aboutsummaryrefslogtreecommitdiffstatshomepage
path: root/LuaSL/testLua/yueliang-0.4.1/orig-5.1.3/lopcodes.lua
blob: e7dbbe8051069cdb5392b874eebc9050192a9b91 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
--[[--------------------------------------------------------------------

  lopcodes.lua
  Lua 5 virtual machine opcodes in Lua
  This file is part of Yueliang.

  Copyright (c) 2006 Kein-Hong Man <khman@users.sf.net>
  The COPYRIGHT file describes the conditions
  under which this software may be distributed.

  See the ChangeLog for more information.

----------------------------------------------------------------------]]

--[[--------------------------------------------------------------------
-- Notes:
-- * an Instruction is a table with OP, A, B, C, Bx elements; this
--   makes the code easy to follow and should allow instruction handling
--   to work with doubles and ints
-- * WARNING luaP:Instruction outputs instructions encoded in little-
--   endian form and field size and positions are hard-coded
--
-- Not implemented:
-- *
--
-- Added:
-- * luaP:CREATE_Inst(c): create an inst from a number (for OP_SETLIST)
-- * luaP:Instruction(i): convert field elements to a 4-char string
-- * luaP:DecodeInst(x): convert 4-char string into field elements
--
-- Changed in 5.1.x:
-- * POS_OP added, instruction field positions changed
-- * some symbol names may have changed, e.g. LUAI_BITSINT
-- * new operators for RK indices: BITRK, ISK(x), INDEXK(r), RKASK(x)
-- * OP_MOD, OP_LEN is new
-- * OP_TEST is now OP_TESTSET, OP_TEST is new
-- * OP_FORLOOP, OP_TFORLOOP adjusted, OP_FORPREP is new
-- * OP_TFORPREP deleted
-- * OP_SETLIST and OP_SETLISTO merged and extended
-- * OP_VARARG is new
-- * many changes to implementation of OpMode data
----------------------------------------------------------------------]]

luaP = {}

--[[
===========================================================================
  We assume that instructions are unsigned numbers.
  All instructions have an opcode in the first 6 bits.
  Instructions can have the following fields:
        'A' : 8 bits
        'B' : 9 bits
        'C' : 9 bits
        'Bx' : 18 bits ('B' and 'C' together)
        'sBx' : signed Bx

  A signed argument is represented in excess K; that is, the number
  value is the unsigned value minus K. K is exactly the maximum value
  for that argument (so that -max is represented by 0, and +max is
  represented by 2*max), which is half the maximum for the corresponding
  unsigned argument.
===========================================================================
--]]

luaP.OpMode = { iABC = 0, iABx = 1, iAsBx = 2 }  -- basic instruction format

------------------------------------------------------------------------
-- size and position of opcode arguments.
-- * WARNING size and position is hard-coded elsewhere in this script
------------------------------------------------------------------------
luaP.SIZE_C  = 9
luaP.SIZE_B  = 9
luaP.SIZE_Bx = luaP.SIZE_C + luaP.SIZE_B
luaP.SIZE_A  = 8

luaP.SIZE_OP = 6

luaP.POS_OP = 0
luaP.POS_A  = luaP.POS_OP + luaP.SIZE_OP
luaP.POS_C  = luaP.POS_A + luaP.SIZE_A
luaP.POS_B  = luaP.POS_C + luaP.SIZE_C
luaP.POS_Bx = luaP.POS_C

------------------------------------------------------------------------
-- limits for opcode arguments.
-- we use (signed) int to manipulate most arguments,
-- so they must fit in LUAI_BITSINT-1 bits (-1 for sign)
------------------------------------------------------------------------
-- removed "#if SIZE_Bx < BITS_INT-1" test, assume this script is
-- running on a Lua VM with double or int as LUA_NUMBER

luaP.MAXARG_Bx  = math.ldexp(1, luaP.SIZE_Bx) - 1
luaP.MAXARG_sBx = math.floor(luaP.MAXARG_Bx / 2)  -- 'sBx' is signed

luaP.MAXARG_A = math.ldexp(1, luaP.SIZE_A) - 1
luaP.MAXARG_B = math.ldexp(1, luaP.SIZE_B) - 1
luaP.MAXARG_C = math.ldexp(1, luaP.SIZE_C) - 1

-- creates a mask with 'n' 1 bits at position 'p'
-- MASK1(n,p) deleted, not required
-- creates a mask with 'n' 0 bits at position 'p'
-- MASK0(n,p) deleted, not required

--[[--------------------------------------------------------------------
  Visual representation for reference:

   31    |    |     |            0      bit position
    +-----+-----+-----+----------+
    |  B  |  C  |  A  |  Opcode  |      iABC format
    +-----+-----+-----+----------+
    -  9  -  9  -  8  -    6     -      field sizes
    +-----+-----+-----+----------+
    |   [s]Bx   |  A  |  Opcode  |      iABx | iAsBx format
    +-----+-----+-----+----------+

----------------------------------------------------------------------]]

------------------------------------------------------------------------
-- the following macros help to manipulate instructions
-- * changed to a table object representation, very clean compared to
--   the [nightmare] alternatives of using a number or a string
-- * Bx is a separate element from B and C, since there is never a need
--   to split Bx in the parser or code generator
------------------------------------------------------------------------

-- these accept or return opcodes in the form of string names
function luaP:GET_OPCODE(i) return self.ROpCode[i.OP] end
function luaP:SET_OPCODE(i, o) i.OP = self.OpCode[o] end

function luaP:GETARG_A(i) return i.A end
function luaP:SETARG_A(i, u) i.A = u end

function luaP:GETARG_B(i) return i.B end
function luaP:SETARG_B(i, b) i.B = b end

function luaP:GETARG_C(i) return i.C end
function luaP:SETARG_C(i, b) i.C = b end

function luaP:GETARG_Bx(i) return i.Bx end
function luaP:SETARG_Bx(i, b) i.Bx = b end

function luaP:GETARG_sBx(i) return i.Bx - self.MAXARG_sBx end
function luaP:SETARG_sBx(i, b) i.Bx = b + self.MAXARG_sBx end

function luaP:CREATE_ABC(o,a,b,c)
  return {OP = self.OpCode[o], A = a, B = b, C = c}
end

function luaP:CREATE_ABx(o,a,bc)
  return {OP = self.OpCode[o], A = a, Bx = bc}
end

------------------------------------------------------------------------
-- create an instruction from a number (for OP_SETLIST)
------------------------------------------------------------------------
function luaP:CREATE_Inst(c)
  local o = c % 64
  c = (c - o) / 64
  local a = c % 256
  c = (c - a) / 256
  return self:CREATE_ABx(o, a, c)
end

------------------------------------------------------------------------
-- returns a 4-char string little-endian encoded form of an instruction
------------------------------------------------------------------------
function luaP:Instruction(i)
  if i.Bx then
    -- change to OP/A/B/C format
    i.C = i.Bx % 512
    i.B = (i.Bx - i.C) / 512
  end
  local I = i.A * 64 + i.OP
  local c0 = I % 256
  I = i.C * 64 + (I - c0) / 256  -- 6 bits of A left
  local c1 = I % 256
  I = i.B * 128 + (I - c1) / 256  -- 7 bits of C left
  local c2 = I % 256
  local c3 = (I - c2) / 256
  return string.char(c0, c1, c2, c3)
end

------------------------------------------------------------------------
-- decodes a 4-char little-endian string into an instruction struct
------------------------------------------------------------------------
function luaP:DecodeInst(x)
  local byte = string.byte
  local i = {}
  local I = byte(x, 1)
  local op = I % 64
  i.OP = op
  I = byte(x, 2) * 4 + (I - op) / 64  -- 2 bits of c0 left
  local a = I % 256
  i.A = a
  I = byte(x, 3) * 4 + (I - a) / 256  -- 2 bits of c1 left
  local c = I % 512
  i.C = c
  i.B = byte(x, 4) * 2 + (I - c) / 512 -- 1 bits of c2 left
  local opmode = self.OpMode[tonumber(string.sub(self.opmodes[op + 1], 7, 7))]
  if opmode ~= "iABC" then
    i.Bx = i.B * 512 + i.C
  end
  return i
end

------------------------------------------------------------------------
-- Macros to operate RK indices
-- * these use arithmetic instead of bit ops
------------------------------------------------------------------------

-- this bit 1 means constant (0 means register)
luaP.BITRK = math.ldexp(1, luaP.SIZE_B - 1)

-- test whether value is a constant
function luaP:ISK(x) return x >= self.BITRK end

-- gets the index of the constant
function luaP:INDEXK(r) return x - self.BITRK end

luaP.MAXINDEXRK = luaP.BITRK - 1

-- code a constant index as a RK value
function luaP:RKASK(x) return x + self.BITRK end

------------------------------------------------------------------------
-- invalid register that fits in 8 bits
------------------------------------------------------------------------
luaP.NO_REG = luaP.MAXARG_A

------------------------------------------------------------------------
-- R(x) - register
-- Kst(x) - constant (in constant table)
-- RK(x) == if ISK(x) then Kst(INDEXK(x)) else R(x)
------------------------------------------------------------------------

------------------------------------------------------------------------
-- grep "ORDER OP" if you change these enums
------------------------------------------------------------------------

--[[--------------------------------------------------------------------
Lua virtual machine opcodes (enum OpCode):
------------------------------------------------------------------------
name          args    description
------------------------------------------------------------------------
OP_MOVE       A B     R(A) := R(B)
OP_LOADK      A Bx    R(A) := Kst(Bx)
OP_LOADBOOL   A B C   R(A) := (Bool)B; if (C) pc++
OP_LOADNIL    A B     R(A) := ... := R(B) := nil
OP_GETUPVAL   A B     R(A) := UpValue[B]
OP_GETGLOBAL  A Bx    R(A) := Gbl[Kst(Bx)]
OP_GETTABLE   A B C   R(A) := R(B)[RK(C)]
OP_SETGLOBAL  A Bx    Gbl[Kst(Bx)] := R(A)
OP_SETUPVAL   A B     UpValue[B] := R(A)
OP_SETTABLE   A B C   R(A)[RK(B)] := RK(C)
OP_NEWTABLE   A B C   R(A) := {} (size = B,C)
OP_SELF       A B C   R(A+1) := R(B); R(A) := R(B)[RK(C)]
OP_ADD        A B C   R(A) := RK(B) + RK(C)
OP_SUB        A B C   R(A) := RK(B) - RK(C)
OP_MUL        A B C   R(A) := RK(B) * RK(C)
OP_DIV        A B C   R(A) := RK(B) / RK(C)
OP_MOD        A B C   R(A) := RK(B) % RK(C)
OP_POW        A B C   R(A) := RK(B) ^ RK(C)
OP_UNM        A B     R(A) := -R(B)
OP_NOT        A B     R(A) := not R(B)
OP_LEN        A B     R(A) := length of R(B)
OP_CONCAT     A B C   R(A) := R(B).. ... ..R(C)
OP_JMP        sBx     pc+=sBx
OP_EQ         A B C   if ((RK(B) == RK(C)) ~= A) then pc++
OP_LT         A B C   if ((RK(B) <  RK(C)) ~= A) then pc++
OP_LE         A B C   if ((RK(B) <= RK(C)) ~= A) then pc++
OP_TEST       A C     if not (R(A) <=> C) then pc++
OP_TESTSET    A B C   if (R(B) <=> C) then R(A) := R(B) else pc++
OP_CALL       A B C   R(A), ... ,R(A+C-2) := R(A)(R(A+1), ... ,R(A+B-1))
OP_TAILCALL   A B C   return R(A)(R(A+1), ... ,R(A+B-1))
OP_RETURN     A B     return R(A), ... ,R(A+B-2)  (see note)
OP_FORLOOP    A sBx   R(A)+=R(A+2);
                      if R(A) <?= R(A+1) then { pc+=sBx; R(A+3)=R(A) }
OP_FORPREP    A sBx   R(A)-=R(A+2); pc+=sBx
OP_TFORLOOP   A C     R(A+3), ... ,R(A+2+C) := R(A)(R(A+1), R(A+2));
                      if R(A+3) ~= nil then R(A+2)=R(A+3) else pc++
OP_SETLIST    A B C   R(A)[(C-1)*FPF+i] := R(A+i), 1 <= i <= B
OP_CLOSE      A       close all variables in the stack up to (>=) R(A)
OP_CLOSURE    A Bx    R(A) := closure(KPROTO[Bx], R(A), ... ,R(A+n))
OP_VARARG     A B     R(A), R(A+1), ..., R(A+B-1) = vararg
----------------------------------------------------------------------]]

luaP.opnames = {}  -- opcode names
luaP.OpCode = {}   -- lookup name -> number
luaP.ROpCode = {}  -- lookup number -> name

------------------------------------------------------------------------
-- ORDER OP
------------------------------------------------------------------------
local i = 0
for v in string.gmatch([[
MOVE LOADK LOADBOOL LOADNIL GETUPVAL
GETGLOBAL GETTABLE SETGLOBAL SETUPVAL SETTABLE
NEWTABLE SELF ADD SUB MUL
DIV MOD POW UNM NOT
LEN CONCAT JMP EQ LT
LE TEST TESTSET CALL TAILCALL
RETURN FORLOOP FORPREP TFORLOOP SETLIST
CLOSE CLOSURE VARARG
]], "%S+") do
  local n = "OP_"..v
  luaP.opnames[i] = v
  luaP.OpCode[n] = i
  luaP.ROpCode[i] = n
  i = i + 1
end
luaP.NUM_OPCODES = i

--[[
===========================================================================
  Notes:
  (*) In OP_CALL, if (B == 0) then B = top. C is the number of returns - 1,
      and can be 0: OP_CALL then sets 'top' to last_result+1, so
      next open instruction (OP_CALL, OP_RETURN, OP_SETLIST) may use 'top'.
  (*) In OP_VARARG, if (B == 0) then use actual number of varargs and
      set top (like in OP_CALL with C == 0).
  (*) In OP_RETURN, if (B == 0) then return up to 'top'
  (*) In OP_SETLIST, if (B == 0) then B = 'top';
      if (C == 0) then next 'instruction' is real C
  (*) For comparisons, A specifies what condition the test should accept
      (true or false).
  (*) All 'skips' (pc++) assume that next instruction is a jump
===========================================================================
--]]

--[[--------------------------------------------------------------------
  masks for instruction properties. The format is:
  bits 0-1: op mode
  bits 2-3: C arg mode
  bits 4-5: B arg mode
  bit 6: instruction set register A
  bit 7: operator is a test

  for OpArgMask:
  OpArgN - argument is not used
  OpArgU - argument is used
  OpArgR - argument is a register or a jump offset
  OpArgK - argument is a constant or register/constant
----------------------------------------------------------------------]]

-- was enum OpArgMask
luaP.OpArgMask = { OpArgN = 0, OpArgU = 1, OpArgR = 2, OpArgK = 3 }

------------------------------------------------------------------------
-- e.g. to compare with symbols, luaP:getOpMode(...) == luaP.OpCode.iABC
-- * accepts opcode parameter as strings, e.g. "OP_MOVE"
------------------------------------------------------------------------

function luaP:getOpMode(m)
  return self.opmodes[self.OpCode[m]] % 4
end

function luaP:getBMode(m)
  return math.floor(self.opmodes[self.OpCode[m]] / 16) % 4
end

function luaP:getCMode(m)
  return math.floor(self.opmodes[self.OpCode[m]] / 4) % 4
end

function luaP:testAMode(m)
  return math.floor(self.opmodes[self.OpCode[m]] / 64) % 2
end

function luaP:testTMode(m)
  return math.floor(self.opmodes[self.OpCode[m]] / 128)
end

-- luaP_opnames[] is set above, as the luaP.opnames table

-- number of list items to accumulate before a SETLIST instruction
luaP.LFIELDS_PER_FLUSH = 50

------------------------------------------------------------------------
-- build instruction properties array
-- * deliberately coded to look like the C equivalent
------------------------------------------------------------------------
local function opmode(t, a, b, c, m)
  local luaP = luaP
  return t * 128 + a * 64 +
         luaP.OpArgMask[b] * 16 + luaP.OpArgMask[c] * 4 + luaP.OpMode[m]
end

-- ORDER OP
luaP.opmodes = {
-- T A B C mode opcode
  opmode(0, 1, "OpArgK", "OpArgN", "iABx"),     -- OP_LOADK
  opmode(0, 1, "OpArgU", "OpArgU", "iABC"),     -- OP_LOADBOOL
  opmode(0, 1, "OpArgR", "OpArgN", "iABC"),     -- OP_LOADNIL
  opmode(0, 1, "OpArgU", "OpArgN", "iABC"),     -- OP_GETUPVAL
  opmode(0, 1, "OpArgK", "OpArgN", "iABx"),     -- OP_GETGLOBAL
  opmode(0, 1, "OpArgR", "OpArgK", "iABC"),     -- OP_GETTABLE
  opmode(0, 0, "OpArgK", "OpArgN", "iABx"),     -- OP_SETGLOBAL
  opmode(0, 0, "OpArgU", "OpArgN", "iABC"),     -- OP_SETUPVAL
  opmode(0, 0, "OpArgK", "OpArgK", "iABC"),     -- OP_SETTABLE
  opmode(0, 1, "OpArgU", "OpArgU", "iABC"),     -- OP_NEWTABLE
  opmode(0, 1, "OpArgR", "OpArgK", "iABC"),     -- OP_SELF
  opmode(0, 1, "OpArgK", "OpArgK", "iABC"),     -- OP_ADD
  opmode(0, 1, "OpArgK", "OpArgK", "iABC"),     -- OP_SUB
  opmode(0, 1, "OpArgK", "OpArgK", "iABC"),     -- OP_MUL
  opmode(0, 1, "OpArgK", "OpArgK", "iABC"),     -- OP_DIV
  opmode(0, 1, "OpArgK", "OpArgK", "iABC"),     -- OP_MOD
  opmode(0, 1, "OpArgK", "OpArgK", "iABC"),     -- OP_POW
  opmode(0, 1, "OpArgR", "OpArgN", "iABC"),     -- OP_UNM
  opmode(0, 1, "OpArgR", "OpArgN", "iABC"),     -- OP_NOT
  opmode(0, 1, "OpArgR", "OpArgN", "iABC"),     -- OP_LEN
  opmode(0, 1, "OpArgR", "OpArgR", "iABC"),     -- OP_CONCAT
  opmode(0, 0, "OpArgR", "OpArgN", "iAsBx"),    -- OP_JMP
  opmode(1, 0, "OpArgK", "OpArgK", "iABC"),     -- OP_EQ
  opmode(1, 0, "OpArgK", "OpArgK", "iABC"),     -- OP_LT
  opmode(1, 0, "OpArgK", "OpArgK", "iABC"),     -- OP_LE
  opmode(1, 1, "OpArgR", "OpArgU", "iABC"),     -- OP_TEST
  opmode(1, 1, "OpArgR", "OpArgU", "iABC"),     -- OP_TESTSET
  opmode(0, 1, "OpArgU", "OpArgU", "iABC"),     -- OP_CALL
  opmode(0, 1, "OpArgU", "OpArgU", "iABC"),     -- OP_TAILCALL
  opmode(0, 0, "OpArgU", "OpArgN", "iABC"),     -- OP_RETURN
  opmode(0, 1, "OpArgR", "OpArgN", "iAsBx"),    -- OP_FORLOOP
  opmode(0, 1, "OpArgR", "OpArgN", "iAsBx"),    -- OP_FORPREP
  opmode(1, 0, "OpArgN", "OpArgU", "iABC"),     -- OP_TFORLOOP
  opmode(0, 0, "OpArgU", "OpArgU", "iABC"),     -- OP_SETLIST
  opmode(0, 0, "OpArgN", "OpArgN", "iABC"),     -- OP_CLOSE
  opmode(0, 1, "OpArgU", "OpArgN", "iABx"),     -- OP_CLOSURE
  opmode(0, 1, "OpArgU", "OpArgN", "iABC"),     -- OP_VARARG
}
-- an awkward way to set a zero-indexed table...
luaP.opmodes[0] =
  opmode(0, 1, "OpArgR", "OpArgN", "iABC")      -- OP_MOVE