Irrlicht 3D Engine
vector3d.h
Go to the documentation of this file.
00001 // Copyright (C) 2002-2012 Nikolaus Gebhardt
00002 // This file is part of the "Irrlicht Engine".
00003 // For conditions of distribution and use, see copyright notice in irrlicht.h
00004 
00005 #ifndef __IRR_POINT_3D_H_INCLUDED__
00006 #define __IRR_POINT_3D_H_INCLUDED__
00007 
00008 #include "irrMath.h"
00009 
00010 namespace irr
00011 {
00012 namespace core
00013 {
00014 
00016 
00021     template <class T>
00022     class vector3d
00023     {
00024     public:
00026         vector3d() : X(0), Y(0), Z(0) {}
00028         vector3d(T nx, T ny, T nz) : X(nx), Y(ny), Z(nz) {}
00030         explicit vector3d(T n) : X(n), Y(n), Z(n) {}
00032         vector3d(const vector3d<T>& other) : X(other.X), Y(other.Y), Z(other.Z) {}
00033 
00034         // operators
00035 
00036         vector3d<T> operator-() const { return vector3d<T>(-X, -Y, -Z); }
00037 
00038         vector3d<T>& operator=(const vector3d<T>& other) { X = other.X; Y = other.Y; Z = other.Z; return *this; }
00039 
00040         vector3d<T> operator+(const vector3d<T>& other) const { return vector3d<T>(X + other.X, Y + other.Y, Z + other.Z); }
00041         vector3d<T>& operator+=(const vector3d<T>& other) { X+=other.X; Y+=other.Y; Z+=other.Z; return *this; }
00042         vector3d<T> operator+(const T val) const { return vector3d<T>(X + val, Y + val, Z + val); }
00043         vector3d<T>& operator+=(const T val) { X+=val; Y+=val; Z+=val; return *this; }
00044 
00045         vector3d<T> operator-(const vector3d<T>& other) const { return vector3d<T>(X - other.X, Y - other.Y, Z - other.Z); }
00046         vector3d<T>& operator-=(const vector3d<T>& other) { X-=other.X; Y-=other.Y; Z-=other.Z; return *this; }
00047         vector3d<T> operator-(const T val) const { return vector3d<T>(X - val, Y - val, Z - val); }
00048         vector3d<T>& operator-=(const T val) { X-=val; Y-=val; Z-=val; return *this; }
00049 
00050         vector3d<T> operator*(const vector3d<T>& other) const { return vector3d<T>(X * other.X, Y * other.Y, Z * other.Z); }
00051         vector3d<T>& operator*=(const vector3d<T>& other) { X*=other.X; Y*=other.Y; Z*=other.Z; return *this; }
00052         vector3d<T> operator*(const T v) const { return vector3d<T>(X * v, Y * v, Z * v); }
00053         vector3d<T>& operator*=(const T v) { X*=v; Y*=v; Z*=v; return *this; }
00054 
00055         vector3d<T> operator/(const vector3d<T>& other) const { return vector3d<T>(X / other.X, Y / other.Y, Z / other.Z); }
00056         vector3d<T>& operator/=(const vector3d<T>& other) { X/=other.X; Y/=other.Y; Z/=other.Z; return *this; }
00057         vector3d<T> operator/(const T v) const { T i=(T)1.0/v; return vector3d<T>(X * i, Y * i, Z * i); }
00058         vector3d<T>& operator/=(const T v) { T i=(T)1.0/v; X*=i; Y*=i; Z*=i; return *this; }
00059 
00061         bool operator<=(const vector3d<T>&other) const
00062         {
00063             return  (X<other.X || core::equals(X, other.X)) ||
00064                     (core::equals(X, other.X) && (Y<other.Y || core::equals(Y, other.Y))) ||
00065                     (core::equals(X, other.X) && core::equals(Y, other.Y) && (Z<other.Z || core::equals(Z, other.Z)));
00066         }
00067 
00069         bool operator>=(const vector3d<T>&other) const
00070         {
00071             return  (X>other.X || core::equals(X, other.X)) ||
00072                     (core::equals(X, other.X) && (Y>other.Y || core::equals(Y, other.Y))) ||
00073                     (core::equals(X, other.X) && core::equals(Y, other.Y) && (Z>other.Z || core::equals(Z, other.Z)));
00074         }
00075 
00077         bool operator<(const vector3d<T>&other) const
00078         {
00079             return  (X<other.X && !core::equals(X, other.X)) ||
00080                     (core::equals(X, other.X) && Y<other.Y && !core::equals(Y, other.Y)) ||
00081                     (core::equals(X, other.X) && core::equals(Y, other.Y) && Z<other.Z && !core::equals(Z, other.Z));
00082         }
00083 
00085         bool operator>(const vector3d<T>&other) const
00086         {
00087             return  (X>other.X && !core::equals(X, other.X)) ||
00088                     (core::equals(X, other.X) && Y>other.Y && !core::equals(Y, other.Y)) ||
00089                     (core::equals(X, other.X) && core::equals(Y, other.Y) && Z>other.Z && !core::equals(Z, other.Z));
00090         }
00091 
00093         bool operator==(const vector3d<T>& other) const
00094         {
00095             return this->equals(other);
00096         }
00097 
00098         bool operator!=(const vector3d<T>& other) const
00099         {
00100             return !this->equals(other);
00101         }
00102 
00103         // functions
00104 
00106         bool equals(const vector3d<T>& other, const T tolerance = (T)ROUNDING_ERROR_f32 ) const
00107         {
00108             return core::equals(X, other.X, tolerance) &&
00109                 core::equals(Y, other.Y, tolerance) &&
00110                 core::equals(Z, other.Z, tolerance);
00111         }
00112 
00113         vector3d<T>& set(const T nx, const T ny, const T nz) {X=nx; Y=ny; Z=nz; return *this;}
00114         vector3d<T>& set(const vector3d<T>& p) {X=p.X; Y=p.Y; Z=p.Z;return *this;}
00115 
00117         T getLength() const { return core::squareroot( X*X + Y*Y + Z*Z ); }
00118 
00120 
00122         T getLengthSQ() const { return X*X + Y*Y + Z*Z; }
00123 
00125         T dotProduct(const vector3d<T>& other) const
00126         {
00127             return X*other.X + Y*other.Y + Z*other.Z;
00128         }
00129 
00131 
00132         T getDistanceFrom(const vector3d<T>& other) const
00133         {
00134             return vector3d<T>(X - other.X, Y - other.Y, Z - other.Z).getLength();
00135         }
00136 
00138 
00139         T getDistanceFromSQ(const vector3d<T>& other) const
00140         {
00141             return vector3d<T>(X - other.X, Y - other.Y, Z - other.Z).getLengthSQ();
00142         }
00143 
00145 
00147         vector3d<T> crossProduct(const vector3d<T>& p) const
00148         {
00149             return vector3d<T>(Y * p.Z - Z * p.Y, Z * p.X - X * p.Z, X * p.Y - Y * p.X);
00150         }
00151 
00153 
00157         bool isBetweenPoints(const vector3d<T>& begin, const vector3d<T>& end) const
00158         {
00159             const T f = (end - begin).getLengthSQ();
00160             return getDistanceFromSQ(begin) <= f &&
00161                 getDistanceFromSQ(end) <= f;
00162         }
00163 
00165 
00168         vector3d<T>& normalize()
00169         {
00170             f64 length = X*X + Y*Y + Z*Z;
00171             if (length == 0 ) // this check isn't an optimization but prevents getting NAN in the sqrt.
00172                 return *this;
00173             length = core::reciprocal_squareroot(length);
00174 
00175             X = (T)(X * length);
00176             Y = (T)(Y * length);
00177             Z = (T)(Z * length);
00178             return *this;
00179         }
00180 
00182         vector3d<T>& setLength(T newlength)
00183         {
00184             normalize();
00185             return (*this *= newlength);
00186         }
00187 
00189         vector3d<T>& invert()
00190         {
00191             X *= -1;
00192             Y *= -1;
00193             Z *= -1;
00194             return *this;
00195         }
00196 
00198 
00200         void rotateXZBy(f64 degrees, const vector3d<T>& center=vector3d<T>())
00201         {
00202             degrees *= DEGTORAD64;
00203             f64 cs = cos(degrees);
00204             f64 sn = sin(degrees);
00205             X -= center.X;
00206             Z -= center.Z;
00207             set((T)(X*cs - Z*sn), Y, (T)(X*sn + Z*cs));
00208             X += center.X;
00209             Z += center.Z;
00210         }
00211 
00213 
00215         void rotateXYBy(f64 degrees, const vector3d<T>& center=vector3d<T>())
00216         {
00217             degrees *= DEGTORAD64;
00218             f64 cs = cos(degrees);
00219             f64 sn = sin(degrees);
00220             X -= center.X;
00221             Y -= center.Y;
00222             set((T)(X*cs - Y*sn), (T)(X*sn + Y*cs), Z);
00223             X += center.X;
00224             Y += center.Y;
00225         }
00226 
00228 
00230         void rotateYZBy(f64 degrees, const vector3d<T>& center=vector3d<T>())
00231         {
00232             degrees *= DEGTORAD64;
00233             f64 cs = cos(degrees);
00234             f64 sn = sin(degrees);
00235             Z -= center.Z;
00236             Y -= center.Y;
00237             set(X, (T)(Y*cs - Z*sn), (T)(Y*sn + Z*cs));
00238             Z += center.Z;
00239             Y += center.Y;
00240         }
00241 
00243 
00247         vector3d<T> getInterpolated(const vector3d<T>& other, f64 d) const
00248         {
00249             const f64 inv = 1.0 - d;
00250             return vector3d<T>((T)(other.X*inv + X*d), (T)(other.Y*inv + Y*d), (T)(other.Z*inv + Z*d));
00251         }
00252 
00254 
00259         vector3d<T> getInterpolated_quadratic(const vector3d<T>& v2, const vector3d<T>& v3, f64 d) const
00260         {
00261             // this*(1-d)*(1-d) + 2 * v2 * (1-d) + v3 * d * d;
00262             const f64 inv = (T) 1.0 - d;
00263             const f64 mul0 = inv * inv;
00264             const f64 mul1 = (T) 2.0 * d * inv;
00265             const f64 mul2 = d * d;
00266 
00267             return vector3d<T> ((T)(X * mul0 + v2.X * mul1 + v3.X * mul2),
00268                     (T)(Y * mul0 + v2.Y * mul1 + v3.Y * mul2),
00269                     (T)(Z * mul0 + v2.Z * mul1 + v3.Z * mul2));
00270         }
00271 
00273 
00278         vector3d<T>& interpolate(const vector3d<T>& a, const vector3d<T>& b, f64 d)
00279         {
00280             X = (T)((f64)b.X + ( ( a.X - b.X ) * d ));
00281             Y = (T)((f64)b.Y + ( ( a.Y - b.Y ) * d ));
00282             Z = (T)((f64)b.Z + ( ( a.Z - b.Z ) * d ));
00283             return *this;
00284         }
00285 
00286 
00288 
00301         vector3d<T> getHorizontalAngle() const
00302         {
00303             vector3d<T> angle;
00304 
00305             const f64 tmp = (atan2((f64)X, (f64)Z) * RADTODEG64);
00306             angle.Y = (T)tmp;
00307 
00308             if (angle.Y < 0)
00309                 angle.Y += 360;
00310             if (angle.Y >= 360)
00311                 angle.Y -= 360;
00312 
00313             const f64 z1 = core::squareroot(X*X + Z*Z);
00314 
00315             angle.X = (T)(atan2((f64)z1, (f64)Y) * RADTODEG64 - 90.0);
00316 
00317             if (angle.X < 0)
00318                 angle.X += 360;
00319             if (angle.X >= 360)
00320                 angle.X -= 360;
00321 
00322             return angle;
00323         }
00324 
00326 
00330         vector3d<T> getSphericalCoordinateAngles() const
00331         {
00332             vector3d<T> angle;
00333             const f64 length = X*X + Y*Y + Z*Z;
00334 
00335             if (length)
00336             {
00337                 if (X!=0)
00338                 {
00339                     angle.Y = (T)(atan2((f64)Z,(f64)X) * RADTODEG64);
00340                 }
00341                 else if (Z<0)
00342                     angle.Y=180;
00343 
00344                 angle.X = (T)(acos(Y * core::reciprocal_squareroot(length)) * RADTODEG64);
00345             }
00346             return angle;
00347         }
00348 
00350 
00357         vector3d<T> rotationToDirection(const vector3d<T> & forwards = vector3d<T>(0, 0, 1)) const
00358         {
00359             const f64 cr = cos( core::DEGTORAD64 * X );
00360             const f64 sr = sin( core::DEGTORAD64 * X );
00361             const f64 cp = cos( core::DEGTORAD64 * Y );
00362             const f64 sp = sin( core::DEGTORAD64 * Y );
00363             const f64 cy = cos( core::DEGTORAD64 * Z );
00364             const f64 sy = sin( core::DEGTORAD64 * Z );
00365 
00366             const f64 srsp = sr*sp;
00367             const f64 crsp = cr*sp;
00368 
00369             const f64 pseudoMatrix[] = {
00370                 ( cp*cy ), ( cp*sy ), ( -sp ),
00371                 ( srsp*cy-cr*sy ), ( srsp*sy+cr*cy ), ( sr*cp ),
00372                 ( crsp*cy+sr*sy ), ( crsp*sy-sr*cy ), ( cr*cp )};
00373 
00374             return vector3d<T>(
00375                 (T)(forwards.X * pseudoMatrix[0] +
00376                     forwards.Y * pseudoMatrix[3] +
00377                     forwards.Z * pseudoMatrix[6]),
00378                 (T)(forwards.X * pseudoMatrix[1] +
00379                     forwards.Y * pseudoMatrix[4] +
00380                     forwards.Z * pseudoMatrix[7]),
00381                 (T)(forwards.X * pseudoMatrix[2] +
00382                     forwards.Y * pseudoMatrix[5] +
00383                     forwards.Z * pseudoMatrix[8]));
00384         }
00385 
00387 
00389         void getAs4Values(T* array) const
00390         {
00391             array[0] = X;
00392             array[1] = Y;
00393             array[2] = Z;
00394             array[3] = 0;
00395         }
00396 
00398 
00399         void getAs3Values(T* array) const
00400         {
00401             array[0] = X;
00402             array[1] = Y;
00403             array[2] = Z;
00404         }
00405 
00406 
00408         T X;
00409 
00411         T Y;
00412 
00414         T Z;
00415     };
00416 
00418     // Implementor note: inline keyword needed due to template specialization for s32. Otherwise put specialization into a .cpp
00419     template <>
00420     inline vector3d<s32> vector3d<s32>::operator /(s32 val) const {return core::vector3d<s32>(X/val,Y/val,Z/val);}
00421     template <>
00422     inline vector3d<s32>& vector3d<s32>::operator /=(s32 val) {X/=val;Y/=val;Z/=val; return *this;}
00423 
00424     template <>
00425     inline vector3d<s32> vector3d<s32>::getSphericalCoordinateAngles() const
00426     {
00427         vector3d<s32> angle;
00428         const f64 length = X*X + Y*Y + Z*Z;
00429 
00430         if (length)
00431         {
00432             if (X!=0)
00433             {
00434                 angle.Y = round32((f32)(atan2((f64)Z,(f64)X) * RADTODEG64));
00435             }
00436             else if (Z<0)
00437                 angle.Y=180;
00438 
00439             angle.X = round32((f32)(acos(Y * core::reciprocal_squareroot(length)) * RADTODEG64));
00440         }
00441         return angle;
00442     }
00443 
00445     typedef vector3d<f32> vector3df;
00446 
00448     typedef vector3d<s32> vector3di;
00449 
00451     template<class S, class T>
00452     vector3d<T> operator*(const S scalar, const vector3d<T>& vector) { return vector*scalar; }
00453 
00454 } // end namespace core
00455 } // end namespace irr
00456 
00457 #endif
00458