code>t</code> and
sets it as the value of the global <code>name</code> and
the value of <code>package.loaded[name]</code>.
This function also initializes <code>t._NAME</code> with the given name,
<code>t._M</code> with the module (<code>t</code> itself),
and <code>t._PACKAGE</code> with the package name
(the full module name minus last component; see below).
Finally, <code>module</code> sets <code>t</code> as the new environment
of the current function and the new value of <code>package.loaded[name]</code>,
so that <a href="#pdf-require"><code>require</code></a> returns <code>t</code>.
<p>
If <code>name</code> is a compound name
(that is, one with components separated by dots),
<code>module</code> creates (or reuses, if they already exist)
tables for each component.
For instance, if <code>name</code> is <code>a.b.c</code>,
then <code>module</code> stores the module table in field <code>c</code> of
field <code>b</code> of global <code>a</code>.
<p>
This function can receive optional <em>options</em> after
the module name,
where each option is a function to be applied over the module.
<p>
<hr><h3><a name="pdf-require"><code>require (modname)</code></a></h3>
<p>
Loads the given module.
The function starts by looking into the <a href="#pdf-package.loaded"><code>package.loaded</code></a> table
to determine whether <code>modname</code> is already loaded.
If it is, then <code>require</code> returns the value stored
at <code>package.loaded[modname]</code>.
Otherwise, it tries to find a <em>loader</em> for the module.
<p>
To find a loader,
<code>require</code> is guided by the <a href="#pdf-package.loaders"><code>package.loaders</code></a> array.
By changing this array,
we can change how <code>require</code> looks for a module.
The following explanation is based on the default configuration
for <a href="#pdf-package.loaders"><code>package.loaders</code></a>.
<p>
First <code>require</code> queries <code>package.preload[modname]</code>.
If it has a value,
this value (which should be a function) is the loader.
Otherwise <code>require</code> searches for a Lua loader using the
path stored in <a href="#pdf-package.path"><code>package.path</code></a>.
If that also fails, it searches for a C loader using the
path stored in <a href="#pdf-package.cpath"><code>package.cpath</code></a>.
If that also fails,
it tries an <em>all-in-one</em> loader (see <a href="#pdf-package.loaders"><code>package.loaders</code></a>).
<p>
Once a loader is found,
<code>require</code> calls the loader with a single argument, <code>modname</code>.
If the loader returns any value,
<code>require</code> assigns the returned value to <code>package.loaded[modname]</code>.
If the loader returns no value and
has not assigned any value to <code>package.loaded[modname]</code>,
then <code>require</code> assigns <b>true</b> to this entry.
In any case, <code>require</code> returns the
final value of <code>package.loaded[modname]</code>.
<p>
If there is any error loading or running the module,
or if it cannot find any loader for the module,
then <code>require</code> signals an error.
<p>
<hr><h3><a name="pdf-package.cpath"><code>package.cpath</code></a></h3>
<p>
The path used by <a href="#pdf-require"><code>require</code></a> to search for a C loader.
<p>
Lua initializes the C path <a href="#pdf-package.cpath"><code>package.cpath</code></a> in the same way
it initializes the Lua path <a href="#pdf-package.path"><code>package.path</code></a>,
using the environment variable <a name="pdf-LUA_CPATH"><code>LUA_CPATH</code></a>
or a default path defined in <code>luaconf.h</code>.
<p>
<hr><h3><a name="pdf-package.loaded"><code>package.loaded</code></a></h3>
<p>
A table used by <a href="#pdf-require"><code>require</code></a> to control which
modules are already loaded.
When you require a module <code>modname</code> and
<code>package.loaded[modname]</code> is not false,
<a href="#pdf-require"><code>require</code></a> simply returns the value stored there.
<p>
<hr><h3><a name="pdf-package.loaders"><code>package.loaders</code></a></h3>
<p>
A table used by <a href="#pdf-require"><code>require</code></a> to control how to load modules.
<p>
Each entry in this table is a <em>searcher function</em>.
When looking for a module,
<a href="#pdf-require"><code>require</code></a> calls each of these searchers in ascending order,
with the module name (the argument given to <a href="#pdf-require"><code>require</code></a>) as its
sole parameter.
The function can return another function (the module <em>loader</em>)
or a string explaining why it did not find that module
(or <b>nil</b> if it has nothing to say).
Lua initializes this table with four functions.
<p>
The first searcher simply looks for a loader in the
<a href="#pdf-package.preload"><code>package.preload</code></a> table.
<p>
The second searcher looks for a loader as a Lua library,
using the path stored at <a href="#pdf-package.path"><code>package.path</code></a>.
A path is a sequence of <em>templates</em> separated by semicolons.
For each template,
the searcher will change each interrogation
mark in the template by <code>filename</code>,
which is the module name with each dot replaced by a
"directory separator" (such as "<code>/</code>" in Unix);
then it will try to open the resulting file name.
So, for instance, if the Lua path is the string
<pre>
"./?.lua;./?.lc;/usr/local/?/init.lua"
</pre><p>
the search for a Lua file for module <code>foo</code>
will try to open the files
<code>./foo.lua</code>, <code>./foo.lc</code>, and
<code>/usr/local/foo/init.lua</code>, in that order.
<p>
The third searcher looks for a loader as a C library,
using the path given by the variable <a href="#pdf-package.cpath"><code>package.cpath</code></a>.
For instance,
if the C path is the string
<pre>
"./?.so;./?.dll;/usr/local/?/init.so"
</pre><p>
the searcher for module <code>foo</code>
will try to open the files <code>./foo.so</code>, <code>./foo.dll</code>,
and <code>/usr/local/foo/init.so</code>, in that order.
Once it finds a C library,
this searcher first uses a dynamic link facility to link the
application with the library.
Then it tries to find a C function inside the library to
be used as the loader.
The name of this C function is the string "<code>luaopen_</code>"
concatenated with a copy of the module name where each dot
is replaced by an underscore.
Moreover, if the module name has a hyphen,
its prefix up to (and including) the first hyphen is removed.
For instance, if the module name is <code>a.v1-b.c</code>,
the function name will be <code>luaopen_b_c</code>.
<p>
The fourth searcher tries an <em>all-in-one loader</em>.
It searches the C path for a library for
the root name of the given module.
For instance, when requiring <code>a.b.c</code>,
it will search for a C library for <code>a</code>.
If found, it looks into it for an open function for
the submodule;
in our example, that would be <code>luaopen_a_b_c</code>.
With this facility, a package can pack several C submodules
into one single library,
with each submodule keeping its original open function.
<p>
<hr><h3><a name="pdf-package.loadlib"><code>package.loadlib (libname, funcname)</code></a></h3>
<p>
Dynamically links the host program with the C library <code>libname</code>.
Inside this library, looks for a function <code>funcname</code>
and returns this function as a C function.
(So, <code>funcname</code> must follow the protocol (see <a href="#lua_CFunction"><code>lua_CFunction</code></a>)).
<p>
This is a low-level function.
It completely bypasses the package and module system.
Unlike <a href="#pdf-require"><code>require</code></a>,
it does not perform any path searching and
does not automatically adds extensions.
<code>libname</code> must be the complete file name of the C library,
including if necessary a path and extension.
<code>funcname</code> must be the exact name exported by the C library
(which may depend on the C compiler and linker used).
<p>
This function is not supported by ANSI C.
As such, it is only available on some platforms
(Windows, Linux, Mac OS X, Solaris, BSD,
plus other Unix systems that support the <code>dlfcn</code> standard).
<p>
<hr><h3><a name="pdf-package.path"><code>package.path</code></a></h3>
<p>
The path used by <a href="#pdf-require"><code>require</code></a> to search for a Lua loader.
<p>
At start-up, Lua initializes this variable with
the value of the environment variable <a name="pdf-LUA_PATH"><code>LUA_PATH</code></a> or
with a default path defined in <code>luaconf.h</code>,
if the environment variable is not defined.
Any "<code>;;</code>" in the value of the environment variable
is replaced by the default path.
<p>
<hr><h3><a name="pdf-package.preload"><code>package.preload</code></a></h3>
<p>
A table to store loaders for specific modules
(see <a href="#pdf-require"><code>require</code></a>).
<p>
<hr><h3><a name="pdf-package.seeall"><code>package.seeall (module)</code></a></h3>
<p>
Sets a metatable for <code>module</code> with
its <code>__index</code> field referring to the global environment,
so that this module inherits values
from the global environment.
To be used as an option to function <a href="#pdf-module"><code>module</code></a>.
<h2>5.4 - <a name="5.4">String Manipulation</a></h2>
<p>
This library provides generic functions for string manipulation,
such as finding and extracting substrings, and pattern matching.
When indexing a string in Lua, the first character is at position 1
(not at 0, as in C).
Indices are allowed to be negative and are interpreted as indexing backwards,
from the end of the string.
Thus, the last character is at position -1, and so on.
<p>
The string library provides all its functions inside the table
<a name="pdf-string"><code>string</code></a>.
It also sets a metatable for strings
where the <code>__index</code> field points to the <code>string</code> table.
Therefore, you can use the string functions in object-oriented style.
For instance, <code>string.byte(s, i)</code>
can be written as <code>s:byte(i)</code>.
<p>
The string library assumes one-byte character encodings.
<p>
<hr><h3><a name="pdf-string.byte"><code>string.byte (s [, i [, j]])</code></a></h3>
Returns the internal numerical codes of the characters <code>s[i]</code>,
<code>s[i+1]</code>, ···, <code>s[j]</code>.
The default value for <code>i</code> is 1;
the default value for <code>j</code> is <code>i</code>.
<p>
Note that numerical codes are not necessarily portable across platforms.
<p>
<hr><h3><a name="pdf-string.char"><code>string.char (···)</code></a></h3>
Receives zero or more integers.
Returns a string with length equal to the number of arguments,
in which each character has the internal numerical code equal
to its corresponding argument.
<p>
Note that numerical codes are not necessarily portable across platforms.
<p>
<hr><h3><a name="pdf-string.dump"><code>string.dump (function)</code></a></h3>
<p>
Returns a string containing a binary representation of the given function,
so that a later <a href="#pdf-loadstring"><code>loadstring</code></a> on this string returns
a copy of the function.
<code>function</code> must be a Lua function without upvalues.
<p>
<hr><h3><a name="pdf-string.find"><code>string.find (s, pattern [, init [, plain]])</code></a></h3>
Looks for the first match of
<code>pattern</code> in the string <code>s</code>.
If it finds a match, then <code>find</code> returns the indices of <code>s</code>
where this occurrence starts and ends;
otherwise, it returns <b>nil</b>.
A third, optional numerical argument <code>init</code> specifies
where to start the search;
its default value is 1 and can be negative.
A value of <b>true</b> as a fourth, optional argument <code>plain</code>
turns off the pattern matching facilities,
so the function does a plain "find substring" operation,
with no characters in <code>pattern</code> being considered "magic".
Note that if <code>plain</code> is given, then <code>init</code> must be given as well.
<p>
If the pattern has captures,
then in a successful match
the captured values are also returned,
after the two indices.
<p>
<hr><h3><a name="pdf-string.format"><code>string.format (formatstring, ···)</code></a></h3>
Returns a formatted version of its variable number of arguments
following the description given in its first argument (which must be a string).
The format string follows the same rules as the <code>printf</code> family of
standard C functions.
The only differences are that the options/modifiers
<code>*</code>, <code>l</code>, <code>L</code>, <code>n</code>, <code>p</code>,
and <code>h</code> are not supported
and that there is an extra option, <code>q</code>.
The <code>q</code> option formats a string in a form suitable to be safely read
back by the Lua interpreter:
the string is written between double quotes,
and all double quotes, newlines, embedded zeros,
and backslashes in the string
are correctly escaped when written.
For instance, the call
<pre>
string.format('%q', 'a string with "quotes" and \n new line')
</pre><p>
will produce the string:
<pre>
"a string with \"quotes\" and \
new line"
</pre>
<p>
The options <code>c</code>, <code>d</code>, <code>E</code>, <code>e</code>, <code>f</code>,
<code>g</code>, <code>G</code>, <code>i</code>, <code>o</code>, <code>u</code>, <code>X</code>, and <code>x</code> all
expect a number as argument,
whereas <code>q</code> and <code>s</code> expect a string.
<p>
This function does not accept string values
containing embedded zeros,
except as arguments to the <code>q</code> option.
<p>
<hr><h3><a name="pdf-string.gmatch"><code>string.gmatch (s, pattern)</code></a></h3>
Returns an iterator function that,
each time it is called,
returns the next captures from <code>pattern</code> over string <code>s</code>.
If <code>pattern</code> specifies no captures,
then the whole match is produced in each call.
<p>
As an example, the following loop
<pre>
s = "hello world from Lua"
for w in string.gmatch(s, "%a+") do
print(w)
end
</pre><p>
will iterate over all the words from string <code>s</code>,
printing one per line.
The next example collects all pairs <code>key=value</code> from the
given string into a table:
<pre>
t = {}
s = "from=world, to=Lua"
for k, v in string.gmatch(s, "(%w+)=(%w+)") do
t[k] = v
end
</pre>
<p>
For this function, a '<code>^</code>' at the start of a pattern does not
work as an anchor, as this would prevent the iteration.
<p>
<hr><h3><a name="pdf-string.gsub"><code>string.gsub (s, pattern, repl [, n])</code></a></h3>
Returns a copy of <code>s</code>
in which all (or the first <code>n</code>, if given)
occurrences of the <code>pattern</code> have been
replaced by a replacement string specified by <code>repl</code>,
which can be a string, a table, or a function.
<code>gsub</code> also returns, as its second value,
the total number of matches that occurred.
<p>
If <code>repl</code> is a string, then its value is used for replacement.
The character <code>%</code> works as an escape character:
any sequence in <code>repl</code> of the form <code>%<em>n</em></code>,
with <em>n</em> between 1 and 9,
stands for the value of the <em>n</em>-th captured substring (see below).
The sequence <code>%0</code> stands for the whole match.
The sequence <code>%%</code> stands for a single <code>%</code>.
<p>
If <code>repl</code> is a table, then the table is queried for every match,
using the first capture as the key;
if the pattern specifies no captures,
then the whole match is used as the key.
<p>
If <code>repl</code> is a function, then this function is called every time a
match occurs, with all captured substrings passed as arguments,
in order;
if the pattern specifies no captures,
then the whole match is passed as a sole argument.
<p>
If the value returned by the table query or by the function call
is a string or a number,
then it is used as the replacement string;
otherwise, if it is <b>false</b> or <b>nil</b>,
then there is no replacement
(that is, the original match is kept in the string).
<p>
Here are some examples:
<pre>
x = string.gsub("hello world", "(%w+)", "%1 %1")
--> x="hello hello world world"
x = string.gsub("hello world", "%w+", "%0 %0", 1)
--> x="hello hello world"
x = string.gsub("hello world from Lua", "(%w+)%s*(%w+)", "%2 %1")
--> x="world hello Lua from"
x = string.gsub("home = $HOME, user = $USER", "%$(%w+)", os.getenv)
--> x="home = /home/roberto, user = roberto"
x = string.gsub("4+5 = $return 4+5$", "%$(.-)%$", function (s)
return loadstring(s)()
end)
--> x="4+5 = 9"
local t = {name="lua", version="5.1"}
x = string.gsub("$name-$version.tar.gz", "%$(%w+)", t)
--> x="lua-5.1.tar.gz"
</pre>
<p>
<hr><h3><a name="pdf-string.len"><code>string.len (s)</code></a></h3>
Receives a string and returns its length.
The empty string <code>""</code> has length 0.
Embedded zeros are counted,
so <code>"a\000bc\000"</code> has length 5.
<p>
<hr><h3><a name="pdf-string.lower"><code>string.lower (s)</code></a></h3>
Receives a string and returns a copy of this string with all
uppercase letters changed to lowercase.
All other characters are left unchanged.
The definition of what an uppercase letter is depends on the current locale.
<p>
<hr><h3><a name="pdf-string.match"><code>string.match (s, pattern [, init])</code></a></h3>
Looks for the first <em>match</em> of
<code>pattern</code> in the string <code>s</code>.
If it finds one, then <code>match</code> returns
the captures from the pattern;
otherwise it returns <b>nil</b>.
If <code>pattern</code> specifies no captures,
then the whole match is returned.
A third, optional numerical argument <code>init</code> specifies
where to start the search;
its default value is 1 and can be negative.
<p>
<hr><h3><a name="pdf-string.rep"><code>string.rep (s, n)</code></a></h3>
Returns a string that is the concatenation of <code>n</code> copies of
the string <code>s</code>.
<p>
<hr><h3><a name="pdf-string.reverse"><code>string.reverse (s)</code></a></h3>
Returns a string that is the string <code>s</code> reversed.
<p>
<hr><h3><a name="pdf-string.sub"><code>string.sub (s, i [, j])</code></a></h3>
Returns the substring of <code>s</code> that
starts at <code>i</code> and continues until <code>j</code>;
<code>i</code> and <code>j</code> can be negative.
If <code>j</code> is absent, then it is assumed to be equal to -1
(which is the same as the string length).
In particular,
the call <code>string.sub(s,1,j)</code> returns a prefix of <code>s</code>
with length <code>j</code>,
and <code>string.sub(s, -i)</code> returns a suffix of <code>s</code>
with length <code>i</code>.
<p>
<hr><h3><a name="pdf-string.upper"><code>string.upper (s)</code></a></h3>
Receives a string and returns a copy of this string with all
lowercase letters changed to uppercase.
All other characters are left unchanged.
The definition of what a lowercase letter is depends on the current locale.
<h3>5.4.1 - <a name="5.4.1">Patterns</a></h3>
<h4>Character Class:</h4><p>
A <em>character class</em> is used to represent a set of characters.
The following combinations are allowed in describing a character class:
<ul>
<li><b><em>x</em>:</b>
(where <em>x</em> is not one of the <em>magic characters</em>
<code>^$()%.[]*+-?</code>)
represents the character <em>x</em> itself.
</li>
<li><b><code>.</code>:</b> (a dot) represents all characters.</li>
<li><b><code>%a</code>:</b> represents all letters.</li>
<li><b><code>%c</code>:</b> represents all control characters.</li>
<li><b><code>%d</code>:</b> represents all digits.</li>
<li><b><code>%l</code>:</b> represents all lowercase letters.</li>
<li><b><code>%p</code>:</b> represents all punctuation characters.</li>
<li><b><code>%s</code>:</b> represents all space characters.</li>
<li><b><code>%u</code>:</b> represents all uppercase letters.</li>
<li><b><code>%w</code>:</b> represents all alphanumeric characters.</li>
<li><b><code>%x</code>:</b> represents all hexadecimal digits.</li>
<li><b><code>%z</code>:</b> represents the character with representation 0.</li>
<li><b><code>%<em>x</em></code>:</b> (where <em>x</em> is any non-alphanumeric character)
represents the character <em>x</em>.
This is the standard way to escape the magic characters.
Any punctuation character (even the non magic)
can be preceded by a '<code>%</code>'
when used to represent itself in a pattern.
</li>
<li><b><code>[<em>set</em>]</code>:</b>
represents the class which is the union of all
characters in <em>set</em>.
A range of characters can be specified by
separating the end characters of the range with a '<code>-</code>'.
All classes <code>%</code><em>x</em> described above can also be used as
components in <em>set</em>.
All other characters in <em>set</em> represent themselves.
For example, <code>[%w_]</code> (or <code>[_%w]</code>)
represents all alphanumeric characters plus the underscore,
<code>[0-7]</code> represents the octal digits,
and <code>[0-7%l%-]</code> represents the octal digits plus
the lowercase letters plus the '<code>-</code>' character.
<p>
The interaction between ranges and classes is not defined.
Therefore, patterns like <code>[%a-z]</code> or <code>[a-%%]</code>
have no meaning.
</li>
<li><b><code>[^<em>set</em>]</code>:</b>
represents the complement of <em>set</em>,
where <em>set</em> is interpreted as above.
</li>
</ul><p>
For all classes represented by single letters (<code>%a</code>, <code>%c</code>, etc.),
the corresponding uppercase letter represents the complement of the class.
For instance, <code>%S</code> represents all non-space characters.
<p>
The definitions of letter, space, and other character groups
depend on the current locale.
In particular, the class <code>[a-z]</code> may not be equivalent to <code>%l</code>.
<h4>Pattern Item:</h4><p>
A <em>pattern item</em> can be
<ul>
<li>
a single character class,
which matches any single character in the class;
</li>
<li>
a single character class followed by '<code>*</code>',
which matches 0 or more repetitions of characters in the class.
These repetition items will always match the longest possible sequence;
</li>
<li>
a single character class followed by '<code>+</code>',
which matches 1 or more repetitions of characters in the class.
These repetition items will always match the longest possible sequence;
</li>
<li>
a single character class followed by '<code>-</code>',
which also matches 0 or more repetitions of characters in the class.
Unlike '<code>*</code>',
these repetition items will always match the <em>shortest</em> possible sequence;
</li>
<li>
a single character class followed by '<code>?</code>',
which matches 0 or 1 occurrence of a character in the class;
</li>
<li>
<code>%<em>n</em></code>, for <em>n</em> between 1 and 9;
such item matches a substring equal to the <em>n</em>-th captured string
(see below);
</li>
<li>
<code>%b<em>xy</em></code>, where <em>x</em> and <em>y</em> are two distinct characters;
such item matches strings that start with <em>x</em>, end with <em>y</em>,
and where the <em>x</em> and <em>y</em> are <em>balanced</em>.
This means that, if one reads the string from left to right,
counting <em>+1</em> for an <em>x</em> and <em>-1</em> for a <em>y</em>,
the ending <em>y</em> is the first <em>y</em> where the count reaches 0.
For instance, the item <code>%b()</code> matches expressions with
balanced parentheses.
</li>
</ul>
<h4>Pattern:</h4><p>
A <em>pattern</em> is a sequence of pattern items.
A '<code>^</code>' at the beginning of a pattern anchors the match at the
beginning of the subject string.
A '<code>$</code>' at the end of a pattern anchors the match at the
end of the subject string.
At other positions,
'<code>^</code>' and '<code>$</code>' have no special meaning and represent themselves.
<h4>Captures:</h4><p>
A pattern can contain sub-patterns enclosed in parentheses;
they describe <em>captures</em>.
When a match succeeds, the substrings of the subject string
that match captures are stored (<em>captured</em>) for future use.
Captures are numbered according to their left parentheses.
For instance, in the pattern <code>"(a*(.)%w(%s*))"</code>,
the part of the string matching <code>"a*(.)%w(%s*)"</code> is
stored as the first capture (and therefore has number 1);
the character matching "<code>.</code>" is captured with number 2,
and the part matching "<code>%s*</code>" has number 3.
<p>
As a special case, the empty capture <code>()</code> captures
the current string position (a number).
For instance, if we apply the pattern <code>"()aa()"</code> on the
string <code>"flaaap"</code>, there will be two captures: 3 and 5.
<p>
A pattern cannot contain embedded zeros. Use <code>%z</code> instead.
<h2>5.5 - <a name="5.5">Table Manipulation</a></h2><p>
This library provides generic functions for table manipulation.
It provides all its functions inside the table <a name="pdf-table"><code>table</code></a>.
<p>
Most functions in the table library assume that the table
represents an array or a list.
For these functions, when we talk about the "length" of a table
we mean the result of the length operator.
<p>
<hr><h3><a name="pdf-table.concat"><code>table.concat (table [, sep [, i [, j]]])</code></a></h3>
Given an array where all elements are strings or numbers,
returns <code>table[i]..sep..table[i+1] ··· sep..table[j]</code>.
The default value for <code>sep</code> is the empty string,
the default for <code>i</code> is 1,
and the default for <code>j</code> is the length of the table.
If <code>i</code> is greater than <code>j</code>, returns the empty string.
<p>
<hr><h3><a name="pdf-table.insert"><code>table.insert (table, [pos,] value)</code></a></h3>
<p>
Inserts element <code>value</code> at position <code>pos</code> in <code>table</code>,
shifting up other elements to open space, if necessary.
The default value for <code>pos</code> is <code>n+1</code>,
where <code>n</code> is the length of the table (see <a href="#2.5.5">§2.5.5</a>),
so that a call <code>table.insert(t,x)</code> inserts <code>x</code> at the end
of table <code>t</code>.
<p>
<hr><h3><a name="pdf-table.maxn"><code>table.maxn (table)</code></a></h3>
<p>
Returns the largest positive numerical index of the given table,
or zero if the table has no positive numerical indices.
(To do its job this function does a linear traversal of
the whole table.)
<p>
<hr><h3><a name="pdf-table.remove"><code>table.remove (table [, pos])</code></a></h3>
<p>
Removes from <code>table</code> the element at position <code>pos</code>,
shifting down other elements to close the space, if necessary.
Returns the value of the removed element.
The default value for <code>pos</code> is <code>n</code>,
where <code>n</code> is the length of the table,
so that a call <code>table.remove(t)</code> removes the last element
of table <code>t</code>.
<p>
<hr><h3><a name="pdf-table.sort"><code>table.sort (table [, comp])</code></a></h3>
Sorts table elements in a given order, <em>in-place</em>,
from <code>table[1]</code> to <code>table[n]</code>,
where <code>n</code> is the length of the table.
If <code>comp</code> is given,
then it must be a function that receives two table elements,
and returns true
when the first is less than the second
(so that <code>not comp(a[i+1],a[i])</code> will be true after the sort).
If <code>comp</code> is not given,
then the standard Lua operator <code><</code> is used instead.
<p>
The sort algorithm is not stable;
that is, elements considered equal by the given order
may have their relative positions changed by the sort.
<h2>5.6 - <a name="5.6">Mathematical Functions</a></h2>
<p>
This library is an interface to the standard C math library.
It provides all its functions inside the table <a name="pdf-math"><code>math</code></a>.
<p>
<hr><h3><a name="pdf-math.abs"><code>math.abs (x)</code></a></h3>
<p>
Returns the absolute value of <code>x</code>.
<p>
<hr><h3><a name="pdf-math.acos"><code>math.acos (x)</code></a></h3>
<p>
Returns the arc cosine of <code>x</code> (in radians).
<p>
<hr><h3><a name="pdf-math.asin"><code>math.asin (x)</code></a></h3>
<p>
Returns the arc sine of <code>x</code> (in radians).
<p>
<hr><h3><a name="pdf-math.atan"><code>math.atan (x)</code></a></h3>
<p>
Returns the arc tangent of <code>x</code> (in radians).
<p>
<hr><h3><a name="pdf-math.atan2"><code>math.atan2 (y, x)</code></a></h3>
<p>
Returns the arc tangent of <code>y/x</code> (in radians),
but uses the signs of both parameters to find the
quadrant of the result.
(It also handles correctly the case of <code>x</code> being zero.)
<p>
<hr><h3><a name="pdf-math.ceil"><code>math.ceil (x)</code></a></h3>
<p>
Returns the smallest integer larger than or equal to <code>x</code>.
<p>
<hr><h3><a name="pdf-math.cos"><code>math.cos (x)</code></a></h3>
<p>
Returns the cosine of <code>x</code> (assumed to be in radians).
<p>
<hr><h3><a name="pdf-math.cosh"><code>math.cosh (x)</code></a></h3>
<p>
Returns the hyperbolic cosine of <code>x</code>.
<p>
<hr><h3><a name="pdf-math.deg"><code>math.deg (x)</code></a></h3>
<p>
Returns the angle <code>x</code> (given in radians) in degrees.
<p>
<hr><h3><a name="pdf-math.exp"><code>math.exp (x)</code></a></h3>
<p>
Returns the value <em>e<sup>x</sup></em>.
<p>
<hr><h3><a name="pdf-math.floor"><code>math.floor (x)</code></a></h3>
<p>
Returns the largest integer smaller than or equal to <code>x</code>.
<p>
<hr><h3><a name="pdf-math.fmod"><code>math.fmod (x, y)</code></a></h3>
<p>
Returns the remainder of the division of <code>x</code> by <code>y</code>
that rounds the quotient towards zero.
<p>
<hr><h3><a name="pdf-math.frexp"><code>math.frexp (x)</code></a></h3>
<p>
Returns <code>m</code> and <code>e</code> such that <em>x = m2<sup>e</sup></em>,
<code>e</code> is an integer and the absolute value of <code>m</code> is
in the range <em>[0.5, 1)</em>
(or zero when <code>x</code> is zero).
<p>
<hr><h3><a name="pdf-math.huge"><code>math.huge</code></a></h3>
<p>
The value <code>HUGE_VAL</code>,
a value larger than or equal to any other numerical value.
<p>
<hr><h3><a name="pdf-math.ldexp"><code>math.ldexp (m, e)</code></a></h3>
<p>
Returns <em>m2<sup>e</sup></em> (<code>e</code> should be an integer).
<p>
<hr><h3><a name="pdf-math.log"><code>math.log (x)</code></a></h3>
<p>
Returns the natural logarithm of <code>x</code>.
<p>
<hr><h3><a name="pdf-math.log10"><code>math.log10 (x)</code></a></h3>
<p>
Returns the base-10 logarithm of <code>x</code>.
<p>
<hr><h3><a name="pdf-math.max"><code>math.max (x, ···)</code></a></h3>
<p>
Returns the maximum value among its arguments.
<p>
<hr><h3><a name="pdf-math.min"><code>math.min (x, ···)</code></a></h3>
<p>
Returns the minimum value among its arguments.
<p>
<hr><h3><a name="pdf-math.modf"><code>math.modf (x)</code></a></h3>
<p>
Returns two numbers,
the integral part of <code>x</code> and the fractional part of <code>x</code>.
<p>
<hr><h3><a name="pdf-math.pi"><code>math.pi</code></a></h3>
<p>
The value of <em>pi</em>.
<p>
<hr><h3><a name="pdf-math.pow"><code>math.pow (x, y)</code></a></h3>
<p>
Returns <em>x<sup>y</sup></em>.
(You can also use the expression <code>x^y</code> to compute this value.)
<p>
<hr><h3><a name="pdf-math.rad"><code>math.rad (x)</code></a></h3>
<p>
Returns the angle <code>x</code> (given in degrees) in radians.
<p>
<hr><h3><a name="pdf-math.random"><code>math.random ([m [, n]])</code></a></h3>
<p>
This function is an interface to the simple
pseudo-random generator function <code>rand</code> provided by ANSI C.
(No guarantees can be given for its statistical properties.)
<p>
When called without arguments,
returns a uniform pseudo-random real number
in the range <em>[0,1)</em>.
When called with an integer number <code>m</code>,
<code>math.random</code> returns
a uniform pseudo-random integer in the range <em>[1, m]</em>.
When called with two integer numbers <code>m</code> and <code>n</code>,
<code>math.random</code> returns a uniform pseudo-random
integer in the range <em>[m, n]</em>.
<p>
<hr><h3><a name="pdf-math.randomseed"><code>math.randomseed (x)</code></a></h3>
<p>
Sets <code>x</code> as the "seed"
for the pseudo-random generator:
equal seeds produce equal sequences of numbers.
<p>
<hr><h3><a name="pdf-math.sin"><code>math.sin (x)</code></a></h3>
<p>
Returns the sine of <code>x</code> (assumed to be in radians).
<p>
<hr><h3><a name="pdf-math.sinh"><code>math.sinh (x)</code></a></h3>
<p>
Returns the hyperbolic sine of <code>x</code>.
<p>
<hr><h3><a name="pdf-math.sqrt"><code>math.sqrt (x)</code></a></h3>
<p>
Returns the square root of <code>x</code>.
(You can also use the expression <code>x^0.5</code> to compute this value.)
<p>
<hr><h3><a name="pdf-math.tan"><code>math.tan (x)</code></a></h3>
<p>
Returns the tangent of <code>x</code> (assumed to be in radians).
<p>
<hr><h3><a name="pdf-math.tanh"><code>math.tanh (x)</code></a></h3>
<p>
Returns the hyperbolic tangent of <code>x</code>.
<h2>5.7 - <a name="5.7">Input and Output Facilities</a></h2>
<p>
The I/O library provides two different styles for file manipulation.
The first one uses implicit file descriptors;
that is, there are operations to set a default input file and a
default output file,
and all input/output operations are over these default files.
The second style uses explicit file descriptors.
<p>
When using implicit file descriptors,
all operations are supplied by table <a name="pdf-io"><code>io</code></a>.
When using explicit file descriptors,
the operation <a href="#pdf-io.open"><code>io.open</code></a> returns a file descriptor
and then all operations are supplied as methods of the file descriptor.
<p>
The table <code>io</code> also provides
three predefined file descriptors with their usual meanings from C:
<a name="pdf-io.stdin"><code>io.stdin</code></a>, <a name="pdf-io.stdout"><code>io.stdout</code></a>, and <a name="pdf-io.stderr"><code>io.stderr</code></a>.
The I/O library never closes these files.
<p>
Unless otherwise stated,
all I/O functions return <b>nil</b> on failure
(plus an error message as a second result and
a system-dependent error code as a third result)
and some value different from <b>nil</b> on success.
<p>
<hr><h3><a name="pdf-io.close"><code>io.close ([file])</code></a></h3>
<p>
Equivalent to <code>file:close()</code>.
Without a <code>file</code>, closes the default output file.
<p>
<hr><h3><a name="pdf-io.flush"><code>io.flush ()</code></a></h3>
<p>
Equivalent to <code>file:flush</code> over the default output file.
<p>
<hr><h3><a name="pdf-io.input"><code>io.input ([file])</code></a></h3>
<p>
When called with a file name, it opens the named file (in text mode),
and sets its handle as the default input file.
When called with a file handle,
it simply sets this file handle as the default input file.
When called without parameters,
it returns the current default input file.
<p>
In case of errors this function raises the error,
instead of returning an error code.
<p>
<hr><h3><a name="pdf-io.lines"><code>io.lines ([filename])</code></a></h3>
<p>
Opens the given file name in read mode
and returns an iterator function that,
each time it is called,
returns a new line from the file.
Therefore, the construction
<pre>
for line in io.lines(filename) do <em>body</em> end
</pre><p>
will iterate over all lines of the file.
When the iterator function detects the end of file,
it returns <b>nil</b> (to finish the loop) and automatically closes the file.
<p>
The call <code>io.lines()</code> (with no file name) is equivalent
to <code>io.input():lines()</code>;
that is, it iterates over the lines of the default input file.
In this case it does not close the file when the loop ends.
<p>
<hr><h3><a name="pdf-io.open"><code>io.open (filename [, mode])</code></a></h3>
<p>
This function opens a file,
in the mode specified in the string <code>mode</code>.
It returns a new file handle,
or, in case of errors, <b>nil</b> plus an error message.
<p>
The <code>mode</code> string can be any of the following:
<ul>
<li><b>"r":</b> read mode (the default);</li>
<li><b>"w":</b> write mode;</li>
<li><b>"a":</b> append mode;</li>
<li><b>"r+":</b> update mode, all previous data is preserved;</li>
<li><b>"w+":</b> update mode, all previous data is erased;</li>
<li><b>"a+":</b> append update mode, previous data is preserved,
writing is only allowed at the end of file.</li>
</ul><p>
The <code>mode</code> string can also have a '<code>b</code>' at the end,
which is needed in some systems to open the file in binary mode.
This string is exactly what is used in the
standard C function <code>fopen</code>.
<p>
<hr><h3><a name="pdf-io.output"><code>io.output ([file])</code></a></h3>
<p>
Similar to <a href="#pdf-io.input"><code>io.input</code></a>, but operates over the default output file.
<p>
<hr><h3><a name="pdf-io.popen"><code>io.popen (prog [, mode])</code></a></h3>
<p>
Starts program <code>prog</code> in a separated process and returns
a file handle that you can use to read data from this program
(if <code>mode</code> is <code>"r"</code>, the default)
or to write data to this program
(if <code>mode</code> is <code>"w"</code>).
<p>
This function is system dependent and is not available
on all platforms.
<p>
<hr><h3><a name="pdf-io.read"><code>io.read (···)</code></a></h3>
<p>
Equivalent to <code>io.input():read</code>.
<p>
<hr><h3><a name="pdf-io.tmpfile"><code>io.tmpfile ()</code></a></h3>
<p>
Returns a handle for a temporary file.
This file is opened in update mode
and it is automatically removed when the program ends.
<p>
<hr><h3><a name="pdf-io.type"><code>io.type (obj)</code></a></h3>
<p>
Checks whether <code>obj</code> is a valid file handle.
Returns the string <code>"file"</code> if <code>obj</code> is an open file handle,
<code>"closed file"</code> if <code>obj</code> is a closed file handle,
or <b>nil</b> if <code>obj</code> is not a file handle.
<p>
<hr><h3><a name="pdf-io.write"><code>io.write (···)</code></a></h3>
<p>
Equivalent to <code>io.output():write</code>.
<p>
<hr><h3><a name="pdf-file:close"><code>file:close ()</code></a></h3>
<p>
Closes <code>file</code>.
Note that files are automatically closed when
their handles are garbage collected,
but that takes an unpredictable amount of time to happen.
<p>
<hr><h3><a name="pdf-file:flush"><code>file:flush ()</code></a></h3>
<p>
Saves any written data to <code>file</code>.
<p>
<hr><h3><a name="pdf-file:lines"><code>file:lines ()</code></a></h3>
<p>
Returns an iterator function that,
each time it is called,
returns a new line from the file.
Therefore, the construction
<pre>
for line in file:lines() do <em>body</em> end
</pre><p>
will iterate over all lines of the file.
(Unlike <a href="#pdf-io.lines"><code>io.lines</code></a>, this function does not close the file
when the loop ends.)
<p>
<hr><h3><a name="pdf-file:read"><code>file:read (···)</code></a></h3>
<p>
Reads the file <code>file</code>,
according to the given formats, which specify what to read.
For each format,
the function returns a string (or a number) with the characters read,
or <b>nil</b> if it cannot read data with the specified format.
When called without formats,
it uses a default format that reads the entire next line
(see below).
<p>
The available formats are
<ul>
<li><b>"*n":</b>
reads a number;
this is the only format that returns a number instead of a string.
</li>
<li><b>"*a":</b>
reads the whole file, starting at the current position.
On end of file, it returns the empty string.
</li>
<li><b>"*l":</b>
reads the next line (skipping the end of line),
returning <b>nil</b> on end of file.
This is the default format.
</li>
<li><b><em>number</em>:</b>
reads a string with up to this number of characters,
returning <b>nil</b> on end of file.
If number is zero,
it reads nothing and returns an empty string,
or <b>nil</b> on end of file.
</li>
</ul>
<p>
<hr><h3><a name="pdf-file:seek"><code>file:seek ([whence] [, offset])</code></a></h3>
<p>
Sets and gets the file position,
measured from the beginning of the file,
to the position given by <code>offset</code> plus a base
specified by the string <code>whence</code>, as follows:
<ul>
<li><b>"set":</b> base is position 0 (beginning of the file);</li>
<li><b>"cur":</b> base is current position;</li>
<li><b>"end":</b> base is end of file;</li>
</ul><p>
In case of success, function <code>seek</code> returns the final file position,
measured in bytes from the beginning of the file.
If this function fails, it returns <b>nil</b>,
plus a string describing the error.
<p>
The default value for <code>whence</code> is <code>"cur"</code>,
and for <code>offset</code> is 0.
Therefore, the call <code>file:seek()</code> returns the current
file position, without changing it;
the call <code>file:seek("set")</code> sets the position to the
beginning of the file (and returns 0);
and the call <code>file:seek("end")</code> sets the position to the
end of the file, and returns its size.
<p>
<hr><h3><a name="pdf-file:setvbuf"><code>file:setvbuf (mode [, size])</code></a></h3>
<p>
Sets the buffering mode for an output file.
There are three available modes:
<ul>
<li><b>"no":</b>
no buffering; the result of any output operation appears immediately.
</li>
<li><b>"full":</b>
full buffering; output operation is performed only
when the buffer is full (or when you explicitly <code>flush</code> the file
(see <a href="#pdf-io.flush"><code>io.flush</code></a>)).
</li>
<li><b>"line":</b>
line buffering; output is buffered until a newline is output
or there is any input from some special files
(such as a terminal device).
</li>
</ul><p>
For the last two cases, <code>size</code>
specifies the size of the buffer, in bytes.
The default is an appropriate size.
<p>
<hr><h3><a name="pdf-file:write"><code>file:write (···)</code></a></h3>
<p>
Writes the value of each of its arguments to
the <code>file</code>.
The arguments must be strings or numbers.
To write other values,
use <a href="#pdf-tostring"><code>tostring</code></a> or <a href="#pdf-string.format"><code>string.format</code></a> before <code>write</code>.
<h2>5.8 - <a name="5.8">Operating System Facilities</a></h2>
<p>
This library is implemented through table <a name="pdf-os"><code>os</code></a>.
<p>
<hr><h3><a name="pdf-os.clock"><code>os.clock ()</code></a></h3>
<p>
Returns an approximation of the amount in seconds of CPU time
used by the program.
<p>
<hr><h3><a name="pdf-os.date"><code>os.date ([format [, time]])</code></a></h3>
<p>
Returns a string or a table containing date and time,
formatted according to the given string <code>format</code>.
<p>
If the <code>time</code> argument is present,
this is the time to be formatted
(see the <a href="#pdf-os.time"><code>os.time</code></a> function for a description of this value).
Otherwise, <code>date</code> formats the current time.
<p>
If <code>format</code> starts with '<code>!</code>',
then the date is formatted in Coordinated Universal Time.
After this optional character,
if <code>format</code> is the string "<code>*t</code>",
then <code>date</code> returns a table with the following fields:
<code>year</code> (four digits), <code>month</code> (1--12), <code>day</code> (1--31),
<code>hour</code> (0--23), <code>min</code> (0--59), <code>sec</code> (0--61),
<code>wday</code> (weekday, Sunday is 1),
<code>yday</code> (day of the year),
and <code>isdst</code> (daylight saving flag, a boolean).
<p>
If <code>format</code> is not "<code>*t</code>",
then <code>date</code> returns the date as a string,
formatted according to the same rules as the C function <code>strftime</code>.
<p>
When called without arguments,
<code>date</code> returns a reasonable date and time representation that depends on
the host system and on the current locale
(that is, <code>os.date()</code> is equivalent to <code>os.date("%c")</code>).
<p>
<hr><h3><a name="pdf-os.difftime"><code>os.difftime (t2, t1)</code></a></h3>
<p>
Returns the number of seconds from time <code>t1</code> to time <code>t2</code>.
In POSIX, Windows, and some other systems,
this value is exactly <code>t2</code><em>-</em><code>t1</code>.
<p>
<hr><h3><a name="pdf-os.execute"><code>os.execute ([command])</code></a></h3>
<p>
This function is equivalent to the C function <code>system</code>.
It passes <code>command</code> to be executed by an operating system shell.
It returns a status code, which is system-dependent.
If <code>command</code> is absent, then it returns nonzero if a shell is available
and zero otherwise.
<p>
<hr><h3><a name="pdf-os.exit"><code>os.exit ([code])</code></a></h3>
<p>
Calls the C function <code>exit</code>,
with an optional <code>code</code>,
to terminate the host program.
The default value for <code>code</code> is the success code.
<p>
<hr><h3><a name="pdf-os.getenv"><code>os.getenv (varname)</code></a></h3>
<p>
Returns the value of the process environment variable <code>varname</code>,
or <b>nil</b> if the variable is not defined.
<p>
<hr><h3><a name="pdf-os.remove"><code>os.remove (filename)</code></a></h3>
<p>
Deletes the file or directory with the given name.
Directories must be empty to be removed.
If this function fails, it returns <b>nil</b>,
plus a string describing the error.
<p>
<hr><h3><a name="pdf-os.rename"><code>os.rename (oldname, newname)</code></a></h3>
<p>
Renames file or directory named <code>oldname</code> to <code>newname</code>.
If this function fails, it returns <b>nil</b>,
plus a string describing the error.
<p>
<hr><h3><a name="pdf-os.setlocale"><code>os.setlocale (locale [, category])</code></a></h3>
<p>
Sets the current locale of the program.
<code>locale</code> is a string specifying a locale;
<code>category</code> is an optional string describing which category to change:
<code>"all"</code>, <code>"collate"</code>, <code>"ctype"</code>,
<code>"monetary"</code>, <code>"numeric"</code>, or <code>"time"</code>;
the default category is <code>"all"</code>.
The function returns the name of the new locale,
or <b>nil</b> if the request cannot be honored.
<p>
If <code>locale</code> is the empty string,
the current locale is set to an implementation-defined native locale.
If <code>locale</code> is the string "<code>C</code>",
the current locale is set to the standard C locale.
<p>
When called with <b>nil</b> as the first argument,
this function only returns the name of the current locale
for the given category.
<p>
<hr><h3><a name="pdf-os.time"><code>os.time ([table])</code></a></h3>
<p>
Returns the current time when called without arguments,
or a time representing the date and time specified by the given table.
This table must have fields <code>year</code>, <code>month</code>, and <code>day</code>,
and may have fields <code>hour</code>, <code>min</code>, <code>sec</code>, and <code>isdst</code>
(for a description of these fields, see the <a href="#pdf-os.date"><code>os.date</code></a> function).
<p>
The returned value is a number, whose meaning depends on your system.
In POSIX, Windows, and some other systems, this number counts the number
of seconds since some given start time (the "epoch").
In other systems, the meaning is not specified,
and the number returned by <code>time</code> can be used only as an argument to
<code>date</code> and <code>difftime</code>.
<p>
<hr><h3><a name="pdf-os.tmpname"><code>os.tmpname ()</code></a></h3>
<p>
Returns a string with a file name that can
be used for a temporary file.
The file must be explicitly opened before its use
and explicitly removed when no longer needed.
<p>
On some systems (POSIX),
this function also creates a file with that name,
to avoid security risks.
(Someone else might create the file with wrong permissions
in the time between getting the name and creating the file.)
You still have to open the file to use it
and to remove it (even if you do not use it).
<p>
When possible,
you may prefer to use <a href="#pdf-io.tmpfile"><code>io.tmpfile</code></a>,
which automatically removes the file when the program ends.
<h2>5.9 - <a name="5.9">The Debug Library</a></h2>
<p>
This library provides
the functionality of the debug interface to Lua programs.
You should exert care when using this library.
The functions provided here should be used exclusively for debugging
and similar tasks, such as profiling.
Please resist the temptation to use them as a
usual programming tool:
they can be very slow.
Moreover, several of these functions
violate some assumptions about Lua code
(e.g., that variables local to a function
cannot be accessed from outside or
that userdata metatables cannot be changed by Lua code)
and therefore can compromise otherwise secure code.
<p>
All functions in this library are provided
inside the <a name="pdf-debug"><code>debug</code></a> table.
All functions that operate over a thread
have an optional first argument which is the
thread to operate over.
The default is always the current thread.
<p>
<hr><h3><a name="pdf-debug.debug"><code>debug.debug ()</code></a></h3>
<p>
Enters an interactive mode with the user,
running each string that the user enters.
Using simple commands and other debug facilities,
the user can inspect global and local variables,
change their values, evaluate expressions, and so on.
A line containing only the word <code>cont</code> finishes this function,
so that the caller continues its execution.
<p>
Note that commands for <code>debug.debug</code> are not lexically nested
within any function, and so have no direct access to local variables.
<p>
<hr><h3><a name="pdf-debug.getfenv"><code>debug.getfenv (o)</code></a></h3>
Returns the environment of object <code>o</code>.
<p>
<hr><h3><a name="pdf-debug.gethook"><code>debug.gethook ([thread])</code></a></h3>
<p>
Returns the current hook settings of the thread, as three values:
the current hook function, the current hook mask,
and the current hook count
(as set by the <a href="#pdf-debug.sethook"><code>debug.sethook</code></a> function).
<p>
<hr><h3><a name="pdf-debug.getinfo"><code>debug.getinfo ([thread,] function [, what])</code></a></h3>
<p>
Returns a table with information about a function.
You can give the function directly,
or you can give a number as the value of <code>function</code>,
which means the function running at level <code>function</code> of the call stack
of the given thread:
level 0 is the current function (<code>getinfo</code> itself);
level 1 is the function that called <code>getinfo</code>;
and so on.
If <code>function</code> is a number larger than the number of active functions,
then <code>getinfo</code> returns <b>nil</b>.
<p>
The returned table can contain all the fields returned by <a href="#lua_getinfo"><code>lua_getinfo</code></a>,
with the string <code>what</code> describing which fields to fill in.
The default for <code>what</code> is to get all information available,
except the table of valid lines.
If present,
the option '<code>f</code>'
adds a field named <code>func</code> with the function itself.
If present,
the option '<code>L</code>'
adds a field named <code>activelines</code> with the table of
valid lines.
<p>
For instance, the expression <code>debug.getinfo(1,"n").name</code> returns
a table with a name for the current function,
if a reasonable name can be found,
and the expression <code>debug.getinfo(print)</code>
returns a table with all available information
about the <a href="#pdf-print"><code>print</code></a> function.
<p>
<hr><h3><a name="pdf-debug.getlocal"><code>debug.getlocal ([thread,] level, local)</code></a></h3>
<p>
This function returns the name and the value of the local variable
with index <code>local</code> of the function at level <code>level</code> of the stack.
(The first parameter or local variable has index 1, and so on,
until the last active local variable.)
The function returns <b>nil</b> if there is no local
variable with the given index,
and raises an error when called with a <code>level</code> out of range.
(You can call <a href="#pdf-debug.getinfo"><code>debug.getinfo</code></a> to check whether the level is valid.)
<p>
Variable names starting with '<code>(</code>' (open parentheses)
represent internal variables
(loop control variables, temporaries, and C function locals).
<p>
<hr><h3><a name="pdf-debug.getmetatable"><code>debug.getmetatable (object)</code></a></h3>
<p>
Returns the metatable of the given <code>object</code>
or <b>nil</b> if it does not have a metatable.
<p>
<hr><h3><a name="pdf-debug.getregistry"><code>debug.getregistry ()</code></a></h3>
<p>
Returns the registry table (see <a href="#3.5">§3.5</a>).
<p>
<hr><h3><a name="pdf-debug.getupvalue"><code>debug.getupvalue (func, up)</code></a></h3>
<p>
This function returns the name and the value of the upvalue
with index <code>up</code> of the function <code>func</code>.
The function returns <b>nil</b> if there is no upvalue with the given index.
<p>
<hr><h3><a name="pdf-debug.setfenv"><code>debug.setfenv (object, table)</code></a></h3>
<p>
Sets the environment of the given <code>object</code> to the given <code>table</code>.
Returns <code>object</code>.
<p>
<hr><h3><a name="pdf-debug.sethook"><code>debug.sethook ([thread,] hook, mask [, count])</code></a></h3>
<p>
Sets the given function as a hook.
The string <code>mask</code> and the number <code>count</code> describe
when the hook will be called.
The string mask may have the following characters,
with the given meaning:
<ul>
<li><b><code>"c"</code>:</b> the hook is called every time Lua calls a function;</li>
<li><b><code>"r"</code>:</b> the hook is called every time Lua returns from a function;</li>
<li><b><code>"l"</code>:</b> the hook is called every time Lua enters a new line of code.</li>
</ul><p>
With a <code>count</code> different from zero,
the hook is called after every <code>count</code> instructions.
<p>
When called without arguments,
<a href="#pdf-debug.sethook"><code>debug.sethook</code></a> turns off the hook.
<p>
When the hook is called, its first parameter is a string
describing the event that has triggered its call:
<code>"call"</code>, <code>"return"</code> (or <code>"tail return"</code>,
when simulating a return from a tail call),
<code>"line"</code>, and <code>"count"</code>.
For line events,
the hook also gets the new line number as its second parameter.
Inside a hook,
you can call <code>getinfo</code> with level 2 to get more information about
the running function
(level 0 is the <code>getinfo</code> function,
and level 1 is the hook function),
unless the event is <code>"tail return"</code>.
In this case, Lua is only simulating the return,
and a call to <code>getinfo</code> will return invalid data.
<p>
<hr><h3><a name="pdf-debug.setlocal"><code>debug.setlocal ([thread,] level, local, value)</code></a></h3>
<p>
This function assigns the value <code>value</code> to the local variable
with index <code>local</code> of the function at level <code>level</code> of the stack.
The function returns <b>nil</b> if there is no local
variable with the given index,
and raises an error when called with a <code>level</code> out of range.
(You can call <code>getinfo</code> to check whether the level is valid.)
Otherwise, it returns the name of the local variable.
<p>
<hr><h3><a name="pdf-debug.setmetatable"><code>debug.setmetatable (object, table)</code></a></h3>
<p>
Sets the metatable for the given <code>object</code> to the given <code>table</code>
(which can be <b>nil</b>).
<p>
<hr><h3><a name="pdf-debug.setupvalue"><code>debug.setupvalue (func, up, value)</code></a></h3>
<p>
This function assigns the value <code>value</code> to the upvalue
with index <code>up</code> of the function <code>func</code>.
The function returns <b>nil</b> if there is no upvalue
with the given index.
Otherwise, it returns the name of the upvalue.
<p>
<hr><h3><a name="pdf-debug.traceback"><code>debug.traceback ([thread,] [message] [, level])</code></a></h3>
<p>
Returns a string with a traceback of the call stack.
An optional <code>message</code> string is appended
at the beginning of the traceback.
An optional <code>level</code> number tells at which level
to start the traceback
(default is 1, the function calling <code>traceback</code>).
<h1>6 - <a name="6">Lua Stand-alone</a></h1>
<p>
Although Lua has been designed as an extension language,
to be embedded in a host C program,
it is also frequently used as a stand-alone language.
An interpreter for Lua as a stand-alone language,
called simply <code>lua</code>,
is provided with the standard distribution.
The stand-alone interpreter includes
all standard libraries, including the debug library.
Its usage is:
<pre>
lua [options] [script [args]]
</pre><p>
The options are:
<ul>
<li><b><code>-e <em>stat</em></code>:</b> executes string <em>stat</em>;</li>
<li><b><code>-l <em>mod</em></code>:</b> "requires" <em>mod</em>;</li>
<li><b><code>-i</code>:</b> enters interactive mode after running <em>script</em>;</li>
<li><b><code>-v</code>:</b> prints version information;</li>
<li><b><code>--</code>:</b> stops handling options;</li>
<li><b><code>-</code>:</b> executes <code>stdin</code> as a file and stops handling options.</li>
</ul><p>
After handling its options, <code>lua</code> runs the given <em>script</em>,
passing to it the given <em>args</em> as string arguments.
When called without arguments,
<code>lua</code> behaves as <code>lua -v -i</code>
when the standard input (<code>stdin</code>) is a terminal,
and as <code>lua -</code> otherwise.
<p>
Before running any argument,
the interpreter checks for an environment variable <a name="pdf-LUA_INIT"><code>LUA_INIT</code></a>.
If its format is <code>@<em>filename</em></code>,
then <code>lua</code> executes the file.
Otherwise, <code>lua</code> executes the string itself.
<p>
All options are handled in order, except <code>-i</code>.
For instance, an invocation like
<pre>
$ lua -e'a=1' -e 'print(a)' script.lua
</pre><p>
will first set <code>a</code> to 1, then print the value of <code>a</code> (which is '<code>1</code>'),
and finally run the file <code>script.lua</code> with no arguments.
(Here <code>$</code> is the shell prompt. Your prompt may be different.)
<p>
Before starting to run the script,
<code>lua</code> collects all arguments in the command line
in a global table called <code>arg</code>.
The script name is stored at index 0,
the first argument after the script name goes to index 1,
and so on.
Any arguments before the script name
(that is, the interpreter name plus the options)
go to negative indices.
For instance, in the call
<pre>
$ lua -la b.lua t1 t2
</pre><p>
the interpreter first runs the file <code>a.lua</code>,
then creates a table
<pre>
arg = { [-2] = "lua", [-1] = "-la",
[0] = "b.lua",
[1] = "t1", [2] = "t2" }
</pre><p>
and finally runs the file <code>b.lua</code>.
The script is called with <code>arg[1]</code>, <code>arg[2]</code>, ···
as arguments;
it can also access these arguments with the vararg expression '<code>...</code>'.
<p>
In interactive mode,
if you write an incomplete statement,
the interpreter waits for its completion
by issuing a different prompt.
<p>
If the global variable <a name="pdf-_PROMPT"><code>_PROMPT</code></a> contains a string,
then its value is used as the prompt.
Similarly, if the global variable <a name="pdf-_PROMPT2"><code>_PROMPT2</code></a> contains a string,
its value is used as the secondary prompt
(issued during incomplete statements).
Therefore, both prompts can be changed directly on the command line
or in any Lua programs by assigning to <code>_PROMPT</code>.
See the next example:
<pre>
$ lua -e"_PROMPT='myprompt> '" -i
</pre><p>
(The outer pair of quotes is for the shell,
the inner pair is for Lua.)
Note the use of <code>-i</code> to enter interactive mode;
otherwise,
the program would just end silently
right after the assignment to <code>_PROMPT</code>.
<p>
To allow the use of Lua as a
script interpreter in Unix systems,
the stand-alone interpreter skips
the first line of a chunk if it starts with <code>#</code>.
Therefore, Lua scripts can be made into executable programs
by using <code>chmod +x</code> and the <code>#!</code> form,
as in
<pre>
#!/usr/local/bin/lua
</pre><p>
(Of course,
the location of the Lua interpreter may be different in your machine.
If <code>lua</code> is in your <code>PATH</code>,
then
<pre>
#!/usr/bin/env lua
</pre><p>
is a more portable solution.)
<h1>7 - <a name="7">Incompatibilities with the Previous Version</a></h1>
<p>
Here we list the incompatibilities that you may find when moving a program
from Lua 5.0 to Lua 5.1.
You can avoid most of the incompatibilities compiling Lua with
appropriate options (see file <code>luaconf.h</code>).
However,
all these compatibility options will be removed in the next version of Lua.
<h2>7.1 - <a name="7.1">Changes in the Language</a></h2>
<ul>
<li>
The vararg system changed from the pseudo-argument <code>arg</code> with a
table with the extra arguments to the vararg expression.
(See compile-time option <code>LUA_COMPAT_VARARG</code> in <code>luaconf.h</code>.)
</li>
<li>
There was a subtle change in the scope of the implicit
variables of the <b>for</b> statement and for the <b>repeat</b> statement.
</li>
<li>
The long string/long comment syntax (<code>[[<em>string</em>]]</code>)
does not allow nesting.
You can use the new syntax (<code>[=[<em>string</em>]=]</code>) in these cases.
(See compile-time option <code>LUA_COMPAT_LSTR</code> in <code>luaconf.h</code>.)
</li>
</ul>
<h2>7.2 - <a name="7.2">Changes in the Libraries</a></h2>
<ul>
<li>
Function <code>string.gfind</code> was renamed <a href="#pdf-string.gmatch"><code>string.gmatch</code></a>.
(See compile-time option <code>LUA_COMPAT_GFIND</code> in <code>luaconf.h</code>.)
</li>
<li>
When <a href="#pdf-string.gsub"><code>string.gsub</code></a> is called with a function as its
third argument,
whenever this function returns <b>nil</b> or <b>false</b> the
replacement string is the whole match,
instead of the empty string.
</li>
<li>
Function <code>table.setn</code> was deprecated.
Function <code>table.getn</code> corresponds
to the new length operator (<code>#</code>);
use the operator instead of the function.
(See compile-time option <code>LUA_COMPAT_GETN</code> in <code>luaconf.h</code>.)
</li>
<li>
Function <code>loadlib</code> was renamed <a href="#pdf-package.loadlib"><code>package.loadlib</code></a>.
(See compile-time option <code>LUA_COMPAT_LOADLIB</code> in <code>luaconf.h</code>.)
</li>
<li>
Function <code>math.mod</code> was renamed <a href="#pdf-math.fmod"><code>math.fmod</code></a>.
(See compile-time option <code>LUA_COMPAT_MOD</code> in <code>luaconf.h</code>.)
</li>
<li>
Functions <code>table.foreach</code> and <code>table.foreachi</code> are deprecated.
You can use a for loop with <code>pairs</code> or <code>ipairs</code> instead.
</li>
<li>
There were substantial changes in function <a href="#pdf-require"><code>require</code></a> due to
the new module system.
However, the new behavior is mostly compatible with the old,
but <code>require</code> gets the path from <a href="#pdf-package.path"><code>package.path</code></a> instead
of from <code>LUA_PATH</code>.
</li>
<li>
Function <a href="#pdf-collectgarbage"><code>collectgarbage</code></a> has different arguments.
Function <code>gcinfo</code> is deprecated;
use <code>collectgarbage("count")</code> instead.
</li>
</ul>
<h2>7.3 - <a name="7.3">Changes in the API</a></h2>
<ul>
<li>
The <code>luaopen_*</code> functions (to open libraries)
cannot be called directly,
like a regular C function.
They must be called through Lua,
like a Lua function.
</li>
<li>
Function <code>lua_open</code> was replaced by <a href="#lua_newstate"><code>lua_newstate</code></a> to
allow the user to set a memory-allocation function.
You can use <a href="#luaL_newstate"><code>luaL_newstate</code></a> from the standard library to
create a state with a standard allocation function
(based on <code>realloc</code>).
</li>
<li>
Functions <code>luaL_getn</code> and <code>luaL_setn</code>
(from the auxiliary library) are deprecated.
Use <a href="#lua_objlen"><code>lua_objlen</code></a> instead of <code>luaL_getn</code>
and nothing instead of <code>luaL_setn</code>.
</li>
<li>
Function <code>luaL_openlib</code> was replaced by <a href="#luaL_register"><code>luaL_register</code></a>.
</li>
<li>
Function <code>luaL_checkudata</code> now throws an error when the given value
is not a userdata of the expected type.
(In Lua 5.0 it returned <code>NULL</code>.)
</li>
</ul>
<h1>8 - <a name="8">The Complete Syntax of Lua</a></h1>
<p>
Here is the complete syntax of Lua in extended BNF.
(It does not describe operator precedences.)
<pre>
chunk ::= {stat [`<b>;</b>´]} [laststat [`<b>;</b>´]]
block ::= chunk
stat ::= varlist `<b>=</b>´ explist |
functioncall |
<b>do</b> block <b>end</b> |
<b>while</b> exp <b>do</b> block <b>end</b> |
<b>repeat</b> block <b>until</b> exp |
<b>if</b> exp <b>then</b> block {<b>elseif</b> exp <b>then</b> block} [<b>else</b> block] <b>end</b> |
<b>for</b> Name `<b>=</b>´ exp `<b>,</b>´ exp [`<b>,</b>´ exp] <b>do</b> block <b>end</b> |
<b>for</b> namelist <b>in</b> explist <b>do</b> block <b>end</b> |
<b>function</b> funcname funcbody |
<b>local</b> <b>function</b> Name funcbody |
<b>local</b> namelist [`<b>=</b>´ explist]
laststat ::= <b>return</b> [explist] | <b>break</b>
funcname ::= Name {`<b>.</b>´ Name} [`<b>:</b>´ Name]
varlist ::= var {`<b>,</b>´ var}
var ::= Name | prefixexp `<b>[</b>´ exp `<b>]</b>´ | prefixexp `<b>.</b>´ Name
namelist ::= Name {`<b>,</b>´ Name}
explist ::= {exp `<b>,</b>´} exp
exp ::= <b>nil</b> | <b>false</b> | <b>true</b> | Number | String | `<b>...</b>´ | function |
prefixexp | tableconstructor | exp binop exp | unop exp
prefixexp ::= var | functioncall | `<b>(</b>´ exp `<b>)</b>´
functioncall ::= prefixexp args | prefixexp `<b>:</b>´ Name args
args ::= `<b>(</b>´ [explist] `<b>)</b>´ | tableconstructor | String
function ::= <b>function</b> funcbody
funcbody ::= `<b>(</b>´ [parlist] `<b>)</b>´ block <b>end</b>
parlist ::= namelist [`<b>,</b>´ `<b>...</b>´] | `<b>...</b>´
tableconstructor ::= `<b>{</b>´ [fieldlist] `<b>}</b>´
fieldlist ::= field {fieldsep field} [fieldsep]
field ::= `<b>[</b>´ exp `<b>]</b>´ `<b>=</b>´ exp | Name `<b>=</b>´ exp | exp
fieldsep ::= `<b>,</b>´ | `<b>;</b>´
binop ::= `<b>+</b>´ | `<b>-</b>´ | `<b>*</b>´ | `<b>/</b>´ | `<b>^</b>´ | `<b>%</b>´ | `<b>..</b>´ |
`<b><</b>´ | `<b><=</b>´ | `<b>></b>´ | `<b>>=</b>´ | `<b>==</b>´ | `<b>~=</b>´ |
<b>and</b> | <b>or</b>
unop ::= `<b>-</b>´ | <b>not</b> | `<b>#</b>´
</pre>
<p>
<HR>
<SMALL>
Last update:
Mon Aug 18 13:25:46 BRT 2008
</SMALL>
<!--
Last change: revised for Lua 5.1.4
-->
</body></html>
|