
Exploring Lua for Concurrent Programming
Alexandre Skyrme1, Noemi Rodriguez1,2, Roberto Ierusalimschy1

1Departamento de Informática
Pontifı́cia Universidade Católica do Rio de Janeiro (PUC-Rio)

Rua Marquês de São Vicente, 225 – CEP 22.451-900 – Rio de Janeiro – RJ – Brazil

2Rede Nacional de Ensino e Pesquisa (RNP)
Rua Lauro Müller, 116 sala 3902 – CEP 22.290-906 – Rio de Janeiro – RJ – Brazil

{askyrme,noemi,roberto}@inf.puc-rio.br

Abstract. The popularization of multi-core processors and of technologies such
as hyper-threading demonstrates a fundamental change in the way processors
have been evolving and also increases interest in concurrent programming, par-
ticularly as a means to improve software performance. However, concurrent
programming is still considered complex, mostly due to difficulties in using the
available programming models, which have been subject to recurring criticism.
The increased interest in concurrency and the lack of proper models to support it
stimulates the development of proposals aimed at providing alternative models
for concurrent programming. In this paper, we explore some of Lua’s facilities
to devise such a model, based on user threads and message passing. We also
demonstrate why Lua was particularly well suited for this objective, describe
the main characteristics of our model and present a library developed to imple-
ment it, along with results of a performance evaluation.

1. Introduction
Regardless of its growing importance, concurrent programming is still mostly based on
dated models. Constructions like semaphores [Dijkstra 1983], conditional critical re-
gions [Hoare 1972], guards [Dijkstra 1975], and monitors [Hansen 1974, Hoare 1973]
were all originally designed for operating systems and are admittedly complex for higher-
level programming. Moreover, they do not scale well for massive concurrency. This sce-
nario has stimulated the proposal of alternative models for concurrent programming, such
as Erlang [Armstrong 1996], Polyphonic C# [Benton et al. 2002], Sequential Object Mon-
itors [Caromel et al. 2004], and the Concurrency and Coordination Runtime [Chrysan-
thakopoulos and Singh 2005].

Since 2003 the Lua programming language [Ierusalimschy et al. 1996, Ierusal-
imschy et al. 2006, Ierusalimschy et al. 2007] features coroutines, which enables col-
laborative multithreading. However, a common criticism for coroutines is that they can-
not explore hardware parallelism, such as provided by multi-core processors. In 2006,
Ierusalimschy [Ierusalimschy 2006] proposed the use of multiple, independent states in
Lua to implement Lua processes, based on some form of message passing. In this paper
we advance that proposal, building a complete library for concurrent programming in Lua
based on message passing over channels. As we will see, the resulting library showed en-
couraging performance results even when running hundreds of thousands of simultaneous
processes.

The rest of this paper is organized as follows. In section 2 we point out some of
the downsides of multithreading and present the devised model for concurrent program-
ming in Lua. In section 3 we describe how we implemented this model and in Section 4
we present some results of a performance evaluation of the implementation. Finally, in
Section 5, we draw some conclusions.

2. Concurrent Programming in Lua
Programming with preemptive multithreading and shared memory demands synchroniza-
tion constructions to ensure mutual exclusion and conditional synchronization [Andrews
and Schneider 1983]. Unfortunately, the synchronization burden, the difficulty to debug
code, and the lack of determinism during execution makes development with preemptive
multithreading and shared memory admittedly complex [Lee 2006].

Moreover, as argued by Ousterhout [Ousterhout 1996], the criticism to multi-
threading is not limited to development complexity. It is often difficult to obtain good
performance when using preemptive multithreading with shared memory. A too coarse
locking reduces the opportunities for concurrency, while a fine-grained locking may add
too much overhead to the program. Due to these difficulties, many standard libraries
are not thread-safe, that is, cannot ensure proper behavior of their functions during si-
multaneous execution by multiple threads, hampering software from exploring this kind
of multithreading. Problems with performance are greatly increased when scaling up to
massive multithreading.

These issues have encouraged the development of alternative models for concur-
rent programming. In this work we explore a model based on execution threads with no
shared memory, which use message passing for synchronization and communication. We
implemented this concurrency model for Lua through a library called luaproc. Next, we
describe the model details and the API provided by this library.

Because they have independent resources, we call each thread in the library a Lua
process. We create Lua processes through calls to the luaproc.newproc function. As
user threads, Lua processes are entities scheduled exclusively through a scheduler which
runs in user space, without direct relation to operating system processes or other kernel
scheduled entities.

Communication between Lua processes occurs exclusively through message pass-
ing. On the one hand, communication with message passing can be slower when com-
pared to shared memory. On the other hand, the lack of shared memory avoids the perfor-
mance and complexity penalties associated to shared-memory synchronization primitives.
Besides, programs can use the same communication model for processes within the same
machine and for processes in a distributed environment.

As their own names imply, the luaproc.send function sends messages and the
luaproc.receive function receives messages. Message addressing is based on chan-
nels. Channels must be explicitly created by the luaproc.newchannel function and
destroyed by the luaproc.delchannel function. A channel is an entity on its own,
without any direct relation to Lua processes. Each channel is named by a string, which
must be specified as a parameter to the luaproc.newchannel function. Each process
may send to and receive from any channel, as long as the process knows the channel
name. Thus, it suffices to know a channel name in order to use it.

Each message carries a tuple of atomic Lua values: strings, number, or booleans.
More complex types must be encoded in some form. For instance, it is easy in Lua to se-
rialize data [Ierusalimschy 2006], that is to convert it into a stream of bytes or characters,
in order to save it in a file, send it through a network connection or, in this case, send it in
a message. Structured values can easily be encoded as a piece of Lua code (as a string)
that, when executed, reconstructs that value in the receiver.

The luaproc.send operation is synchronous: it returns only after another Lua
process has received its message on the targeted channel or if the channel does not exist.
Otherwise the sending Lua process is blocked until one of these two conditions happen.

The luaproc.receive function, on the other hand, can be either synchronous
or asynchronous, depending on a parameter. A synchronous receive behaves similarly to
a synchronous send: it only returns after matching with a send operation on that channel,
or if the channel does not exist. The asynchronous receive operation, in contrast, always
returns immediately; its result indicates whether it got any message.

The reason we opted for blocking on send operations is that this provides a sim-
pler, more deterministic, programming model. When a call to luaproc.receive re-
turns successfully, it is possible to assert that the message was received. Additionally,
non-blocking sends increase implementation complexity. Of course, the programmer can
still send messages asynchronously. One easy way to do that is to create a new Lua pro-
cess with the sole purpose of sending a message. Because the creation of Lua processes
is an asynchronous operation, control is immediately returned to the creator process and
any occasional communication block affects only the newly created Lua process. Another
option is to create a “queue process” to enqueue messages to a channel.

3. Model Implementation
In its standard configuration, Lua includes concurrent programming support through the
use of coroutines. Each coroutine represents a different execution flow in user space. Ex-
ecution control relies on a cooperative model and can be accomplished through calls to the
coroutine.yield and coroutine.resume functions. Calls to the coroutine.yield
function suspend the coroutine’s execution, while calls to the coroutine.resume re-
sume it. Once a coroutine starts running, it runs until it finishes or yields.

The API that Lua offers to C includes a function to create coroutines, as well as
functions to suspend and resume their execution. This facility, allied to the flexibility
offered by the API for interaction with the Lua interpreter from C code and to the disso-
ciation between coroutines and kernel threads, makes Lua particularly well suited for the
exploration of alternative models for concurrent programming.

Another important facility offered by Lua is the possibility of multiple Lua states.
The entire API that Lua offers to C operates over an abstract type called a Lua state.
By creating multiple Lua states, a C program can have multiple Lua programs that are
completely independent.

Our library, luaproc, uses Lua states and coroutines to implement Lua processes.
Each process runs as an exclusive coroutine inside its own Lua state. These processes are
run by workers, which are kernel threads implemented with the POSIX Threads library
(pthreads) [IEEE 1995]. There is no fixed relationship between workers and Lua pro-

cesses. Each worker repeatedly gets a process from the ready queue and runs it until it
finishes or blocks. Even though we use kernel threads, there is no memory shared among
Lua processes, because each has its own Lua state.

The following sub-sections present a more detailed description of our library’s
implementation and characteristics.

3.1. Lua Processes
Using Lua code from within C code is normally preceded by the creation of a Lua state,
represented in C by a variable of type lua State. A Lua state defines the interpreter’s state
and keeps track of functions and global variables, among other information related to the
interpreter.

Once Lua code has been loaded in a Lua state, it is possible to control its execution
through functions provided by the C API for Lua. Control takes place as if the Lua code
was executed as a coroutine. Therefore, even if the Lua code does not include explicit
calls to Lua’s standard coroutine handling functions, it is possible to suspend and resume
its execution through C functions. This feature is essential to allow control over Lua
processes execution.

Each Lua process is comprised by an independent Lua state, where the process
code is loaded during process creation. The independence between Lua states ensures the
lack of shared memory between Lua processes and helps to enforce message passing as a
means for interprocess communication. The remaining structure used to implement Lua
processes is compact and has few members other than the process Lua state. Among rel-
evant structure members are the process execution state (idle, ready, blocked or finished)
and the number of arguments that must be used when resuming its execution in case it
is blocked. No unique process identifier (PID) is included since there is no fixed relation
between workers and processes.

Even though the creation of a Lua state is a cheap operation, loading all standard
Lua libraries can take more than ten times the time required to create a state [Ierusalim-
schy 2006]. Thus, to reduce the cost of creating Lua processes, only the basic standard
library and our own library are automatically loaded into each new Lua process. The re-
maining standard libraries (io, os, table, string, math, and debug) are pre-registered and
can be loaded with a standard call to Lua’s require function.

Our library also offers a facility to recycle Lua processes, which is optionally
activated through a call to the luaproc.recycle function. Recycling consists in reusing
states from finished Lua processes to execute new processes. Instead of being destroyed
after finishing its execution, a state can be stored for reuse. Consequently, creation of
a Lua process can be done by simply loading new Lua code in a recycled state, thus
eliminating the costs of creating a new state and loading libraries.

3.2. Scheduler
The scheduler is automatically initialized when our concurrent programming library is
loaded. During its initialization, which occurs in the context of the operating system
thread responsible for executing the code that loads our library, a worker is created.

The scheduler manages a single ready queue (FIFO), which holds Lua processes
ready for execution. The scheduler itself is responsible for adding newly created Lua

processes to the end of the ready queue. Workers execute the Lua code associated with
each Lua process.

Workers are kernel threads managed with the POSIX Threads library (pthreads),
which perform the following cycle: it retrieves the first Lua process from the ready queue;
executes the Lua code associated with the process until it finishes, blocks or yields; and
takes appropriate measures depending on execution outcome. Creation and destruction of
workers in execution time is supported through the API functions luaproc.createworker
and luaproc.destroyworker.

If the execution of a Lua process ends because the Lua code related to the process
has finished normally, the worker closes the corresponding Lua state and destroys the
process. If, during the execution of a Lua process, a call is made to the standard Lua
function coroutine.yield, the worker simply reinserts the process at the end of the
ready queue. This suspends the process execution and allows other processes to execute,
which is the expected behavior of a yield. If the execution of a Lua process results in an
unexpected error, the worker prints an error message, closes the corresponding Lua state
and destroys the process.

Since there is only a single ready queue, all workers must get Lua processes from
the same queue. This implies that shared memory synchronization primitives must be
used to serialize access and manipulation of the queue. To that matter, conditional vari-
ables and mutual exclusion were used, as they are both supported by the POSIX Threads
library (pthreads).

3.3. Inter-process Communication

Lua uses a virtual stack to pass values to and from C. Each element in this stack represents
a Lua value. Calls from Lua to functions implemented in C use the virtual stack to pass
function arguments. Likewise, these C functions use the virtual stack to pass results back
to Lua. Therefore, passing messages in our library simply implies copying data from the
sender’s virtual stack to the receiver’s virtual stack.

3.4. Blocking Strategy

In our library, a Lua process can only have its execution blocked in two distinct situations:

1. when it calls the synchronous receive function with a channel where there are no
processes waiting to send, that is, when an attempt to receive a message occurs
without a previous corresponding attempt to send to the same channel;

2. when it calls the send function with a channel where there are no processes waiting
to receive, that is, when an attempt to send a message occurs without a previous
corresponding attempt to receive from the same channel.

When a Lua process blocks, the worker adds it to the corresponding channel’s
queue and gets another process from the ready queue in order to run it. A blocked Lua
process is unblocked only if there is a matching call on the same channel or if the channel
where it is blocked is destroyed. When such a matching call happens, the same worker
that is executing the process that made the call removes the blocked process from the
channel queue, copies message data between virtual stacks, and places the unblocked
process at the end of the ready queue.

To keep track of Lua processes that are blocked trying to communicate, each chan-
nel has two distinct queues (FIFO): one holds processes blocked when trying to send
messages to the channel and another holds processes blocked when trying to receive mes-
sages from the channel. At most one of these queues will not be empty at any given time,
otherwise the processes from each queue could match.

3.5. A Sample Application

In this section we present, in listing 1, the source code of a sample “hello world” applica-
tion developed with our library.

Listing 1. A simple ‘hello world” application with Lua processes.

-- load our concurrent programming library
require "luaproc"

-- create an additional worker
luaproc.createworker()

-- create a new lua process
luaproc.newproc([==[

-- create a new channel
luaproc.newchannel("achannel")
-- create a new lua process
luaproc.newproc([=[

-- send a message to the channel
luaproc.send("achannel", "hello world")

]=])
-- create a new lua process
luaproc.newproc([=[

-- receive a message from the channel
msg = luaproc.receive("achannel")
-- print the received message
print(msg)

]=])
]==])

-- wait until all lua processes
-- have finished before exiting
luaproc.exit()

As we can see, the program begins by loading our library with the standard Lua
require function. Then, it creates an additional worker and a main Lua process that
will hold the remaining of our application. This main Lua process creates a channel
and two additional Lua processes. While one of these processes sends a message on the
channel, the other one receives the message and then prints it. We ensure that our appli-
cation will not exit before all Lua processes have completed their execution by calling the
luaproc.exit function, which simply prevents workers from exiting while there are
unfinished Lua processes.

4. Performance Evaluation
In this section we describe some experiments we made to evaluate the performance of
luaproc. All tests, unless stated otherwise, were conducted on a computer running
the Linux operating system, with an AMD Athlon 64 X2 dual-core 3600+ processor with
3 GB of RAM. The chosen Linux distribution was Ubuntu 7.10 (Gutsy Gibbon), with stan-
dard kernel 2.6.22-14-generic #1 SMP and Native POSIX Threads library (NPTL) 2.6.1.
All tests used two workers in order to exploit both processor cores and stimulate paral-
lelism.

The tests ran on an unprivileged user account on the operating system. Each test
was executed at least three times and the results presented on this section correspond to
the values’ arithmetic mean. Execution times were measured with Linux’s Bourne Again
shell (bash) time command.

We also carried out some comparative tests to evaluate our library against Er-
lang [Armstrong 2007]. Despite syntax heterogeneity and implementation differences,
notably Erlang’s built-in support for most of the functionalities we implement through a
library, these tests represent an important benchmark. Moreover, further analysis of their
results could result in future improvements to our library.

Erlang offers three different execution modes: interpreted code (escript), com-
piled code with symmetric multiprocessing (SMP) support enabled (erl -smp), and
compiled code with SMP support disabled (erl). In all our tests there was just a slight
variation in execution time between compiled code with SMP support enabled and com-
piled code with SMP support disabled. In fact, our tests consistently showed slightly
worse (higher) execution times when SMP support was enabled. Furthermore, SMP sup-
port is disabled by default for compiled code and not supported for interpreted code. For
these reasons, we choose only to present times for interpreted code and compiled code
with SMP support disabled.

Further comparative tests were also carried out in order to evaluate our library
against a traditional kernel multithreading with shared memory model by using the POSIX
Threads library (pthreads) [Skyrme 2008]. We believe this comparison is not as interest-
ing as the one with Erlang, since the pthreads library does not include built-in message
passing primitives and is not known to offer scalability that allows for massive concur-
rency. Therefore, due to space constraints, we opted not to present them in this work.

4.1. Process Creation
In this simple test we measure execution time to create increasing number of Lua pro-
cesses. First, a main Lua process which will host the remainder of our application’s code
is created. Then, from within the main Lua process, the same number of Lua processes
and communication channels are created, as if each Lua process had its own channel. The
spawned Lua processes simply wait for a message from the main Lua process, which is
only sent after all of them have been spawned, and then finish their execution.

We reproduce a similar test with Erlang. Just as in the Lua processes test, a certain
number of Erlang processes are created and wait for a message, sent by a main process,
before finishing their execution. The main difference is that in Erlang there is no need (nor
support) to create communication channels, since messages are addressed using process
identifiers (PIDs).

 1

 2

 3

 4

 5

 6

 7

 8

 9

 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

E
xe

cu
tio

n
T

im
e

(s
)

Processes

Lua
Erlang compiled

Erlang interpreted

Figure 1. Execution times to create n processes in Lua and Erlang.

Figure 1 shows the total execution times for creating increasing quantities of Lua
processes, along with the total execution times for creating, both using interpreted code
and compiled code, Erlang processes. Erlang’s interpreter (escript) limits process cre-
ation to 30,000 processes, which explains why the corresponding line in the figure reaches
an upper bound at that point.

As we can observe in the figure, execution time increases almost linearly with the
number of processes, both in Lua and in Erlang.

4.2. Communication

Message passing is the intended way for Lua processes to communicate and synchronize,
therefore it is important to evaluate how it performs. In this test we sequentially send
and receive messages of different sizes and measure execution time. First, the message
contents are read from a file composed of copies of the same string separated by newlines.
Then, a main Lua process that will host the remainder of our application’s code is created.
Next, from within the main Lua process, a communication channel is created and a new
Lua process, whose sole purpose is to receive messages, is spawned. Finally, the main
Lua process sends the same message sequentially, 1,000 times, to the second Lua process.

We conduct a similar test using Erlang. Just as in the previous test, the main
difference between our Lua code and our Erlang code is the lack of need to create com-
munication channels in the later. Apart from that, Erlang code also differs slightly since
a few additional messages must be sent in order to inform the receiver process identifier
(PID) to the sender process and to ensure proper synchronization.

Figure 2 shows the total execution times for sending and receiving messages of
increasing sizes using our library and Erlang. Once again, we present both the results for
interpreted and compiled Erlang code.

As we can see in the figure, our library presents good communication perfor-
mance, with execution times below 0.1s to send messages with up to 10,000 bytes. Erlang,

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1 10 100 1000 10000

E
xe

cu
tio

n
T

im
e

(s
)

Message size (bytes)

Lua
Erlang compiled

Erlang interpreted

Figure 2. Execution times for sequentially sending 1,000 messages of increasing
sizes.

in turn, presents better performance when interpreted, rather than compiled. It presents
almost constant execution times when compiled, which suggests it relies on an O(1) op-
eration to perform message passing, such as copying a pointer that points to a shared
memory address that holds message data.

4.3. Parallelism

The use of multiple workers in multi-processed environments allows for parallel execution
of Lua processes. In this test we explore our library’s parallelization potential by imple-
menting a parallel string search application. We also implement a serial version of the
same application, using only standard Lua libraries, to evaluate if there is any significant
performance cost when our library is used.

The parallel version of the application is divided in three modules. The first mod-
ule is responsible for initializing the application: it creates workers and communication
channels, spawns a coordinator Lua process and several searcher Lua processes, and then
sends messages to the coordinator Lua process with the names of the file that holds the
patterns and the target to be searched.

The second module is responsible for coordinating job distribution and for cen-
tralizing results. It reads the patterns from a file, sends them to the searchers and then
starts to progressively distribute target file names to searchers. It also receives results
from searchers and notifies them when all target files have been searched.

The third module is the searcher, that is, it is responsible for searching target files
for patterns. Each searcher receives a single file name at a time and only sends back its
results to the coordinator after processing the whole file. The results sent are composed
by the lines of the target file that matched any of the patterns.

This test was exceptionally carried out on a computer with four AMD Opteron
dual-core 2.2 GHz processors, for a total of eight processor cores, and 32 GB of RAM. Its

 0

 2000

 4000

 6000

 8000

 10000

 12000

1 target file 5 target files 10 target files

E
xe

cu
tio

n
tim

e
(s

)

Serial version
Parallel version - 1 worker

Parallel version - 6 workers

Figure 3. Execution times for serial and parallel string search.

operating system was also Linux, but this time with the CentOS 5.1 distribution, standard
kernel 2.6.18-53.1.6.el5xen #1 SMP and Native POSIX Threads library (NPTL) 2.5.

Initially, six workers were used to run the parallel version of the application in
order to stimulate parallelism and reduce concurrency in the execution of one coordinator
and five searcher Lua processes. Next, still using the parallel version of the application,
just a single worker was used, in order to allow for a more balanced comparison with the
serial version. The pattern file used throughout the test was the same and it contained 25
lines, with one string per line. The target files were copies of a single file, which included
6,605,423 lines and 2,147,483,849 bytes (around 2 GB). Results are shown in figure 3.

The results indicate that exploitation of parallelism on multi-processed environ-
ments, as expected, can result in proportional reductions in execution time. As we can
observe, when using the serial version of the application or the parallel version with a
single worker (kernel thread) execution time increases almost linearly with the number of
target files. On the other hand, when the parallel version runs with six workers, execution
times for one or five target files is almost the same, which strongly suggests that while one
worker acted as the coordinator, the other five workers acted as searchers and processed
the five target files in parallel. Still regarding the parallel version with six workers, it is
worth noticing that, once again as expected, execution time increases linearly when the
number of target files increase from five to ten.

Finally, results also show an almost insignificant difference in execution times
between the serial version of the application, which uses only standard Lua libraries, and
the parallel version, which uses our library, when it is run with a single worker.

5. Conclusion

In this work we presented an alternative model for concurrent programming in Lua. The
model is characterized by using message passing, as opposed to shared memory, as the
only inter-process communication method. Its implementation uses kernel threads as

workers so that multiple processes can run in parallel.

The lack of shared memory eliminates the need to control access to data shared
among execution flows and critical regions, which simplifies development and reduces the
probability of inconsistencies which can result in data corruption and execution failures.
The predictability of blocked communication, in turn, facilitates debugging and increases
determinism of execution flows.

The Lua programming language, despite not being specifically developed for con-
current programming, demonstrated enough flexibility to allow satisfactory implementa-
tion of the presented model for concurrent programming. Additionally, it provided ade-
quate performance and scalability to our library, as can be observed through the results
presented in Section 4.

Although our library is intended to be used locally only, that is, in individual
computers, it is easy to extend it to support execution of Lua processes in a distributed
environment. We have already successfully developed and experienced with a very simple
client-server application that uses LuaSocket [Nehab 2007], an extension library that adds
network support to Lua, to allow for remote creation of Lua processes.

The use of the POSIX Threads library (pthreads) as a means to benefit from ker-
nel threads allowed for the exploitation of parallelism intermediated by the underlying
operating system. Nevertheless, paradoxically, it also resulted in a significant increase
in development complexity, mostly due to the need to handle typical obstacles related to
using preemptive multithreading with shared memory.

The difficulties we experienced while developing the library to implement the
presented model ratify criticism to preemptive multithreading with shared memory and
reinforce the necessity for alternative models for concurrent programming. The limita-
tions of preemptive multithreading with shared memory, in particular the complexity in
development, create difficulties even when it is used just as a building block to structure
alternative models.

This work does not exhaust the investigation of the presented model for concurrent
programming in Lua, nor the exploration of new alternatives for concurrent programming.
Our library could be further improved by new functionalities and it could be further evalu-
ated by development of more complex, or so-called “real–world”, applications combined
with a more extensive performance evaluation. In addition, the usability of our library,
which we intuitively believe to be better than other libraries, still lacks proper testing.
Nevertheless, the results presented in this work represent an important step towards al-
lowing other contributing efforts to be undertaken.

References

Andrews, G. R. and Schneider, F. B. (1983). Concepts and Notations for Concurrent
Programming. ACM Comput. Surv., 15(1):3–43.

Armstrong, J. (1996). Erlang — a Survey of the Language and its Industrial Applica-
tions. In INAP’96 — The 9th Exhibitions and Symposium on Industrial Applications
of Prolog, pages 16–18, Hino, Tokyo, Japan.

Armstrong, J. (2007). Programming Erlang. Pragmatic Bookshelf, City.

Benton, N., Cardelli, L., and Fournet, C. (2002). Modern Concurrency Abstractions for
C#. In ECOOP ’02: Proceedings of the 16th European Conference on Object-Oriented
Programming, pages 415–440, London, UK. Springer-Verlag.

Caromel, D., Mateu, L., and Tanter, E. (2004). Sequential Object Monitors. In Odersky,
M., editor, ECOOP 2004 - Object-Oriented Programming,18th European Conference,
volume 3086 of Lecture Notes in Computer Science, pages 316–340, Oslo, Norway.
Springer-Verlag.

Chrysanthakopoulos, G. and Singh, S. (2005). An Asynchronous Messaging Library for
C#. Electronic Article. Synchronization and Concurrency in Object-Oriented Lan-
guages (SCOOL), OOPSLA 2005 Workshop, San Diego, California, USA.

Dijkstra, E. W. (1975). Guarded commands, nondeterminacy and formal derivation of
programs. Commun. ACM, 18(8):453–457.

Dijkstra, E. W. (1983). The structure of “THE” - multiprogramming system. Commun.
ACM, 26(1):49–52.

Hansen, P. B. (1974). A Programming Methodology for Operating System Design. In
IFIP Congress, pages 394–397.

Hoare, C. A. R. (1972). Towards a theory of parallel programming. Operating System
Techniques, pages 61–71.

Hoare, C. A. R. (1973). Monitors: an operating system structuring concept. Technical
report, Stanford University, Stanford, CA, USA.

IEEE (1995). IEEE 1003.1c-1995: Information Technology — Portable Operating Sys-
tem Interface (POSIX) - System Application Program Interface (API) Amendment 2:
Threads Extension (C Language). IEEE Computer Society Press, 1109 Spring Street,
Suite 300, Silver Spring, MD 20910, USA.

Ierusalimschy, R. (2006). Programming in Lua. Lua.Org, Second edition.

Ierusalimschy, R., de Figueiredo, L. H., and Celes, W. (1996). Lua—an extensible exten-
sion language. Software: Practice and Experience, 26(6):635–652.

Ierusalimschy, R., de Figueiredo, L. H., and Celes, W. (2006). Lua Reference Manual 5.1.
Lua.Org.

Ierusalimschy, R., de Figueiredo, L. H., and Celes, W. (2007). The evolution of Lua.
In Third ACM SIGPLAN Conference on History of Programming Languages, pages
2–1–2–26, San Diego, CA.

Lee, E. A. (2006). The Problem with Threads. Technical Report UCB/EECS-2006-1,
EECS Department, University of California, Berkeley. The published version of this
paper is in IEEE Computer 39(5):33-42, May 2006.

Nehab, D. (2007). Luasocket: Network support for the Lua language. Website.
http://www.tecgraf.puc-rio.br/luasocket.

Ousterhout, J. (1996). Why Threads Are a Bad Idea (for most purposes). Presentation
given at the 1996 Usenix Annual Technical Conference, January.

Skyrme, A. (2008). An Alternative Model for Concurrent Programming in Lua. Master’s
thesis, Pontifical Catholic University of Rio de Janeiro (PUC–Rio).

