Irrlicht 3D Engine
matrix4.h
Go to the documentation of this file.
00001 // Copyright (C) 2002-2012 Nikolaus Gebhardt
00002 // This file is part of the "Irrlicht Engine".
00003 // For conditions of distribution and use, see copyright notice in irrlicht.h
00004 
00005 #ifndef __IRR_MATRIX_H_INCLUDED__
00006 #define __IRR_MATRIX_H_INCLUDED__
00007 
00008 #include "irrMath.h"
00009 #include "vector3d.h"
00010 #include "vector2d.h"
00011 #include "plane3d.h"
00012 #include "aabbox3d.h"
00013 #include "rect.h"
00014 #include "irrString.h"
00015 
00016 // enable this to keep track of changes to the matrix
00017 // and make simpler identity check for seldomly changing matrices
00018 // otherwise identity check will always compare the elements
00019 //#define USE_MATRIX_TEST
00020 
00021 // this is only for debugging purposes
00022 //#define USE_MATRIX_TEST_DEBUG
00023 
00024 #if defined( USE_MATRIX_TEST_DEBUG )
00025 
00026 struct MatrixTest
00027 {
00028     MatrixTest () : ID(0), Calls(0) {}
00029     char buf[256];
00030     int Calls;
00031     int ID;
00032 };
00033 static MatrixTest MTest;
00034 
00035 #endif
00036 
00037 namespace irr
00038 {
00039 namespace core
00040 {
00041 
00043 
00044     template <class T>
00045     class CMatrix4
00046     {
00047         public:
00048 
00050             enum eConstructor
00051             {
00052                 EM4CONST_NOTHING = 0,
00053                 EM4CONST_COPY,
00054                 EM4CONST_IDENTITY,
00055                 EM4CONST_TRANSPOSED,
00056                 EM4CONST_INVERSE,
00057                 EM4CONST_INVERSE_TRANSPOSED
00058             };
00059 
00061 
00062             CMatrix4( eConstructor constructor = EM4CONST_IDENTITY );
00064 
00066             CMatrix4(const CMatrix4<T>& other, eConstructor constructor = EM4CONST_COPY);
00067 
00069             T& operator()(const s32 row, const s32 col)
00070             {
00071 #if defined ( USE_MATRIX_TEST )
00072                 definitelyIdentityMatrix=false;
00073 #endif
00074                 return M[ row * 4 + col ];
00075             }
00076 
00078             const T& operator()(const s32 row, const s32 col) const { return M[row * 4 + col]; }
00079 
00081             T& operator[](u32 index)
00082             {
00083 #if defined ( USE_MATRIX_TEST )
00084                 definitelyIdentityMatrix=false;
00085 #endif
00086                 return M[index];
00087             }
00088 
00090             const T& operator[](u32 index) const { return M[index]; }
00091 
00093             inline CMatrix4<T>& operator=(const CMatrix4<T> &other);
00094 
00096             inline CMatrix4<T>& operator=(const T& scalar);
00097 
00099             const T* pointer() const { return M; }
00100             T* pointer()
00101             {
00102 #if defined ( USE_MATRIX_TEST )
00103                 definitelyIdentityMatrix=false;
00104 #endif
00105                 return M;
00106             }
00107 
00109             bool operator==(const CMatrix4<T> &other) const;
00110 
00112             bool operator!=(const CMatrix4<T> &other) const;
00113 
00115             CMatrix4<T> operator+(const CMatrix4<T>& other) const;
00116 
00118             CMatrix4<T>& operator+=(const CMatrix4<T>& other);
00119 
00121             CMatrix4<T> operator-(const CMatrix4<T>& other) const;
00122 
00124             CMatrix4<T>& operator-=(const CMatrix4<T>& other);
00125 
00127 
00128             inline CMatrix4<T>& setbyproduct(const CMatrix4<T>& other_a,const CMatrix4<T>& other_b );
00129 
00131 
00133             CMatrix4<T>& setbyproduct_nocheck(const CMatrix4<T>& other_a,const CMatrix4<T>& other_b );
00134 
00136 
00137             CMatrix4<T> operator*(const CMatrix4<T>& other) const;
00138 
00140 
00141             CMatrix4<T>& operator*=(const CMatrix4<T>& other);
00142 
00144             CMatrix4<T> operator*(const T& scalar) const;
00145 
00147             CMatrix4<T>& operator*=(const T& scalar);
00148 
00150             inline CMatrix4<T>& makeIdentity();
00151 
00153             inline bool isIdentity() const;
00154 
00156             inline bool isOrthogonal() const;
00157 
00159             bool isIdentity_integer_base () const;
00160 
00162             CMatrix4<T>& setTranslation( const vector3d<T>& translation );
00163 
00165             vector3d<T> getTranslation() const;
00166 
00168             CMatrix4<T>& setInverseTranslation( const vector3d<T>& translation );
00169 
00171             inline CMatrix4<T>& setRotationRadians( const vector3d<T>& rotation );
00172 
00174             CMatrix4<T>& setRotationDegrees( const vector3d<T>& rotation );
00175 
00177 
00178             core::vector3d<T> getRotationDegrees() const;
00179 
00181 
00182             inline CMatrix4<T>& setInverseRotationRadians( const vector3d<T>& rotation );
00183 
00185 
00186             inline CMatrix4<T>& setInverseRotationDegrees( const vector3d<T>& rotation );
00187 
00189 
00190             inline CMatrix4<T>& setRotationAxisRadians(const T& angle, const vector3d<T>& axis);
00191 
00193             CMatrix4<T>& setScale( const vector3d<T>& scale );
00194 
00196             CMatrix4<T>& setScale( const T scale ) { return setScale(core::vector3d<T>(scale,scale,scale)); }
00197 
00199             core::vector3d<T> getScale() const;
00200 
00202             void inverseTranslateVect( vector3df& vect ) const;
00203 
00205             void inverseRotateVect( vector3df& vect ) const;
00206 
00208             void rotateVect( vector3df& vect ) const;
00209 
00211             void rotateVect(core::vector3df& out, const core::vector3df& in) const;
00212 
00214             void rotateVect(T *out,const core::vector3df &in) const;
00215 
00217             void transformVect( vector3df& vect) const;
00218 
00220             void transformVect( vector3df& out, const vector3df& in ) const;
00221 
00223             void transformVect(T *out,const core::vector3df &in) const;
00224 
00226             void transformVec3(T *out, const T * in) const;
00227 
00229             void translateVect( vector3df& vect ) const;
00230 
00232             void transformPlane( core::plane3d<f32> &plane) const;
00233 
00235             void transformPlane( const core::plane3d<f32> &in, core::plane3d<f32> &out) const;
00236 
00238 
00240             void transformBox(core::aabbox3d<f32>& box) const;
00241 
00243 
00245             void transformBoxEx(core::aabbox3d<f32>& box) const;
00246 
00248             void multiplyWith1x4Matrix(T* matrix) const;
00249 
00251 
00252             bool makeInverse();
00253 
00254 
00256 
00257             bool getInversePrimitive ( CMatrix4<T>& out ) const;
00258 
00260 
00262             bool getInverse(CMatrix4<T>& out) const;
00263 
00265             CMatrix4<T>& buildProjectionMatrixPerspectiveFovRH(f32 fieldOfViewRadians, f32 aspectRatio, f32 zNear, f32 zFar);
00266 
00268             CMatrix4<T>& buildProjectionMatrixPerspectiveFovLH(f32 fieldOfViewRadians, f32 aspectRatio, f32 zNear, f32 zFar);
00269 
00271             CMatrix4<T>& buildProjectionMatrixPerspectiveFovInfinityLH(f32 fieldOfViewRadians, f32 aspectRatio, f32 zNear, f32 epsilon=0);
00272 
00274             CMatrix4<T>& buildProjectionMatrixPerspectiveRH(f32 widthOfViewVolume, f32 heightOfViewVolume, f32 zNear, f32 zFar);
00275 
00277             CMatrix4<T>& buildProjectionMatrixPerspectiveLH(f32 widthOfViewVolume, f32 heightOfViewVolume, f32 zNear, f32 zFar);
00278 
00280             CMatrix4<T>& buildProjectionMatrixOrthoLH(f32 widthOfViewVolume, f32 heightOfViewVolume, f32 zNear, f32 zFar);
00281 
00283             CMatrix4<T>& buildProjectionMatrixOrthoRH(f32 widthOfViewVolume, f32 heightOfViewVolume, f32 zNear, f32 zFar);
00284 
00286             CMatrix4<T>& buildCameraLookAtMatrixLH(
00287                     const vector3df& position,
00288                     const vector3df& target,
00289                     const vector3df& upVector);
00290 
00292             CMatrix4<T>& buildCameraLookAtMatrixRH(
00293                     const vector3df& position,
00294                     const vector3df& target,
00295                     const vector3df& upVector);
00296 
00298 
00302             CMatrix4<T>& buildShadowMatrix(const core::vector3df& light, core::plane3df plane, f32 point=1.0f);
00303 
00305 
00306             CMatrix4<T>& buildNDCToDCMatrix( const core::rect<s32>& area, f32 zScale);
00307 
00309 
00311             CMatrix4<T> interpolate(const core::CMatrix4<T>& b, f32 time) const;
00312 
00314             CMatrix4<T> getTransposed() const;
00315 
00317             inline void getTransposed( CMatrix4<T>& dest ) const;
00318 
00320 
00323             CMatrix4<T>& buildRotateFromTo(const core::vector3df& from, const core::vector3df& to);
00324 
00326 
00329             void setRotationCenter(const core::vector3df& center, const core::vector3df& translate);
00330 
00332 
00338             void buildAxisAlignedBillboard(const core::vector3df& camPos,
00339                         const core::vector3df& center,
00340                         const core::vector3df& translation,
00341                         const core::vector3df& axis,
00342                         const core::vector3df& from);
00343 
00344             /*
00345                 construct 2D Texture transformations
00346                 rotate about center, scale, and transform.
00347             */
00349             CMatrix4<T>& buildTextureTransform( f32 rotateRad,
00350                     const core::vector2df &rotatecenter,
00351                     const core::vector2df &translate,
00352                     const core::vector2df &scale);
00353 
00355 
00359             CMatrix4<T>& setTextureRotationCenter( f32 radAngle );
00360 
00362 
00366             CMatrix4<T>& setTextureTranslate( f32 x, f32 y );
00367 
00369 
00373             CMatrix4<T>& setTextureTranslateTransposed( f32 x, f32 y );
00374 
00376 
00380             CMatrix4<T>& setTextureScale( f32 sx, f32 sy );
00381 
00383 
00387             CMatrix4<T>& setTextureScaleCenter( f32 sx, f32 sy );
00388 
00390             CMatrix4<T>& setM(const T* data);
00391 
00393             void setDefinitelyIdentityMatrix( bool isDefinitelyIdentityMatrix);
00394 
00396             bool getDefinitelyIdentityMatrix() const;
00397 
00399             bool equals(const core::CMatrix4<T>& other, const T tolerance=(T)ROUNDING_ERROR_f64) const;
00400 
00401         private:
00403             T M[16];
00404 #if defined ( USE_MATRIX_TEST )
00405 
00406             mutable u32 definitelyIdentityMatrix;
00407 #endif
00408 #if defined ( USE_MATRIX_TEST_DEBUG )
00409             u32 id;
00410             mutable u32 calls;
00411 #endif
00412 
00413     };
00414 
00415     // Default constructor
00416     template <class T>
00417     inline CMatrix4<T>::CMatrix4( eConstructor constructor )
00418 #if defined ( USE_MATRIX_TEST )
00419         : definitelyIdentityMatrix(BIT_UNTESTED)
00420 #endif
00421 #if defined ( USE_MATRIX_TEST_DEBUG )
00422         ,id ( MTest.ID++), calls ( 0 )
00423 #endif
00424     {
00425         switch ( constructor )
00426         {
00427             case EM4CONST_NOTHING:
00428             case EM4CONST_COPY:
00429                 break;
00430             case EM4CONST_IDENTITY:
00431             case EM4CONST_INVERSE:
00432             default:
00433                 makeIdentity();
00434                 break;
00435         }
00436     }
00437 
00438     // Copy constructor
00439     template <class T>
00440     inline CMatrix4<T>::CMatrix4( const CMatrix4<T>& other, eConstructor constructor)
00441 #if defined ( USE_MATRIX_TEST )
00442         : definitelyIdentityMatrix(BIT_UNTESTED)
00443 #endif
00444 #if defined ( USE_MATRIX_TEST_DEBUG )
00445         ,id ( MTest.ID++), calls ( 0 )
00446 #endif
00447     {
00448         switch ( constructor )
00449         {
00450             case EM4CONST_IDENTITY:
00451                 makeIdentity();
00452                 break;
00453             case EM4CONST_NOTHING:
00454                 break;
00455             case EM4CONST_COPY:
00456                 *this = other;
00457                 break;
00458             case EM4CONST_TRANSPOSED:
00459                 other.getTransposed(*this);
00460                 break;
00461             case EM4CONST_INVERSE:
00462                 if (!other.getInverse(*this))
00463                     memset(M, 0, 16*sizeof(T));
00464                 break;
00465             case EM4CONST_INVERSE_TRANSPOSED:
00466                 if (!other.getInverse(*this))
00467                     memset(M, 0, 16*sizeof(T));
00468                 else
00469                     *this=getTransposed();
00470                 break;
00471         }
00472     }
00473 
00475     template <class T>
00476     inline CMatrix4<T> CMatrix4<T>::operator+(const CMatrix4<T>& other) const
00477     {
00478         CMatrix4<T> temp ( EM4CONST_NOTHING );
00479 
00480         temp[0] = M[0]+other[0];
00481         temp[1] = M[1]+other[1];
00482         temp[2] = M[2]+other[2];
00483         temp[3] = M[3]+other[3];
00484         temp[4] = M[4]+other[4];
00485         temp[5] = M[5]+other[5];
00486         temp[6] = M[6]+other[6];
00487         temp[7] = M[7]+other[7];
00488         temp[8] = M[8]+other[8];
00489         temp[9] = M[9]+other[9];
00490         temp[10] = M[10]+other[10];
00491         temp[11] = M[11]+other[11];
00492         temp[12] = M[12]+other[12];
00493         temp[13] = M[13]+other[13];
00494         temp[14] = M[14]+other[14];
00495         temp[15] = M[15]+other[15];
00496 
00497         return temp;
00498     }
00499 
00501     template <class T>
00502     inline CMatrix4<T>& CMatrix4<T>::operator+=(const CMatrix4<T>& other)
00503     {
00504         M[0]+=other[0];
00505         M[1]+=other[1];
00506         M[2]+=other[2];
00507         M[3]+=other[3];
00508         M[4]+=other[4];
00509         M[5]+=other[5];
00510         M[6]+=other[6];
00511         M[7]+=other[7];
00512         M[8]+=other[8];
00513         M[9]+=other[9];
00514         M[10]+=other[10];
00515         M[11]+=other[11];
00516         M[12]+=other[12];
00517         M[13]+=other[13];
00518         M[14]+=other[14];
00519         M[15]+=other[15];
00520 
00521         return *this;
00522     }
00523 
00525     template <class T>
00526     inline CMatrix4<T> CMatrix4<T>::operator-(const CMatrix4<T>& other) const
00527     {
00528         CMatrix4<T> temp ( EM4CONST_NOTHING );
00529 
00530         temp[0] = M[0]-other[0];
00531         temp[1] = M[1]-other[1];
00532         temp[2] = M[2]-other[2];
00533         temp[3] = M[3]-other[3];
00534         temp[4] = M[4]-other[4];
00535         temp[5] = M[5]-other[5];
00536         temp[6] = M[6]-other[6];
00537         temp[7] = M[7]-other[7];
00538         temp[8] = M[8]-other[8];
00539         temp[9] = M[9]-other[9];
00540         temp[10] = M[10]-other[10];
00541         temp[11] = M[11]-other[11];
00542         temp[12] = M[12]-other[12];
00543         temp[13] = M[13]-other[13];
00544         temp[14] = M[14]-other[14];
00545         temp[15] = M[15]-other[15];
00546 
00547         return temp;
00548     }
00549 
00551     template <class T>
00552     inline CMatrix4<T>& CMatrix4<T>::operator-=(const CMatrix4<T>& other)
00553     {
00554         M[0]-=other[0];
00555         M[1]-=other[1];
00556         M[2]-=other[2];
00557         M[3]-=other[3];
00558         M[4]-=other[4];
00559         M[5]-=other[5];
00560         M[6]-=other[6];
00561         M[7]-=other[7];
00562         M[8]-=other[8];
00563         M[9]-=other[9];
00564         M[10]-=other[10];
00565         M[11]-=other[11];
00566         M[12]-=other[12];
00567         M[13]-=other[13];
00568         M[14]-=other[14];
00569         M[15]-=other[15];
00570 
00571         return *this;
00572     }
00573 
00575     template <class T>
00576     inline CMatrix4<T> CMatrix4<T>::operator*(const T& scalar) const
00577     {
00578         CMatrix4<T> temp ( EM4CONST_NOTHING );
00579 
00580         temp[0] = M[0]*scalar;
00581         temp[1] = M[1]*scalar;
00582         temp[2] = M[2]*scalar;
00583         temp[3] = M[3]*scalar;
00584         temp[4] = M[4]*scalar;
00585         temp[5] = M[5]*scalar;
00586         temp[6] = M[6]*scalar;
00587         temp[7] = M[7]*scalar;
00588         temp[8] = M[8]*scalar;
00589         temp[9] = M[9]*scalar;
00590         temp[10] = M[10]*scalar;
00591         temp[11] = M[11]*scalar;
00592         temp[12] = M[12]*scalar;
00593         temp[13] = M[13]*scalar;
00594         temp[14] = M[14]*scalar;
00595         temp[15] = M[15]*scalar;
00596 
00597         return temp;
00598     }
00599 
00601     template <class T>
00602     inline CMatrix4<T>& CMatrix4<T>::operator*=(const T& scalar)
00603     {
00604         M[0]*=scalar;
00605         M[1]*=scalar;
00606         M[2]*=scalar;
00607         M[3]*=scalar;
00608         M[4]*=scalar;
00609         M[5]*=scalar;
00610         M[6]*=scalar;
00611         M[7]*=scalar;
00612         M[8]*=scalar;
00613         M[9]*=scalar;
00614         M[10]*=scalar;
00615         M[11]*=scalar;
00616         M[12]*=scalar;
00617         M[13]*=scalar;
00618         M[14]*=scalar;
00619         M[15]*=scalar;
00620 
00621         return *this;
00622     }
00623 
00625     template <class T>
00626     inline CMatrix4<T>& CMatrix4<T>::operator*=(const CMatrix4<T>& other)
00627     {
00628 #if defined ( USE_MATRIX_TEST )
00629         // do checks on your own in order to avoid copy creation
00630         if ( !other.isIdentity() )
00631         {
00632             if ( this->isIdentity() )
00633             {
00634                 return (*this = other);
00635             }
00636             else
00637             {
00638                 CMatrix4<T> temp ( *this );
00639                 return setbyproduct_nocheck( temp, other );
00640             }
00641         }
00642         return *this;
00643 #else
00644         CMatrix4<T> temp ( *this );
00645         return setbyproduct_nocheck( temp, other );
00646 #endif
00647     }
00648 
00650     // set this matrix to the product of two other matrices
00651     // goal is to reduce stack use and copy
00652     template <class T>
00653     inline CMatrix4<T>& CMatrix4<T>::setbyproduct_nocheck(const CMatrix4<T>& other_a,const CMatrix4<T>& other_b )
00654     {
00655         const T *m1 = other_a.M;
00656         const T *m2 = other_b.M;
00657 
00658         M[0] = m1[0]*m2[0] + m1[4]*m2[1] + m1[8]*m2[2] + m1[12]*m2[3];
00659         M[1] = m1[1]*m2[0] + m1[5]*m2[1] + m1[9]*m2[2] + m1[13]*m2[3];
00660         M[2] = m1[2]*m2[0] + m1[6]*m2[1] + m1[10]*m2[2] + m1[14]*m2[3];
00661         M[3] = m1[3]*m2[0] + m1[7]*m2[1] + m1[11]*m2[2] + m1[15]*m2[3];
00662 
00663         M[4] = m1[0]*m2[4] + m1[4]*m2[5] + m1[8]*m2[6] + m1[12]*m2[7];
00664         M[5] = m1[1]*m2[4] + m1[5]*m2[5] + m1[9]*m2[6] + m1[13]*m2[7];
00665         M[6] = m1[2]*m2[4] + m1[6]*m2[5] + m1[10]*m2[6] + m1[14]*m2[7];
00666         M[7] = m1[3]*m2[4] + m1[7]*m2[5] + m1[11]*m2[6] + m1[15]*m2[7];
00667 
00668         M[8] = m1[0]*m2[8] + m1[4]*m2[9] + m1[8]*m2[10] + m1[12]*m2[11];
00669         M[9] = m1[1]*m2[8] + m1[5]*m2[9] + m1[9]*m2[10] + m1[13]*m2[11];
00670         M[10] = m1[2]*m2[8] + m1[6]*m2[9] + m1[10]*m2[10] + m1[14]*m2[11];
00671         M[11] = m1[3]*m2[8] + m1[7]*m2[9] + m1[11]*m2[10] + m1[15]*m2[11];
00672 
00673         M[12] = m1[0]*m2[12] + m1[4]*m2[13] + m1[8]*m2[14] + m1[12]*m2[15];
00674         M[13] = m1[1]*m2[12] + m1[5]*m2[13] + m1[9]*m2[14] + m1[13]*m2[15];
00675         M[14] = m1[2]*m2[12] + m1[6]*m2[13] + m1[10]*m2[14] + m1[14]*m2[15];
00676         M[15] = m1[3]*m2[12] + m1[7]*m2[13] + m1[11]*m2[14] + m1[15]*m2[15];
00677 #if defined ( USE_MATRIX_TEST )
00678         definitelyIdentityMatrix=false;
00679 #endif
00680         return *this;
00681     }
00682 
00683 
00685     // set this matrix to the product of two other matrices
00686     // goal is to reduce stack use and copy
00687     template <class T>
00688     inline CMatrix4<T>& CMatrix4<T>::setbyproduct(const CMatrix4<T>& other_a, const CMatrix4<T>& other_b )
00689     {
00690 #if defined ( USE_MATRIX_TEST )
00691         if ( other_a.isIdentity () )
00692             return (*this = other_b);
00693         else
00694         if ( other_b.isIdentity () )
00695             return (*this = other_a);
00696         else
00697             return setbyproduct_nocheck(other_a,other_b);
00698 #else
00699         return setbyproduct_nocheck(other_a,other_b);
00700 #endif
00701     }
00702 
00704     template <class T>
00705     inline CMatrix4<T> CMatrix4<T>::operator*(const CMatrix4<T>& m2) const
00706     {
00707 #if defined ( USE_MATRIX_TEST )
00708         // Testing purpose..
00709         if ( this->isIdentity() )
00710             return m2;
00711         if ( m2.isIdentity() )
00712             return *this;
00713 #endif
00714 
00715         CMatrix4<T> m3 ( EM4CONST_NOTHING );
00716 
00717         const T *m1 = M;
00718 
00719         m3[0] = m1[0]*m2[0] + m1[4]*m2[1] + m1[8]*m2[2] + m1[12]*m2[3];
00720         m3[1] = m1[1]*m2[0] + m1[5]*m2[1] + m1[9]*m2[2] + m1[13]*m2[3];
00721         m3[2] = m1[2]*m2[0] + m1[6]*m2[1] + m1[10]*m2[2] + m1[14]*m2[3];
00722         m3[3] = m1[3]*m2[0] + m1[7]*m2[1] + m1[11]*m2[2] + m1[15]*m2[3];
00723 
00724         m3[4] = m1[0]*m2[4] + m1[4]*m2[5] + m1[8]*m2[6] + m1[12]*m2[7];
00725         m3[5] = m1[1]*m2[4] + m1[5]*m2[5] + m1[9]*m2[6] + m1[13]*m2[7];
00726         m3[6] = m1[2]*m2[4] + m1[6]*m2[5] + m1[10]*m2[6] + m1[14]*m2[7];
00727         m3[7] = m1[3]*m2[4] + m1[7]*m2[5] + m1[11]*m2[6] + m1[15]*m2[7];
00728 
00729         m3[8] = m1[0]*m2[8] + m1[4]*m2[9] + m1[8]*m2[10] + m1[12]*m2[11];
00730         m3[9] = m1[1]*m2[8] + m1[5]*m2[9] + m1[9]*m2[10] + m1[13]*m2[11];
00731         m3[10] = m1[2]*m2[8] + m1[6]*m2[9] + m1[10]*m2[10] + m1[14]*m2[11];
00732         m3[11] = m1[3]*m2[8] + m1[7]*m2[9] + m1[11]*m2[10] + m1[15]*m2[11];
00733 
00734         m3[12] = m1[0]*m2[12] + m1[4]*m2[13] + m1[8]*m2[14] + m1[12]*m2[15];
00735         m3[13] = m1[1]*m2[12] + m1[5]*m2[13] + m1[9]*m2[14] + m1[13]*m2[15];
00736         m3[14] = m1[2]*m2[12] + m1[6]*m2[13] + m1[10]*m2[14] + m1[14]*m2[15];
00737         m3[15] = m1[3]*m2[12] + m1[7]*m2[13] + m1[11]*m2[14] + m1[15]*m2[15];
00738         return m3;
00739     }
00740 
00741 
00742 
00743     template <class T>
00744     inline vector3d<T> CMatrix4<T>::getTranslation() const
00745     {
00746         return vector3d<T>(M[12], M[13], M[14]);
00747     }
00748 
00749 
00750     template <class T>
00751     inline CMatrix4<T>& CMatrix4<T>::setTranslation( const vector3d<T>& translation )
00752     {
00753         M[12] = translation.X;
00754         M[13] = translation.Y;
00755         M[14] = translation.Z;
00756 #if defined ( USE_MATRIX_TEST )
00757         definitelyIdentityMatrix=false;
00758 #endif
00759         return *this;
00760     }
00761 
00762     template <class T>
00763     inline CMatrix4<T>& CMatrix4<T>::setInverseTranslation( const vector3d<T>& translation )
00764     {
00765         M[12] = -translation.X;
00766         M[13] = -translation.Y;
00767         M[14] = -translation.Z;
00768 #if defined ( USE_MATRIX_TEST )
00769         definitelyIdentityMatrix=false;
00770 #endif
00771         return *this;
00772     }
00773 
00774     template <class T>
00775     inline CMatrix4<T>& CMatrix4<T>::setScale( const vector3d<T>& scale )
00776     {
00777         M[0] = scale.X;
00778         M[5] = scale.Y;
00779         M[10] = scale.Z;
00780 #if defined ( USE_MATRIX_TEST )
00781         definitelyIdentityMatrix=false;
00782 #endif
00783         return *this;
00784     }
00785 
00787 
00794     template <class T>
00795     inline vector3d<T> CMatrix4<T>::getScale() const
00796     {
00797         // See http://www.robertblum.com/articles/2005/02/14/decomposing-matrices
00798 
00799         // Deal with the 0 rotation case first
00800         // Prior to Irrlicht 1.6, we always returned this value.
00801         if(core::iszero(M[1]) && core::iszero(M[2]) &&
00802             core::iszero(M[4]) && core::iszero(M[6]) &&
00803             core::iszero(M[8]) && core::iszero(M[9]))
00804             return vector3d<T>(M[0], M[5], M[10]);
00805 
00806         // We have to do the full calculation.
00807         return vector3d<T>(sqrtf(M[0] * M[0] + M[1] * M[1] + M[2] * M[2]),
00808                             sqrtf(M[4] * M[4] + M[5] * M[5] + M[6] * M[6]),
00809                             sqrtf(M[8] * M[8] + M[9] * M[9] + M[10] * M[10]));
00810     }
00811 
00812     template <class T>
00813     inline CMatrix4<T>& CMatrix4<T>::setRotationDegrees( const vector3d<T>& rotation )
00814     {
00815         return setRotationRadians( rotation * core::DEGTORAD );
00816     }
00817 
00818     template <class T>
00819     inline CMatrix4<T>& CMatrix4<T>::setInverseRotationDegrees( const vector3d<T>& rotation )
00820     {
00821         return setInverseRotationRadians( rotation * core::DEGTORAD );
00822     }
00823 
00824     template <class T>
00825     inline CMatrix4<T>& CMatrix4<T>::setRotationRadians( const vector3d<T>& rotation )
00826     {
00827         const f64 cr = cos( rotation.X );
00828         const f64 sr = sin( rotation.X );
00829         const f64 cp = cos( rotation.Y );
00830         const f64 sp = sin( rotation.Y );
00831         const f64 cy = cos( rotation.Z );
00832         const f64 sy = sin( rotation.Z );
00833 
00834         M[0] = (T)( cp*cy );
00835         M[1] = (T)( cp*sy );
00836         M[2] = (T)( -sp );
00837 
00838         const f64 srsp = sr*sp;
00839         const f64 crsp = cr*sp;
00840 
00841         M[4] = (T)( srsp*cy-cr*sy );
00842         M[5] = (T)( srsp*sy+cr*cy );
00843         M[6] = (T)( sr*cp );
00844 
00845         M[8] = (T)( crsp*cy+sr*sy );
00846         M[9] = (T)( crsp*sy-sr*cy );
00847         M[10] = (T)( cr*cp );
00848 #if defined ( USE_MATRIX_TEST )
00849         definitelyIdentityMatrix=false;
00850 #endif
00851         return *this;
00852     }
00853 
00854 
00856 
00859     template <class T>
00860     inline core::vector3d<T> CMatrix4<T>::getRotationDegrees() const
00861     {
00862         const CMatrix4<T> &mat = *this;
00863         core::vector3d<T> scale = getScale();
00864         // we need to check for negative scale on to axes, which would bring up wrong results
00865         if (scale.Y<0 && scale.Z<0)
00866         {
00867             scale.Y =-scale.Y;
00868             scale.Z =-scale.Z;
00869         }
00870         else if (scale.X<0 && scale.Z<0)
00871         {
00872             scale.X =-scale.X;
00873             scale.Z =-scale.Z;
00874         }
00875         else if (scale.X<0 && scale.Y<0)
00876         {
00877             scale.X =-scale.X;
00878             scale.Y =-scale.Y;
00879         }
00880         const core::vector3d<f64> invScale(core::reciprocal(scale.X),core::reciprocal(scale.Y),core::reciprocal(scale.Z));
00881 
00882         f64 Y = -asin(core::clamp(mat[2]*invScale.X, -1.0, 1.0));
00883         const f64 C = cos(Y);
00884         Y *= RADTODEG64;
00885 
00886         f64 rotx, roty, X, Z;
00887 
00888         if (!core::iszero(C))
00889         {
00890             const f64 invC = core::reciprocal(C);
00891             rotx = mat[10] * invC * invScale.Z;
00892             roty = mat[6] * invC * invScale.Y;
00893             X = atan2( roty, rotx ) * RADTODEG64;
00894             rotx = mat[0] * invC * invScale.X;
00895             roty = mat[1] * invC * invScale.X;
00896             Z = atan2( roty, rotx ) * RADTODEG64;
00897         }
00898         else
00899         {
00900             X = 0.0;
00901             rotx = mat[5] * invScale.Y;
00902             roty = -mat[4] * invScale.Y;
00903             Z = atan2( roty, rotx ) * RADTODEG64;
00904         }
00905 
00906         // fix values that get below zero
00907         if (X < 0.0) X += 360.0;
00908         if (Y < 0.0) Y += 360.0;
00909         if (Z < 0.0) Z += 360.0;
00910 
00911         return vector3d<T>((T)X,(T)Y,(T)Z);
00912     }
00913 
00914 
00916     template <class T>
00917     inline CMatrix4<T>& CMatrix4<T>::setInverseRotationRadians( const vector3d<T>& rotation )
00918     {
00919         f64 cr = cos( rotation.X );
00920         f64 sr = sin( rotation.X );
00921         f64 cp = cos( rotation.Y );
00922         f64 sp = sin( rotation.Y );
00923         f64 cy = cos( rotation.Z );
00924         f64 sy = sin( rotation.Z );
00925 
00926         M[0] = (T)( cp*cy );
00927         M[4] = (T)( cp*sy );
00928         M[8] = (T)( -sp );
00929 
00930         f64 srsp = sr*sp;
00931         f64 crsp = cr*sp;
00932 
00933         M[1] = (T)( srsp*cy-cr*sy );
00934         M[5] = (T)( srsp*sy+cr*cy );
00935         M[9] = (T)( sr*cp );
00936 
00937         M[2] = (T)( crsp*cy+sr*sy );
00938         M[6] = (T)( crsp*sy-sr*cy );
00939         M[10] = (T)( cr*cp );
00940 #if defined ( USE_MATRIX_TEST )
00941         definitelyIdentityMatrix=false;
00942 #endif
00943         return *this;
00944     }
00945 
00947     template <class T>
00948     inline CMatrix4<T>& CMatrix4<T>::setRotationAxisRadians( const T& angle, const vector3d<T>& axis )
00949     {
00950         const f64 c = cos(angle);
00951         const f64 s = sin(angle);
00952         const f64 t = 1.0 - c;
00953 
00954         const f64 tx  = t * axis.X;
00955         const f64 ty  = t * axis.Y;     
00956         const f64 tz  = t * axis.Z;
00957 
00958         const f64 sx  = s * axis.X;
00959         const f64 sy  = s * axis.Y;
00960         const f64 sz  = s * axis.Z;
00961         
00962         M[0] = (T)(tx * axis.X + c);
00963         M[1] = (T)(tx * axis.Y + sz);
00964         M[2] = (T)(tx * axis.Z - sy);
00965 
00966         M[4] = (T)(ty * axis.X - sz);
00967         M[5] = (T)(ty * axis.Y + c);
00968         M[6] = (T)(ty * axis.Z + sx);
00969 
00970         M[8]  = (T)(tz * axis.X + sy);
00971         M[9]  = (T)(tz * axis.Y - sx);
00972         M[10] = (T)(tz * axis.Z + c);
00973 
00974 #if defined ( USE_MATRIX_TEST )
00975         definitelyIdentityMatrix=false;
00976 #endif
00977         return *this;
00978     }
00979 
00980 
00983     template <class T>
00984     inline CMatrix4<T>& CMatrix4<T>::makeIdentity()
00985     {
00986         memset(M, 0, 16*sizeof(T));
00987         M[0] = M[5] = M[10] = M[15] = (T)1;
00988 #if defined ( USE_MATRIX_TEST )
00989         definitelyIdentityMatrix=true;
00990 #endif
00991         return *this;
00992     }
00993 
00994 
00995     /*
00996         check identity with epsilon
00997         solve floating range problems..
00998     */
00999     template <class T>
01000     inline bool CMatrix4<T>::isIdentity() const
01001     {
01002 #if defined ( USE_MATRIX_TEST )
01003         if (definitelyIdentityMatrix)
01004             return true;
01005 #endif
01006         if (!core::equals( M[12], (T)0 ) || !core::equals( M[13], (T)0 ) || !core::equals( M[14], (T)0 ) || !core::equals( M[15], (T)1 ))
01007             return false;
01008 
01009         if (!core::equals( M[ 0], (T)1 ) || !core::equals( M[ 1], (T)0 ) || !core::equals( M[ 2], (T)0 ) || !core::equals( M[ 3], (T)0 ))
01010             return false;
01011 
01012         if (!core::equals( M[ 4], (T)0 ) || !core::equals( M[ 5], (T)1 ) || !core::equals( M[ 6], (T)0 ) || !core::equals( M[ 7], (T)0 ))
01013             return false;
01014 
01015         if (!core::equals( M[ 8], (T)0 ) || !core::equals( M[ 9], (T)0 ) || !core::equals( M[10], (T)1 ) || !core::equals( M[11], (T)0 ))
01016             return false;
01017 /*
01018         if (!core::equals( M[ 0], (T)1 ) ||
01019             !core::equals( M[ 5], (T)1 ) ||
01020             !core::equals( M[10], (T)1 ) ||
01021             !core::equals( M[15], (T)1 ))
01022             return false;
01023 
01024         for (s32 i=0; i<4; ++i)
01025             for (s32 j=0; j<4; ++j)
01026                 if ((j != i) && (!iszero((*this)(i,j))))
01027                     return false;
01028 */
01029 #if defined ( USE_MATRIX_TEST )
01030         definitelyIdentityMatrix=true;
01031 #endif
01032         return true;
01033     }
01034 
01035 
01036     /* Check orthogonality of matrix. */
01037     template <class T>
01038     inline bool CMatrix4<T>::isOrthogonal() const
01039     {
01040         T dp=M[0] * M[4 ] + M[1] * M[5 ] + M[2 ] * M[6 ] + M[3 ] * M[7 ];
01041         if (!iszero(dp))
01042             return false;
01043         dp = M[0] * M[8 ] + M[1] * M[9 ] + M[2 ] * M[10] + M[3 ] * M[11];
01044         if (!iszero(dp))
01045             return false;
01046         dp = M[0] * M[12] + M[1] * M[13] + M[2 ] * M[14] + M[3 ] * M[15];
01047         if (!iszero(dp))
01048             return false;
01049         dp = M[4] * M[8 ] + M[5] * M[9 ] + M[6 ] * M[10] + M[7 ] * M[11];
01050         if (!iszero(dp))
01051             return false;
01052         dp = M[4] * M[12] + M[5] * M[13] + M[6 ] * M[14] + M[7 ] * M[15];
01053         if (!iszero(dp))
01054             return false;
01055         dp = M[8] * M[12] + M[9] * M[13] + M[10] * M[14] + M[11] * M[15];
01056         return (iszero(dp));
01057     }
01058 
01059 
01060     /*
01061         doesn't solve floating range problems..
01062         but takes care on +/- 0 on translation because we are changing it..
01063         reducing floating point branches
01064         but it needs the floats in memory..
01065     */
01066     template <class T>
01067     inline bool CMatrix4<T>::isIdentity_integer_base() const
01068     {
01069 #if defined ( USE_MATRIX_TEST )
01070         if (definitelyIdentityMatrix)
01071             return true;
01072 #endif
01073         if(IR(M[0])!=F32_VALUE_1)   return false;
01074         if(IR(M[1])!=0)         return false;
01075         if(IR(M[2])!=0)         return false;
01076         if(IR(M[3])!=0)         return false;
01077 
01078         if(IR(M[4])!=0)         return false;
01079         if(IR(M[5])!=F32_VALUE_1)   return false;
01080         if(IR(M[6])!=0)         return false;
01081         if(IR(M[7])!=0)         return false;
01082 
01083         if(IR(M[8])!=0)         return false;
01084         if(IR(M[9])!=0)         return false;
01085         if(IR(M[10])!=F32_VALUE_1)  return false;
01086         if(IR(M[11])!=0)        return false;
01087 
01088         if(IR(M[12])!=0)        return false;
01089         if(IR(M[13])!=0)        return false;
01090         if(IR(M[13])!=0)        return false;
01091         if(IR(M[15])!=F32_VALUE_1)  return false;
01092 
01093 #if defined ( USE_MATRIX_TEST )
01094         definitelyIdentityMatrix=true;
01095 #endif
01096         return true;
01097     }
01098 
01099 
01100     template <class T>
01101     inline void CMatrix4<T>::rotateVect( vector3df& vect ) const
01102     {
01103         vector3df tmp = vect;
01104         vect.X = tmp.X*M[0] + tmp.Y*M[4] + tmp.Z*M[8];
01105         vect.Y = tmp.X*M[1] + tmp.Y*M[5] + tmp.Z*M[9];
01106         vect.Z = tmp.X*M[2] + tmp.Y*M[6] + tmp.Z*M[10];
01107     }
01108 
01110     template <class T>
01111     inline void CMatrix4<T>::rotateVect(core::vector3df& out, const core::vector3df& in) const
01112     {
01113         out.X = in.X*M[0] + in.Y*M[4] + in.Z*M[8];
01114         out.Y = in.X*M[1] + in.Y*M[5] + in.Z*M[9];
01115         out.Z = in.X*M[2] + in.Y*M[6] + in.Z*M[10];
01116     }
01117 
01119     template <class T>
01120     inline void CMatrix4<T>::rotateVect(T *out, const core::vector3df& in) const
01121     {
01122         out[0] = in.X*M[0] + in.Y*M[4] + in.Z*M[8];
01123         out[1] = in.X*M[1] + in.Y*M[5] + in.Z*M[9];
01124         out[2] = in.X*M[2] + in.Y*M[6] + in.Z*M[10];
01125     }
01126 
01127     template <class T>
01128     inline void CMatrix4<T>::inverseRotateVect( vector3df& vect ) const
01129     {
01130         vector3df tmp = vect;
01131         vect.X = tmp.X*M[0] + tmp.Y*M[1] + tmp.Z*M[2];
01132         vect.Y = tmp.X*M[4] + tmp.Y*M[5] + tmp.Z*M[6];
01133         vect.Z = tmp.X*M[8] + tmp.Y*M[9] + tmp.Z*M[10];
01134     }
01135 
01136     template <class T>
01137     inline void CMatrix4<T>::transformVect( vector3df& vect) const
01138     {
01139         f32 vector[3];
01140 
01141         vector[0] = vect.X*M[0] + vect.Y*M[4] + vect.Z*M[8] + M[12];
01142         vector[1] = vect.X*M[1] + vect.Y*M[5] + vect.Z*M[9] + M[13];
01143         vector[2] = vect.X*M[2] + vect.Y*M[6] + vect.Z*M[10] + M[14];
01144 
01145         vect.X = vector[0];
01146         vect.Y = vector[1];
01147         vect.Z = vector[2];
01148     }
01149 
01150     template <class T>
01151     inline void CMatrix4<T>::transformVect( vector3df& out, const vector3df& in) const
01152     {
01153         out.X = in.X*M[0] + in.Y*M[4] + in.Z*M[8] + M[12];
01154         out.Y = in.X*M[1] + in.Y*M[5] + in.Z*M[9] + M[13];
01155         out.Z = in.X*M[2] + in.Y*M[6] + in.Z*M[10] + M[14];
01156     }
01157 
01158 
01159     template <class T>
01160     inline void CMatrix4<T>::transformVect(T *out, const core::vector3df &in) const
01161     {
01162         out[0] = in.X*M[0] + in.Y*M[4] + in.Z*M[8] + M[12];
01163         out[1] = in.X*M[1] + in.Y*M[5] + in.Z*M[9] + M[13];
01164         out[2] = in.X*M[2] + in.Y*M[6] + in.Z*M[10] + M[14];
01165         out[3] = in.X*M[3] + in.Y*M[7] + in.Z*M[11] + M[15];
01166     }
01167 
01168     template <class T>
01169     inline void CMatrix4<T>::transformVec3(T *out, const T * in) const
01170     {
01171         out[0] = in[0]*M[0] + in[1]*M[4] + in[2]*M[8] + M[12];
01172         out[1] = in[0]*M[1] + in[1]*M[5] + in[2]*M[9] + M[13];
01173         out[2] = in[0]*M[2] + in[1]*M[6] + in[2]*M[10] + M[14];
01174     }
01175 
01176 
01178     template <class T>
01179     inline void CMatrix4<T>::transformPlane( core::plane3d<f32> &plane) const
01180     {
01181         vector3df member;
01182         // Transform the plane member point, i.e. rotate, translate and scale it.
01183         transformVect(member, plane.getMemberPoint());
01184 
01185         // Transform the normal by the transposed inverse of the matrix
01186         CMatrix4<T> transposedInverse(*this, EM4CONST_INVERSE_TRANSPOSED);
01187         vector3df normal = plane.Normal;
01188         transposedInverse.transformVect(normal);
01189 
01190         plane.setPlane(member, normal);
01191     }
01192 
01194     template <class T>
01195     inline void CMatrix4<T>::transformPlane( const core::plane3d<f32> &in, core::plane3d<f32> &out) const
01196     {
01197         out = in;
01198         transformPlane( out );
01199     }
01200 
01202     template <class T>
01203     inline void CMatrix4<T>::transformBox(core::aabbox3d<f32>& box) const
01204     {
01205 #if defined ( USE_MATRIX_TEST )
01206         if (isIdentity())
01207             return;
01208 #endif
01209 
01210         transformVect(box.MinEdge);
01211         transformVect(box.MaxEdge);
01212         box.repair();
01213     }
01214 
01216     template <class T>
01217     inline void CMatrix4<T>::transformBoxEx(core::aabbox3d<f32>& box) const
01218     {
01219 #if defined ( USE_MATRIX_TEST )
01220         if (isIdentity())
01221             return;
01222 #endif
01223 
01224         const f32 Amin[3] = {box.MinEdge.X, box.MinEdge.Y, box.MinEdge.Z};
01225         const f32 Amax[3] = {box.MaxEdge.X, box.MaxEdge.Y, box.MaxEdge.Z};
01226 
01227         f32 Bmin[3];
01228         f32 Bmax[3];
01229 
01230         Bmin[0] = Bmax[0] = M[12];
01231         Bmin[1] = Bmax[1] = M[13];
01232         Bmin[2] = Bmax[2] = M[14];
01233 
01234         const CMatrix4<T> &m = *this;
01235 
01236         for (u32 i = 0; i < 3; ++i)
01237         {
01238             for (u32 j = 0; j < 3; ++j)
01239             {
01240                 const f32 a = m(j,i) * Amin[j];
01241                 const f32 b = m(j,i) * Amax[j];
01242 
01243                 if (a < b)
01244                 {
01245                     Bmin[i] += a;
01246                     Bmax[i] += b;
01247                 }
01248                 else
01249                 {
01250                     Bmin[i] += b;
01251                     Bmax[i] += a;
01252                 }
01253             }
01254         }
01255 
01256         box.MinEdge.X = Bmin[0];
01257         box.MinEdge.Y = Bmin[1];
01258         box.MinEdge.Z = Bmin[2];
01259 
01260         box.MaxEdge.X = Bmax[0];
01261         box.MaxEdge.Y = Bmax[1];
01262         box.MaxEdge.Z = Bmax[2];
01263     }
01264 
01265 
01267     template <class T>
01268     inline void CMatrix4<T>::multiplyWith1x4Matrix(T* matrix) const
01269     {
01270         /*
01271         0  1  2  3
01272         4  5  6  7
01273         8  9  10 11
01274         12 13 14 15
01275         */
01276 
01277         T mat[4];
01278         mat[0] = matrix[0];
01279         mat[1] = matrix[1];
01280         mat[2] = matrix[2];
01281         mat[3] = matrix[3];
01282 
01283         matrix[0] = M[0]*mat[0] + M[4]*mat[1] + M[8]*mat[2] + M[12]*mat[3];
01284         matrix[1] = M[1]*mat[0] + M[5]*mat[1] + M[9]*mat[2] + M[13]*mat[3];
01285         matrix[2] = M[2]*mat[0] + M[6]*mat[1] + M[10]*mat[2] + M[14]*mat[3];
01286         matrix[3] = M[3]*mat[0] + M[7]*mat[1] + M[11]*mat[2] + M[15]*mat[3];
01287     }
01288 
01289     template <class T>
01290     inline void CMatrix4<T>::inverseTranslateVect( vector3df& vect ) const
01291     {
01292         vect.X = vect.X-M[12];
01293         vect.Y = vect.Y-M[13];
01294         vect.Z = vect.Z-M[14];
01295     }
01296 
01297     template <class T>
01298     inline void CMatrix4<T>::translateVect( vector3df& vect ) const
01299     {
01300         vect.X = vect.X+M[12];
01301         vect.Y = vect.Y+M[13];
01302         vect.Z = vect.Z+M[14];
01303     }
01304 
01305 
01306     template <class T>
01307     inline bool CMatrix4<T>::getInverse(CMatrix4<T>& out) const
01308     {
01312 
01313 #if defined ( USE_MATRIX_TEST )
01314         if ( this->isIdentity() )
01315         {
01316             out=*this;
01317             return true;
01318         }
01319 #endif
01320         const CMatrix4<T> &m = *this;
01321 
01322         f32 d = (m(0, 0) * m(1, 1) - m(0, 1) * m(1, 0)) * (m(2, 2) * m(3, 3) - m(2, 3) * m(3, 2)) -
01323             (m(0, 0) * m(1, 2) - m(0, 2) * m(1, 0)) * (m(2, 1) * m(3, 3) - m(2, 3) * m(3, 1)) +
01324             (m(0, 0) * m(1, 3) - m(0, 3) * m(1, 0)) * (m(2, 1) * m(3, 2) - m(2, 2) * m(3, 1)) +
01325             (m(0, 1) * m(1, 2) - m(0, 2) * m(1, 1)) * (m(2, 0) * m(3, 3) - m(2, 3) * m(3, 0)) -
01326             (m(0, 1) * m(1, 3) - m(0, 3) * m(1, 1)) * (m(2, 0) * m(3, 2) - m(2, 2) * m(3, 0)) +
01327             (m(0, 2) * m(1, 3) - m(0, 3) * m(1, 2)) * (m(2, 0) * m(3, 1) - m(2, 1) * m(3, 0));
01328 
01329         if( core::iszero ( d, FLT_MIN ) )
01330             return false;
01331 
01332         d = core::reciprocal ( d );
01333 
01334         out(0, 0) = d * (m(1, 1) * (m(2, 2) * m(3, 3) - m(2, 3) * m(3, 2)) +
01335                 m(1, 2) * (m(2, 3) * m(3, 1) - m(2, 1) * m(3, 3)) +
01336                 m(1, 3) * (m(2, 1) * m(3, 2) - m(2, 2) * m(3, 1)));
01337         out(0, 1) = d * (m(2, 1) * (m(0, 2) * m(3, 3) - m(0, 3) * m(3, 2)) +
01338                 m(2, 2) * (m(0, 3) * m(3, 1) - m(0, 1) * m(3, 3)) +
01339                 m(2, 3) * (m(0, 1) * m(3, 2) - m(0, 2) * m(3, 1)));
01340         out(0, 2) = d * (m(3, 1) * (m(0, 2) * m(1, 3) - m(0, 3) * m(1, 2)) +
01341                 m(3, 2) * (m(0, 3) * m(1, 1) - m(0, 1) * m(1, 3)) +
01342                 m(3, 3) * (m(0, 1) * m(1, 2) - m(0, 2) * m(1, 1)));
01343         out(0, 3) = d * (m(0, 1) * (m(1, 3) * m(2, 2) - m(1, 2) * m(2, 3)) +
01344                 m(0, 2) * (m(1, 1) * m(2, 3) - m(1, 3) * m(2, 1)) +
01345                 m(0, 3) * (m(1, 2) * m(2, 1) - m(1, 1) * m(2, 2)));
01346         out(1, 0) = d * (m(1, 2) * (m(2, 0) * m(3, 3) - m(2, 3) * m(3, 0)) +
01347                 m(1, 3) * (m(2, 2) * m(3, 0) - m(2, 0) * m(3, 2)) +
01348                 m(1, 0) * (m(2, 3) * m(3, 2) - m(2, 2) * m(3, 3)));
01349         out(1, 1) = d * (m(2, 2) * (m(0, 0) * m(3, 3) - m(0, 3) * m(3, 0)) +
01350                 m(2, 3) * (m(0, 2) * m(3, 0) - m(0, 0) * m(3, 2)) +
01351                 m(2, 0) * (m(0, 3) * m(3, 2) - m(0, 2) * m(3, 3)));
01352         out(1, 2) = d * (m(3, 2) * (m(0, 0) * m(1, 3) - m(0, 3) * m(1, 0)) +
01353                 m(3, 3) * (m(0, 2) * m(1, 0) - m(0, 0) * m(1, 2)) +
01354                 m(3, 0) * (m(0, 3) * m(1, 2) - m(0, 2) * m(1, 3)));
01355         out(1, 3) = d * (m(0, 2) * (m(1, 3) * m(2, 0) - m(1, 0) * m(2, 3)) +
01356                 m(0, 3) * (m(1, 0) * m(2, 2) - m(1, 2) * m(2, 0)) +
01357                 m(0, 0) * (m(1, 2) * m(2, 3) - m(1, 3) * m(2, 2)));
01358         out(2, 0) = d * (m(1, 3) * (m(2, 0) * m(3, 1) - m(2, 1) * m(3, 0)) +
01359                 m(1, 0) * (m(2, 1) * m(3, 3) - m(2, 3) * m(3, 1)) +
01360                 m(1, 1) * (m(2, 3) * m(3, 0) - m(2, 0) * m(3, 3)));
01361         out(2, 1) = d * (m(2, 3) * (m(0, 0) * m(3, 1) - m(0, 1) * m(3, 0)) +
01362                 m(2, 0) * (m(0, 1) * m(3, 3) - m(0, 3) * m(3, 1)) +
01363                 m(2, 1) * (m(0, 3) * m(3, 0) - m(0, 0) * m(3, 3)));
01364         out(2, 2) = d * (m(3, 3) * (m(0, 0) * m(1, 1) - m(0, 1) * m(1, 0)) +
01365                 m(3, 0) * (m(0, 1) * m(1, 3) - m(0, 3) * m(1, 1)) +
01366                 m(3, 1) * (m(0, 3) * m(1, 0) - m(0, 0) * m(1, 3)));
01367         out(2, 3) = d * (m(0, 3) * (m(1, 1) * m(2, 0) - m(1, 0) * m(2, 1)) +
01368                 m(0, 0) * (m(1, 3) * m(2, 1) - m(1, 1) * m(2, 3)) +
01369                 m(0, 1) * (m(1, 0) * m(2, 3) - m(1, 3) * m(2, 0)));
01370         out(3, 0) = d * (m(1, 0) * (m(2, 2) * m(3, 1) - m(2, 1) * m(3, 2)) +
01371                 m(1, 1) * (m(2, 0) * m(3, 2) - m(2, 2) * m(3, 0)) +
01372                 m(1, 2) * (m(2, 1) * m(3, 0) - m(2, 0) * m(3, 1)));
01373         out(3, 1) = d * (m(2, 0) * (m(0, 2) * m(3, 1) - m(0, 1) * m(3, 2)) +
01374                 m(2, 1) * (m(0, 0) * m(3, 2) - m(0, 2) * m(3, 0)) +
01375                 m(2, 2) * (m(0, 1) * m(3, 0) - m(0, 0) * m(3, 1)));
01376         out(3, 2) = d * (m(3, 0) * (m(0, 2) * m(1, 1) - m(0, 1) * m(1, 2)) +
01377                 m(3, 1) * (m(0, 0) * m(1, 2) - m(0, 2) * m(1, 0)) +
01378                 m(3, 2) * (m(0, 1) * m(1, 0) - m(0, 0) * m(1, 1)));
01379         out(3, 3) = d * (m(0, 0) * (m(1, 1) * m(2, 2) - m(1, 2) * m(2, 1)) +
01380                 m(0, 1) * (m(1, 2) * m(2, 0) - m(1, 0) * m(2, 2)) +
01381                 m(0, 2) * (m(1, 0) * m(2, 1) - m(1, 1) * m(2, 0)));
01382 
01383 #if defined ( USE_MATRIX_TEST )
01384         out.definitelyIdentityMatrix = definitelyIdentityMatrix;
01385 #endif
01386         return true;
01387     }
01388 
01389 
01392     template <class T>
01393     inline bool CMatrix4<T>::getInversePrimitive ( CMatrix4<T>& out ) const
01394     {
01395         out.M[0 ] = M[0];
01396         out.M[1 ] = M[4];
01397         out.M[2 ] = M[8];
01398         out.M[3 ] = 0;
01399 
01400         out.M[4 ] = M[1];
01401         out.M[5 ] = M[5];
01402         out.M[6 ] = M[9];
01403         out.M[7 ] = 0;
01404 
01405         out.M[8 ] = M[2];
01406         out.M[9 ] = M[6];
01407         out.M[10] = M[10];
01408         out.M[11] = 0;
01409 
01410         out.M[12] = (T)-(M[12]*M[0] + M[13]*M[1] + M[14]*M[2]);
01411         out.M[13] = (T)-(M[12]*M[4] + M[13]*M[5] + M[14]*M[6]);
01412         out.M[14] = (T)-(M[12]*M[8] + M[13]*M[9] + M[14]*M[10]);
01413         out.M[15] = 1;
01414 
01415 #if defined ( USE_MATRIX_TEST )
01416         out.definitelyIdentityMatrix = definitelyIdentityMatrix;
01417 #endif
01418         return true;
01419     }
01420 
01423     template <class T>
01424     inline bool CMatrix4<T>::makeInverse()
01425     {
01426 #if defined ( USE_MATRIX_TEST )
01427         if (definitelyIdentityMatrix)
01428             return true;
01429 #endif
01430         CMatrix4<T> temp ( EM4CONST_NOTHING );
01431 
01432         if (getInverse(temp))
01433         {
01434             *this = temp;
01435             return true;
01436         }
01437 
01438         return false;
01439     }
01440 
01441 
01442     template <class T>
01443     inline CMatrix4<T>& CMatrix4<T>::operator=(const CMatrix4<T> &other)
01444     {
01445         if (this==&other)
01446             return *this;
01447         memcpy(M, other.M, 16*sizeof(T));
01448 #if defined ( USE_MATRIX_TEST )
01449         definitelyIdentityMatrix=other.definitelyIdentityMatrix;
01450 #endif
01451         return *this;
01452     }
01453 
01454 
01455     template <class T>
01456     inline CMatrix4<T>& CMatrix4<T>::operator=(const T& scalar)
01457     {
01458         for (s32 i = 0; i < 16; ++i)
01459             M[i]=scalar;
01460 
01461 #if defined ( USE_MATRIX_TEST )
01462         definitelyIdentityMatrix=false;
01463 #endif
01464         return *this;
01465     }
01466 
01467 
01468     template <class T>
01469     inline bool CMatrix4<T>::operator==(const CMatrix4<T> &other) const
01470     {
01471 #if defined ( USE_MATRIX_TEST )
01472         if (definitelyIdentityMatrix && other.definitelyIdentityMatrix)
01473             return true;
01474 #endif
01475         for (s32 i = 0; i < 16; ++i)
01476             if (M[i] != other.M[i])
01477                 return false;
01478 
01479         return true;
01480     }
01481 
01482 
01483     template <class T>
01484     inline bool CMatrix4<T>::operator!=(const CMatrix4<T> &other) const
01485     {
01486         return !(*this == other);
01487     }
01488 
01489 
01490     // Builds a right-handed perspective projection matrix based on a field of view
01491     template <class T>
01492     inline CMatrix4<T>& CMatrix4<T>::buildProjectionMatrixPerspectiveFovRH(
01493             f32 fieldOfViewRadians, f32 aspectRatio, f32 zNear, f32 zFar)
01494     {
01495         const f64 h = reciprocal(tan(fieldOfViewRadians*0.5));
01496         _IRR_DEBUG_BREAK_IF(aspectRatio==0.f); //divide by zero
01497         const T w = static_cast<T>(h / aspectRatio);
01498 
01499         _IRR_DEBUG_BREAK_IF(zNear==zFar); //divide by zero
01500         M[0] = w;
01501         M[1] = 0;
01502         M[2] = 0;
01503         M[3] = 0;
01504 
01505         M[4] = 0;
01506         M[5] = (T)h;
01507         M[6] = 0;
01508         M[7] = 0;
01509 
01510         M[8] = 0;
01511         M[9] = 0;
01512         M[10] = (T)(zFar/(zNear-zFar)); // DirectX version
01513 //      M[10] = (T)(zFar+zNear/(zNear-zFar)); // OpenGL version
01514         M[11] = -1;
01515 
01516         M[12] = 0;
01517         M[13] = 0;
01518         M[14] = (T)(zNear*zFar/(zNear-zFar)); // DirectX version
01519 //      M[14] = (T)(2.0f*zNear*zFar/(zNear-zFar)); // OpenGL version
01520         M[15] = 0;
01521 
01522 #if defined ( USE_MATRIX_TEST )
01523         definitelyIdentityMatrix=false;
01524 #endif
01525         return *this;
01526     }
01527 
01528 
01529     // Builds a left-handed perspective projection matrix based on a field of view
01530     template <class T>
01531     inline CMatrix4<T>& CMatrix4<T>::buildProjectionMatrixPerspectiveFovLH(
01532             f32 fieldOfViewRadians, f32 aspectRatio, f32 zNear, f32 zFar)
01533     {
01534         const f64 h = reciprocal(tan(fieldOfViewRadians*0.5));
01535         _IRR_DEBUG_BREAK_IF(aspectRatio==0.f); //divide by zero
01536         const T w = static_cast<T>(h / aspectRatio);
01537 
01538         _IRR_DEBUG_BREAK_IF(zNear==zFar); //divide by zero
01539         M[0] = w;
01540         M[1] = 0;
01541         M[2] = 0;
01542         M[3] = 0;
01543 
01544         M[4] = 0;
01545         M[5] = (T)h;
01546         M[6] = 0;
01547         M[7] = 0;
01548 
01549         M[8] = 0;
01550         M[9] = 0;
01551         M[10] = (T)(zFar/(zFar-zNear));
01552         M[11] = 1;
01553 
01554         M[12] = 0;
01555         M[13] = 0;
01556         M[14] = (T)(-zNear*zFar/(zFar-zNear));
01557         M[15] = 0;
01558 
01559 #if defined ( USE_MATRIX_TEST )
01560         definitelyIdentityMatrix=false;
01561 #endif
01562         return *this;
01563     }
01564 
01565 
01566     // Builds a left-handed perspective projection matrix based on a field of view, with far plane culling at infinity
01567     template <class T>
01568     inline CMatrix4<T>& CMatrix4<T>::buildProjectionMatrixPerspectiveFovInfinityLH(
01569             f32 fieldOfViewRadians, f32 aspectRatio, f32 zNear, f32 epsilon)
01570     {
01571         const f64 h = reciprocal(tan(fieldOfViewRadians*0.5));
01572         _IRR_DEBUG_BREAK_IF(aspectRatio==0.f); //divide by zero
01573         const T w = static_cast<T>(h / aspectRatio);
01574 
01575         M[0] = w;
01576         M[1] = 0;
01577         M[2] = 0;
01578         M[3] = 0;
01579 
01580         M[4] = 0;
01581         M[5] = (T)h;
01582         M[6] = 0;
01583         M[7] = 0;
01584 
01585         M[8] = 0;
01586         M[9] = 0;
01587         M[10] = (T)(1.f-epsilon);
01588         M[11] = 1;
01589 
01590         M[12] = 0;
01591         M[13] = 0;
01592         M[14] = (T)(zNear*(epsilon-1.f));
01593         M[15] = 0;
01594 
01595 #if defined ( USE_MATRIX_TEST )
01596         definitelyIdentityMatrix=false;
01597 #endif
01598         return *this;
01599     }
01600 
01601 
01602     // Builds a left-handed orthogonal projection matrix.
01603     template <class T>
01604     inline CMatrix4<T>& CMatrix4<T>::buildProjectionMatrixOrthoLH(
01605             f32 widthOfViewVolume, f32 heightOfViewVolume, f32 zNear, f32 zFar)
01606     {
01607         _IRR_DEBUG_BREAK_IF(widthOfViewVolume==0.f); //divide by zero
01608         _IRR_DEBUG_BREAK_IF(heightOfViewVolume==0.f); //divide by zero
01609         _IRR_DEBUG_BREAK_IF(zNear==zFar); //divide by zero
01610         M[0] = (T)(2/widthOfViewVolume);
01611         M[1] = 0;
01612         M[2] = 0;
01613         M[3] = 0;
01614 
01615         M[4] = 0;
01616         M[5] = (T)(2/heightOfViewVolume);
01617         M[6] = 0;
01618         M[7] = 0;
01619 
01620         M[8] = 0;
01621         M[9] = 0;
01622         M[10] = (T)(1/(zFar-zNear));
01623         M[11] = 0;
01624 
01625         M[12] = 0;
01626         M[13] = 0;
01627         M[14] = (T)(zNear/(zNear-zFar));
01628         M[15] = 1;
01629 
01630 #if defined ( USE_MATRIX_TEST )
01631         definitelyIdentityMatrix=false;
01632 #endif
01633         return *this;
01634     }
01635 
01636 
01637     // Builds a right-handed orthogonal projection matrix.
01638     template <class T>
01639     inline CMatrix4<T>& CMatrix4<T>::buildProjectionMatrixOrthoRH(
01640             f32 widthOfViewVolume, f32 heightOfViewVolume, f32 zNear, f32 zFar)
01641     {
01642         _IRR_DEBUG_BREAK_IF(widthOfViewVolume==0.f); //divide by zero
01643         _IRR_DEBUG_BREAK_IF(heightOfViewVolume==0.f); //divide by zero
01644         _IRR_DEBUG_BREAK_IF(zNear==zFar); //divide by zero
01645         M[0] = (T)(2/widthOfViewVolume);
01646         M[1] = 0;
01647         M[2] = 0;
01648         M[3] = 0;
01649 
01650         M[4] = 0;
01651         M[5] = (T)(2/heightOfViewVolume);
01652         M[6] = 0;
01653         M[7] = 0;
01654 
01655         M[8] = 0;
01656         M[9] = 0;
01657         M[10] = (T)(1/(zNear-zFar));
01658         M[11] = 0;
01659 
01660         M[12] = 0;
01661         M[13] = 0;
01662         M[14] = (T)(zNear/(zNear-zFar));
01663         M[15] = 1;
01664 
01665 #if defined ( USE_MATRIX_TEST )
01666         definitelyIdentityMatrix=false;
01667 #endif
01668         return *this;
01669     }
01670 
01671 
01672     // Builds a right-handed perspective projection matrix.
01673     template <class T>
01674     inline CMatrix4<T>& CMatrix4<T>::buildProjectionMatrixPerspectiveRH(
01675             f32 widthOfViewVolume, f32 heightOfViewVolume, f32 zNear, f32 zFar)
01676     {
01677         _IRR_DEBUG_BREAK_IF(widthOfViewVolume==0.f); //divide by zero
01678         _IRR_DEBUG_BREAK_IF(heightOfViewVolume==0.f); //divide by zero
01679         _IRR_DEBUG_BREAK_IF(zNear==zFar); //divide by zero
01680         M[0] = (T)(2*zNear/widthOfViewVolume);
01681         M[1] = 0;
01682         M[2] = 0;
01683         M[3] = 0;
01684 
01685         M[4] = 0;
01686         M[5] = (T)(2*zNear/heightOfViewVolume);
01687         M[6] = 0;
01688         M[7] = 0;
01689 
01690         M[8] = 0;
01691         M[9] = 0;
01692         M[10] = (T)(zFar/(zNear-zFar));
01693         M[11] = -1;
01694 
01695         M[12] = 0;
01696         M[13] = 0;
01697         M[14] = (T)(zNear*zFar/(zNear-zFar));
01698         M[15] = 0;
01699 
01700 #if defined ( USE_MATRIX_TEST )
01701         definitelyIdentityMatrix=false;
01702 #endif
01703         return *this;
01704     }
01705 
01706 
01707     // Builds a left-handed perspective projection matrix.
01708     template <class T>
01709     inline CMatrix4<T>& CMatrix4<T>::buildProjectionMatrixPerspectiveLH(
01710             f32 widthOfViewVolume, f32 heightOfViewVolume, f32 zNear, f32 zFar)
01711     {
01712         _IRR_DEBUG_BREAK_IF(widthOfViewVolume==0.f); //divide by zero
01713         _IRR_DEBUG_BREAK_IF(heightOfViewVolume==0.f); //divide by zero
01714         _IRR_DEBUG_BREAK_IF(zNear==zFar); //divide by zero
01715         M[0] = (T)(2*zNear/widthOfViewVolume);
01716         M[1] = 0;
01717         M[2] = 0;
01718         M[3] = 0;
01719 
01720         M[4] = 0;
01721         M[5] = (T)(2*zNear/heightOfViewVolume);
01722         M[6] = 0;
01723         M[7] = 0;
01724 
01725         M[8] = 0;
01726         M[9] = 0;
01727         M[10] = (T)(zFar/(zFar-zNear));
01728         M[11] = 1;
01729 
01730         M[12] = 0;
01731         M[13] = 0;
01732         M[14] = (T)(zNear*zFar/(zNear-zFar));
01733         M[15] = 0;
01734 #if defined ( USE_MATRIX_TEST )
01735         definitelyIdentityMatrix=false;
01736 #endif
01737         return *this;
01738     }
01739 
01740 
01741     // Builds a matrix that flattens geometry into a plane.
01742     template <class T>
01743     inline CMatrix4<T>& CMatrix4<T>::buildShadowMatrix(const core::vector3df& light, core::plane3df plane, f32 point)
01744     {
01745         plane.Normal.normalize();
01746         const f32 d = plane.Normal.dotProduct(light);
01747 
01748         M[ 0] = (T)(-plane.Normal.X * light.X + d);
01749         M[ 1] = (T)(-plane.Normal.X * light.Y);
01750         M[ 2] = (T)(-plane.Normal.X * light.Z);
01751         M[ 3] = (T)(-plane.Normal.X * point);
01752 
01753         M[ 4] = (T)(-plane.Normal.Y * light.X);
01754         M[ 5] = (T)(-plane.Normal.Y * light.Y + d);
01755         M[ 6] = (T)(-plane.Normal.Y * light.Z);
01756         M[ 7] = (T)(-plane.Normal.Y * point);
01757 
01758         M[ 8] = (T)(-plane.Normal.Z * light.X);
01759         M[ 9] = (T)(-plane.Normal.Z * light.Y);
01760         M[10] = (T)(-plane.Normal.Z * light.Z + d);
01761         M[11] = (T)(-plane.Normal.Z * point);
01762 
01763         M[12] = (T)(-plane.D * light.X);
01764         M[13] = (T)(-plane.D * light.Y);
01765         M[14] = (T)(-plane.D * light.Z);
01766         M[15] = (T)(-plane.D * point + d);
01767 #if defined ( USE_MATRIX_TEST )
01768         definitelyIdentityMatrix=false;
01769 #endif
01770         return *this;
01771     }
01772 
01773     // Builds a left-handed look-at matrix.
01774     template <class T>
01775     inline CMatrix4<T>& CMatrix4<T>::buildCameraLookAtMatrixLH(
01776                 const vector3df& position,
01777                 const vector3df& target,
01778                 const vector3df& upVector)
01779     {
01780         vector3df zaxis = target - position;
01781         zaxis.normalize();
01782 
01783         vector3df xaxis = upVector.crossProduct(zaxis);
01784         xaxis.normalize();
01785 
01786         vector3df yaxis = zaxis.crossProduct(xaxis);
01787 
01788         M[0] = (T)xaxis.X;
01789         M[1] = (T)yaxis.X;
01790         M[2] = (T)zaxis.X;
01791         M[3] = 0;
01792 
01793         M[4] = (T)xaxis.Y;
01794         M[5] = (T)yaxis.Y;
01795         M[6] = (T)zaxis.Y;
01796         M[7] = 0;
01797 
01798         M[8] = (T)xaxis.Z;
01799         M[9] = (T)yaxis.Z;
01800         M[10] = (T)zaxis.Z;
01801         M[11] = 0;
01802 
01803         M[12] = (T)-xaxis.dotProduct(position);
01804         M[13] = (T)-yaxis.dotProduct(position);
01805         M[14] = (T)-zaxis.dotProduct(position);
01806         M[15] = 1;
01807 #if defined ( USE_MATRIX_TEST )
01808         definitelyIdentityMatrix=false;
01809 #endif
01810         return *this;
01811     }
01812 
01813 
01814     // Builds a right-handed look-at matrix.
01815     template <class T>
01816     inline CMatrix4<T>& CMatrix4<T>::buildCameraLookAtMatrixRH(
01817                 const vector3df& position,
01818                 const vector3df& target,
01819                 const vector3df& upVector)
01820     {
01821         vector3df zaxis = position - target;
01822         zaxis.normalize();
01823 
01824         vector3df xaxis = upVector.crossProduct(zaxis);
01825         xaxis.normalize();
01826 
01827         vector3df yaxis = zaxis.crossProduct(xaxis);
01828 
01829         M[0] = (T)xaxis.X;
01830         M[1] = (T)yaxis.X;
01831         M[2] = (T)zaxis.X;
01832         M[3] = 0;
01833 
01834         M[4] = (T)xaxis.Y;
01835         M[5] = (T)yaxis.Y;
01836         M[6] = (T)zaxis.Y;
01837         M[7] = 0;
01838 
01839         M[8] = (T)xaxis.Z;
01840         M[9] = (T)yaxis.Z;
01841         M[10] = (T)zaxis.Z;
01842         M[11] = 0;
01843 
01844         M[12] = (T)-xaxis.dotProduct(position);
01845         M[13] = (T)-yaxis.dotProduct(position);
01846         M[14] = (T)-zaxis.dotProduct(position);
01847         M[15] = 1;
01848 #if defined ( USE_MATRIX_TEST )
01849         definitelyIdentityMatrix=false;
01850 #endif
01851         return *this;
01852     }
01853 
01854 
01855     // creates a new matrix as interpolated matrix from this and the passed one.
01856     template <class T>
01857     inline CMatrix4<T> CMatrix4<T>::interpolate(const core::CMatrix4<T>& b, f32 time) const
01858     {
01859         CMatrix4<T> mat ( EM4CONST_NOTHING );
01860 
01861         for (u32 i=0; i < 16; i += 4)
01862         {
01863             mat.M[i+0] = (T)(M[i+0] + ( b.M[i+0] - M[i+0] ) * time);
01864             mat.M[i+1] = (T)(M[i+1] + ( b.M[i+1] - M[i+1] ) * time);
01865             mat.M[i+2] = (T)(M[i+2] + ( b.M[i+2] - M[i+2] ) * time);
01866             mat.M[i+3] = (T)(M[i+3] + ( b.M[i+3] - M[i+3] ) * time);
01867         }
01868         return mat;
01869     }
01870 
01871 
01872     // returns transposed matrix
01873     template <class T>
01874     inline CMatrix4<T> CMatrix4<T>::getTransposed() const
01875     {
01876         CMatrix4<T> t ( EM4CONST_NOTHING );
01877         getTransposed ( t );
01878         return t;
01879     }
01880 
01881 
01882     // returns transposed matrix
01883     template <class T>
01884     inline void CMatrix4<T>::getTransposed( CMatrix4<T>& o ) const
01885     {
01886         o[ 0] = M[ 0];
01887         o[ 1] = M[ 4];
01888         o[ 2] = M[ 8];
01889         o[ 3] = M[12];
01890 
01891         o[ 4] = M[ 1];
01892         o[ 5] = M[ 5];
01893         o[ 6] = M[ 9];
01894         o[ 7] = M[13];
01895 
01896         o[ 8] = M[ 2];
01897         o[ 9] = M[ 6];
01898         o[10] = M[10];
01899         o[11] = M[14];
01900 
01901         o[12] = M[ 3];
01902         o[13] = M[ 7];
01903         o[14] = M[11];
01904         o[15] = M[15];
01905 #if defined ( USE_MATRIX_TEST )
01906         o.definitelyIdentityMatrix=definitelyIdentityMatrix;
01907 #endif
01908     }
01909 
01910 
01911     // used to scale <-1,-1><1,1> to viewport
01912     template <class T>
01913     inline CMatrix4<T>& CMatrix4<T>::buildNDCToDCMatrix( const core::rect<s32>& viewport, f32 zScale)
01914     {
01915         const f32 scaleX = (viewport.getWidth() - 0.75f ) * 0.5f;
01916         const f32 scaleY = -(viewport.getHeight() - 0.75f ) * 0.5f;
01917 
01918         const f32 dx = -0.5f + ( (viewport.UpperLeftCorner.X + viewport.LowerRightCorner.X ) * 0.5f );
01919         const f32 dy = -0.5f + ( (viewport.UpperLeftCorner.Y + viewport.LowerRightCorner.Y ) * 0.5f );
01920 
01921         makeIdentity();
01922         M[12] = (T)dx;
01923         M[13] = (T)dy;
01924         return setScale(core::vector3d<T>((T)scaleX, (T)scaleY, (T)zScale));
01925     }
01926 
01928 
01933     template <class T>
01934     inline CMatrix4<T>& CMatrix4<T>::buildRotateFromTo(const core::vector3df& from, const core::vector3df& to)
01935     {
01936         // unit vectors
01937         core::vector3df f(from);
01938         core::vector3df t(to);
01939         f.normalize();
01940         t.normalize();
01941 
01942         // axis multiplication by sin
01943         core::vector3df vs(t.crossProduct(f));
01944 
01945         // axis of rotation
01946         core::vector3df v(vs);
01947         v.normalize();
01948 
01949         // cosinus angle
01950         T ca = f.dotProduct(t);
01951 
01952         core::vector3df vt(v * (1 - ca));
01953 
01954         M[0] = vt.X * v.X + ca;
01955         M[5] = vt.Y * v.Y + ca;
01956         M[10] = vt.Z * v.Z + ca;
01957 
01958         vt.X *= v.Y;
01959         vt.Z *= v.X;
01960         vt.Y *= v.Z;
01961 
01962         M[1] = vt.X - vs.Z;
01963         M[2] = vt.Z + vs.Y;
01964         M[3] = 0;
01965 
01966         M[4] = vt.X + vs.Z;
01967         M[6] = vt.Y - vs.X;
01968         M[7] = 0;
01969 
01970         M[8] = vt.Z - vs.Y;
01971         M[9] = vt.Y + vs.X;
01972         M[11] = 0;
01973 
01974         M[12] = 0;
01975         M[13] = 0;
01976         M[14] = 0;
01977         M[15] = 1;
01978 
01979         return *this;
01980     }
01981 
01983 
01989     template <class T>
01990     inline void CMatrix4<T>::buildAxisAlignedBillboard(
01991                 const core::vector3df& camPos,
01992                 const core::vector3df& center,
01993                 const core::vector3df& translation,
01994                 const core::vector3df& axis,
01995                 const core::vector3df& from)
01996     {
01997         // axis of rotation
01998         core::vector3df up = axis;
01999         up.normalize();
02000         const core::vector3df forward = (camPos - center).normalize();
02001         const core::vector3df right = up.crossProduct(forward).normalize();
02002 
02003         // correct look vector
02004         const core::vector3df look = right.crossProduct(up);
02005 
02006         // rotate from to
02007         // axis multiplication by sin
02008         const core::vector3df vs = look.crossProduct(from);
02009 
02010         // cosinus angle
02011         const f32 ca = from.dotProduct(look);
02012 
02013         core::vector3df vt(up * (1.f - ca));
02014 
02015         M[0] = static_cast<T>(vt.X * up.X + ca);
02016         M[5] = static_cast<T>(vt.Y * up.Y + ca);
02017         M[10] = static_cast<T>(vt.Z * up.Z + ca);
02018 
02019         vt.X *= up.Y;
02020         vt.Z *= up.X;
02021         vt.Y *= up.Z;
02022 
02023         M[1] = static_cast<T>(vt.X - vs.Z);
02024         M[2] = static_cast<T>(vt.Z + vs.Y);
02025         M[3] = 0;
02026 
02027         M[4] = static_cast<T>(vt.X + vs.Z);
02028         M[6] = static_cast<T>(vt.Y - vs.X);
02029         M[7] = 0;
02030 
02031         M[8] = static_cast<T>(vt.Z - vs.Y);
02032         M[9] = static_cast<T>(vt.Y + vs.X);
02033         M[11] = 0;
02034 
02035         setRotationCenter(center, translation);
02036     }
02037 
02038 
02040     template <class T>
02041     inline void CMatrix4<T>::setRotationCenter(const core::vector3df& center, const core::vector3df& translation)
02042     {
02043         M[12] = -M[0]*center.X - M[4]*center.Y - M[8]*center.Z + (center.X - translation.X );
02044         M[13] = -M[1]*center.X - M[5]*center.Y - M[9]*center.Z + (center.Y - translation.Y );
02045         M[14] = -M[2]*center.X - M[6]*center.Y - M[10]*center.Z + (center.Z - translation.Z );
02046         M[15] = (T) 1.0;
02047 #if defined ( USE_MATRIX_TEST )
02048         definitelyIdentityMatrix=false;
02049 #endif
02050     }
02051 
02064     template <class T>
02065     inline CMatrix4<T>& CMatrix4<T>::buildTextureTransform( f32 rotateRad,
02066             const core::vector2df &rotatecenter,
02067             const core::vector2df &translate,
02068             const core::vector2df &scale)
02069     {
02070         const f32 c = cosf(rotateRad);
02071         const f32 s = sinf(rotateRad);
02072 
02073         M[0] = (T)(c * scale.X);
02074         M[1] = (T)(s * scale.Y);
02075         M[2] = 0;
02076         M[3] = 0;
02077 
02078         M[4] = (T)(-s * scale.X);
02079         M[5] = (T)(c * scale.Y);
02080         M[6] = 0;
02081         M[7] = 0;
02082 
02083         M[8] = (T)(c * scale.X * rotatecenter.X + -s * rotatecenter.Y + translate.X);
02084         M[9] = (T)(s * scale.Y * rotatecenter.X +  c * rotatecenter.Y + translate.Y);
02085         M[10] = 1;
02086         M[11] = 0;
02087 
02088         M[12] = 0;
02089         M[13] = 0;
02090         M[14] = 0;
02091         M[15] = 1;
02092 #if defined ( USE_MATRIX_TEST )
02093         definitelyIdentityMatrix=false;
02094 #endif
02095         return *this;
02096     }
02097 
02098 
02099     // rotate about z axis, center ( 0.5, 0.5 )
02100     template <class T>
02101     inline CMatrix4<T>& CMatrix4<T>::setTextureRotationCenter( f32 rotateRad )
02102     {
02103         const f32 c = cosf(rotateRad);
02104         const f32 s = sinf(rotateRad);
02105         M[0] = (T)c;
02106         M[1] = (T)s;
02107 
02108         M[4] = (T)-s;
02109         M[5] = (T)c;
02110 
02111         M[8] = (T)(0.5f * ( s - c) + 0.5f);
02112         M[9] = (T)(-0.5f * ( s + c) + 0.5f);
02113 
02114 #if defined ( USE_MATRIX_TEST )
02115         definitelyIdentityMatrix = definitelyIdentityMatrix && (rotateRad==0.0f);
02116 #endif
02117         return *this;
02118     }
02119 
02120 
02121     template <class T>
02122     inline CMatrix4<T>& CMatrix4<T>::setTextureTranslate ( f32 x, f32 y )
02123     {
02124         M[8] = (T)x;
02125         M[9] = (T)y;
02126 
02127 #if defined ( USE_MATRIX_TEST )
02128         definitelyIdentityMatrix = definitelyIdentityMatrix && (x==0.0f) && (y==0.0f);
02129 #endif
02130         return *this;
02131     }
02132 
02133 
02134     template <class T>
02135     inline CMatrix4<T>& CMatrix4<T>::setTextureTranslateTransposed ( f32 x, f32 y )
02136     {
02137         M[2] = (T)x;
02138         M[6] = (T)y;
02139 
02140 #if defined ( USE_MATRIX_TEST )
02141         definitelyIdentityMatrix = definitelyIdentityMatrix && (x==0.0f) && (y==0.0f) ;
02142 #endif
02143         return *this;
02144     }
02145 
02146     template <class T>
02147     inline CMatrix4<T>& CMatrix4<T>::setTextureScale ( f32 sx, f32 sy )
02148     {
02149         M[0] = (T)sx;
02150         M[5] = (T)sy;
02151 #if defined ( USE_MATRIX_TEST )
02152         definitelyIdentityMatrix = definitelyIdentityMatrix && (sx==1.0f) && (sy==1.0f);
02153 #endif
02154         return *this;
02155     }
02156 
02157 
02158     template <class T>
02159     inline CMatrix4<T>& CMatrix4<T>::setTextureScaleCenter( f32 sx, f32 sy )
02160     {
02161         M[0] = (T)sx;
02162         M[5] = (T)sy;
02163         M[8] = (T)(0.5f - 0.5f * sx);
02164         M[9] = (T)(0.5f - 0.5f * sy);
02165 
02166 #if defined ( USE_MATRIX_TEST )
02167         definitelyIdentityMatrix = definitelyIdentityMatrix && (sx==1.0f) && (sy==1.0f);
02168 #endif
02169         return *this;
02170     }
02171 
02172 
02173     // sets all matrix data members at once
02174     template <class T>
02175     inline CMatrix4<T>& CMatrix4<T>::setM(const T* data)
02176     {
02177         memcpy(M,data, 16*sizeof(T));
02178 
02179 #if defined ( USE_MATRIX_TEST )
02180         definitelyIdentityMatrix=false;
02181 #endif
02182         return *this;
02183     }
02184 
02185 
02186     // sets if the matrix is definitely identity matrix
02187     template <class T>
02188     inline void CMatrix4<T>::setDefinitelyIdentityMatrix( bool isDefinitelyIdentityMatrix)
02189     {
02190 #if defined ( USE_MATRIX_TEST )
02191         definitelyIdentityMatrix = isDefinitelyIdentityMatrix;
02192 #endif
02193     }
02194 
02195 
02196     // gets if the matrix is definitely identity matrix
02197     template <class T>
02198     inline bool CMatrix4<T>::getDefinitelyIdentityMatrix() const
02199     {
02200 #if defined ( USE_MATRIX_TEST )
02201         return definitelyIdentityMatrix;
02202 #else
02203         return false;
02204 #endif
02205     }
02206 
02207 
02209     template <class T>
02210     inline bool CMatrix4<T>::equals(const core::CMatrix4<T>& other, const T tolerance) const
02211     {
02212 #if defined ( USE_MATRIX_TEST )
02213         if (definitelyIdentityMatrix && other.definitelyIdentityMatrix)
02214             return true;
02215 #endif
02216         for (s32 i = 0; i < 16; ++i)
02217             if (!core::equals(M[i],other.M[i], tolerance))
02218                 return false;
02219 
02220         return true;
02221     }
02222 
02223 
02224     // Multiply by scalar.
02225     template <class T>
02226     inline CMatrix4<T> operator*(const T scalar, const CMatrix4<T>& mat)
02227     {
02228         return mat*scalar;
02229     }
02230 
02231 
02233     typedef CMatrix4<f32> matrix4;
02234 
02236     IRRLICHT_API extern const matrix4 IdentityMatrix;
02237 
02238 } // end namespace core
02239 } // end namespace irr
02240 
02241 #endif
02242