From 7028cbe09c688437910a25623098762bf0fa592d Mon Sep 17 00:00:00 2001 From: David Walter Seikel Date: Mon, 28 Mar 2016 22:28:34 +1000 Subject: Move Irrlicht to src/others. --- src/others/irrlicht-1.8.1/include/quaternion.h | 696 +++++++++++++++++++++++++ 1 file changed, 696 insertions(+) create mode 100644 src/others/irrlicht-1.8.1/include/quaternion.h (limited to 'src/others/irrlicht-1.8.1/include/quaternion.h') diff --git a/src/others/irrlicht-1.8.1/include/quaternion.h b/src/others/irrlicht-1.8.1/include/quaternion.h new file mode 100644 index 0000000..f2e3921 --- /dev/null +++ b/src/others/irrlicht-1.8.1/include/quaternion.h @@ -0,0 +1,696 @@ +// Copyright (C) 2002-2012 Nikolaus Gebhardt +// This file is part of the "Irrlicht Engine". +// For conditions of distribution and use, see copyright notice in irrlicht.h + +#ifndef __IRR_QUATERNION_H_INCLUDED__ +#define __IRR_QUATERNION_H_INCLUDED__ + +#include "irrTypes.h" +#include "irrMath.h" +#include "matrix4.h" +#include "vector3d.h" + +// Between Irrlicht 1.7 and Irrlicht 1.8 the quaternion-matrix conversions got fixed. +// This define disables all involved functions completely to allow finding all places +// where the wrong conversions had been in use. +#define IRR_TEST_BROKEN_QUATERNION_USE 0 + +namespace irr +{ +namespace core +{ + +//! Quaternion class for representing rotations. +/** It provides cheap combinations and avoids gimbal locks. +Also useful for interpolations. */ +class quaternion +{ + public: + + //! Default Constructor + quaternion() : X(0.0f), Y(0.0f), Z(0.0f), W(1.0f) {} + + //! Constructor + quaternion(f32 x, f32 y, f32 z, f32 w) : X(x), Y(y), Z(z), W(w) { } + + //! Constructor which converts euler angles (radians) to a quaternion + quaternion(f32 x, f32 y, f32 z); + + //! Constructor which converts euler angles (radians) to a quaternion + quaternion(const vector3df& vec); + +#if !IRR_TEST_BROKEN_QUATERNION_USE + //! Constructor which converts a matrix to a quaternion + quaternion(const matrix4& mat); +#endif + + //! Equalilty operator + bool operator==(const quaternion& other) const; + + //! inequality operator + bool operator!=(const quaternion& other) const; + + //! Assignment operator + inline quaternion& operator=(const quaternion& other); + +#if !IRR_TEST_BROKEN_QUATERNION_USE + //! Matrix assignment operator + inline quaternion& operator=(const matrix4& other); +#endif + + //! Add operator + quaternion operator+(const quaternion& other) const; + + //! Multiplication operator + quaternion operator*(const quaternion& other) const; + + //! Multiplication operator with scalar + quaternion operator*(f32 s) const; + + //! Multiplication operator with scalar + quaternion& operator*=(f32 s); + + //! Multiplication operator + vector3df operator*(const vector3df& v) const; + + //! Multiplication operator + quaternion& operator*=(const quaternion& other); + + //! Calculates the dot product + inline f32 dotProduct(const quaternion& other) const; + + //! Sets new quaternion + inline quaternion& set(f32 x, f32 y, f32 z, f32 w); + + //! Sets new quaternion based on euler angles (radians) + inline quaternion& set(f32 x, f32 y, f32 z); + + //! Sets new quaternion based on euler angles (radians) + inline quaternion& set(const core::vector3df& vec); + + //! Sets new quaternion from other quaternion + inline quaternion& set(const core::quaternion& quat); + + //! returns if this quaternion equals the other one, taking floating point rounding errors into account + inline bool equals(const quaternion& other, + const f32 tolerance = ROUNDING_ERROR_f32 ) const; + + //! Normalizes the quaternion + inline quaternion& normalize(); + +#if !IRR_TEST_BROKEN_QUATERNION_USE + //! Creates a matrix from this quaternion + matrix4 getMatrix() const; +#endif + + //! Creates a matrix from this quaternion + void getMatrix( matrix4 &dest, const core::vector3df &translation=core::vector3df() ) const; + + /*! + Creates a matrix from this quaternion + Rotate about a center point + shortcut for + core::quaternion q; + q.rotationFromTo ( vin[i].Normal, forward ); + q.getMatrixCenter ( lookat, center, newPos ); + + core::matrix4 m2; + m2.setInverseTranslation ( center ); + lookat *= m2; + + core::matrix4 m3; + m2.setTranslation ( newPos ); + lookat *= m3; + + */ + void getMatrixCenter( matrix4 &dest, const core::vector3df ¢er, const core::vector3df &translation ) const; + + //! Creates a matrix from this quaternion + inline void getMatrix_transposed( matrix4 &dest ) const; + + //! Inverts this quaternion + quaternion& makeInverse(); + + //! Set this quaternion to the linear interpolation between two quaternions + /** \param q1 First quaternion to be interpolated. + \param q2 Second quaternion to be interpolated. + \param time Progress of interpolation. For time=0 the result is + q1, for time=1 the result is q2. Otherwise interpolation + between q1 and q2. + */ + quaternion& lerp(quaternion q1, quaternion q2, f32 time); + + //! Set this quaternion to the result of the spherical interpolation between two quaternions + /** \param q1 First quaternion to be interpolated. + \param q2 Second quaternion to be interpolated. + \param time Progress of interpolation. For time=0 the result is + q1, for time=1 the result is q2. Otherwise interpolation + between q1 and q2. + \param threshold To avoid inaccuracies at the end (time=1) the + interpolation switches to linear interpolation at some point. + This value defines how much of the remaining interpolation will + be calculated with lerp. Everything from 1-threshold up will be + linear interpolation. + */ + quaternion& slerp(quaternion q1, quaternion q2, + f32 time, f32 threshold=.05f); + + //! Create quaternion from rotation angle and rotation axis. + /** Axis must be unit length. + The quaternion representing the rotation is + q = cos(A/2)+sin(A/2)*(x*i+y*j+z*k). + \param angle Rotation Angle in radians. + \param axis Rotation axis. */ + quaternion& fromAngleAxis (f32 angle, const vector3df& axis); + + //! Fills an angle (radians) around an axis (unit vector) + void toAngleAxis (f32 &angle, core::vector3df& axis) const; + + //! Output this quaternion to an euler angle (radians) + void toEuler(vector3df& euler) const; + + //! Set quaternion to identity + quaternion& makeIdentity(); + + //! Set quaternion to represent a rotation from one vector to another. + quaternion& rotationFromTo(const vector3df& from, const vector3df& to); + + //! Quaternion elements. + f32 X; // vectorial (imaginary) part + f32 Y; + f32 Z; + f32 W; // real part +}; + + +// Constructor which converts euler angles to a quaternion +inline quaternion::quaternion(f32 x, f32 y, f32 z) +{ + set(x,y,z); +} + + +// Constructor which converts euler angles to a quaternion +inline quaternion::quaternion(const vector3df& vec) +{ + set(vec.X,vec.Y,vec.Z); +} + +#if !IRR_TEST_BROKEN_QUATERNION_USE +// Constructor which converts a matrix to a quaternion +inline quaternion::quaternion(const matrix4& mat) +{ + (*this) = mat; +} +#endif + +// equal operator +inline bool quaternion::operator==(const quaternion& other) const +{ + return ((X == other.X) && + (Y == other.Y) && + (Z == other.Z) && + (W == other.W)); +} + +// inequality operator +inline bool quaternion::operator!=(const quaternion& other) const +{ + return !(*this == other); +} + +// assignment operator +inline quaternion& quaternion::operator=(const quaternion& other) +{ + X = other.X; + Y = other.Y; + Z = other.Z; + W = other.W; + return *this; +} + +#if !IRR_TEST_BROKEN_QUATERNION_USE +// matrix assignment operator +inline quaternion& quaternion::operator=(const matrix4& m) +{ + const f32 diag = m[0] + m[5] + m[10] + 1; + + if( diag > 0.0f ) + { + const f32 scale = sqrtf(diag) * 2.0f; // get scale from diagonal + + // TODO: speed this up + X = (m[6] - m[9]) / scale; + Y = (m[8] - m[2]) / scale; + Z = (m[1] - m[4]) / scale; + W = 0.25f * scale; + } + else + { + if (m[0]>m[5] && m[0]>m[10]) + { + // 1st element of diag is greatest value + // find scale according to 1st element, and double it + const f32 scale = sqrtf(1.0f + m[0] - m[5] - m[10]) * 2.0f; + + // TODO: speed this up + X = 0.25f * scale; + Y = (m[4] + m[1]) / scale; + Z = (m[2] + m[8]) / scale; + W = (m[6] - m[9]) / scale; + } + else if (m[5]>m[10]) + { + // 2nd element of diag is greatest value + // find scale according to 2nd element, and double it + const f32 scale = sqrtf(1.0f + m[5] - m[0] - m[10]) * 2.0f; + + // TODO: speed this up + X = (m[4] + m[1]) / scale; + Y = 0.25f * scale; + Z = (m[9] + m[6]) / scale; + W = (m[8] - m[2]) / scale; + } + else + { + // 3rd element of diag is greatest value + // find scale according to 3rd element, and double it + const f32 scale = sqrtf(1.0f + m[10] - m[0] - m[5]) * 2.0f; + + // TODO: speed this up + X = (m[8] + m[2]) / scale; + Y = (m[9] + m[6]) / scale; + Z = 0.25f * scale; + W = (m[1] - m[4]) / scale; + } + } + + return normalize(); +} +#endif + + +// multiplication operator +inline quaternion quaternion::operator*(const quaternion& other) const +{ + quaternion tmp; + + tmp.W = (other.W * W) - (other.X * X) - (other.Y * Y) - (other.Z * Z); + tmp.X = (other.W * X) + (other.X * W) + (other.Y * Z) - (other.Z * Y); + tmp.Y = (other.W * Y) + (other.Y * W) + (other.Z * X) - (other.X * Z); + tmp.Z = (other.W * Z) + (other.Z * W) + (other.X * Y) - (other.Y * X); + + return tmp; +} + + +// multiplication operator +inline quaternion quaternion::operator*(f32 s) const +{ + return quaternion(s*X, s*Y, s*Z, s*W); +} + + +// multiplication operator +inline quaternion& quaternion::operator*=(f32 s) +{ + X*=s; + Y*=s; + Z*=s; + W*=s; + return *this; +} + +// multiplication operator +inline quaternion& quaternion::operator*=(const quaternion& other) +{ + return (*this = other * (*this)); +} + +// add operator +inline quaternion quaternion::operator+(const quaternion& b) const +{ + return quaternion(X+b.X, Y+b.Y, Z+b.Z, W+b.W); +} + +#if !IRR_TEST_BROKEN_QUATERNION_USE +// Creates a matrix from this quaternion +inline matrix4 quaternion::getMatrix() const +{ + core::matrix4 m; + getMatrix(m); + return m; +} +#endif + +/*! + Creates a matrix from this quaternion +*/ +inline void quaternion::getMatrix(matrix4 &dest, + const core::vector3df ¢er) const +{ + dest[0] = 1.0f - 2.0f*Y*Y - 2.0f*Z*Z; + dest[1] = 2.0f*X*Y + 2.0f*Z*W; + dest[2] = 2.0f*X*Z - 2.0f*Y*W; + dest[3] = 0.0f; + + dest[4] = 2.0f*X*Y - 2.0f*Z*W; + dest[5] = 1.0f - 2.0f*X*X - 2.0f*Z*Z; + dest[6] = 2.0f*Z*Y + 2.0f*X*W; + dest[7] = 0.0f; + + dest[8] = 2.0f*X*Z + 2.0f*Y*W; + dest[9] = 2.0f*Z*Y - 2.0f*X*W; + dest[10] = 1.0f - 2.0f*X*X - 2.0f*Y*Y; + dest[11] = 0.0f; + + dest[12] = center.X; + dest[13] = center.Y; + dest[14] = center.Z; + dest[15] = 1.f; + + dest.setDefinitelyIdentityMatrix ( false ); +} + + +/*! + Creates a matrix from this quaternion + Rotate about a center point + shortcut for + core::quaternion q; + q.rotationFromTo(vin[i].Normal, forward); + q.getMatrix(lookat, center); + + core::matrix4 m2; + m2.setInverseTranslation(center); + lookat *= m2; +*/ +inline void quaternion::getMatrixCenter(matrix4 &dest, + const core::vector3df ¢er, + const core::vector3df &translation) const +{ + dest[0] = 1.0f - 2.0f*Y*Y - 2.0f*Z*Z; + dest[1] = 2.0f*X*Y + 2.0f*Z*W; + dest[2] = 2.0f*X*Z - 2.0f*Y*W; + dest[3] = 0.0f; + + dest[4] = 2.0f*X*Y - 2.0f*Z*W; + dest[5] = 1.0f - 2.0f*X*X - 2.0f*Z*Z; + dest[6] = 2.0f*Z*Y + 2.0f*X*W; + dest[7] = 0.0f; + + dest[8] = 2.0f*X*Z + 2.0f*Y*W; + dest[9] = 2.0f*Z*Y - 2.0f*X*W; + dest[10] = 1.0f - 2.0f*X*X - 2.0f*Y*Y; + dest[11] = 0.0f; + + dest.setRotationCenter ( center, translation ); +} + +// Creates a matrix from this quaternion +inline void quaternion::getMatrix_transposed(matrix4 &dest) const +{ + dest[0] = 1.0f - 2.0f*Y*Y - 2.0f*Z*Z; + dest[4] = 2.0f*X*Y + 2.0f*Z*W; + dest[8] = 2.0f*X*Z - 2.0f*Y*W; + dest[12] = 0.0f; + + dest[1] = 2.0f*X*Y - 2.0f*Z*W; + dest[5] = 1.0f - 2.0f*X*X - 2.0f*Z*Z; + dest[9] = 2.0f*Z*Y + 2.0f*X*W; + dest[13] = 0.0f; + + dest[2] = 2.0f*X*Z + 2.0f*Y*W; + dest[6] = 2.0f*Z*Y - 2.0f*X*W; + dest[10] = 1.0f - 2.0f*X*X - 2.0f*Y*Y; + dest[14] = 0.0f; + + dest[3] = 0.f; + dest[7] = 0.f; + dest[11] = 0.f; + dest[15] = 1.f; + + dest.setDefinitelyIdentityMatrix(false); +} + + +// Inverts this quaternion +inline quaternion& quaternion::makeInverse() +{ + X = -X; Y = -Y; Z = -Z; + return *this; +} + + +// sets new quaternion +inline quaternion& quaternion::set(f32 x, f32 y, f32 z, f32 w) +{ + X = x; + Y = y; + Z = z; + W = w; + return *this; +} + + +// sets new quaternion based on euler angles +inline quaternion& quaternion::set(f32 x, f32 y, f32 z) +{ + f64 angle; + + angle = x * 0.5; + const f64 sr = sin(angle); + const f64 cr = cos(angle); + + angle = y * 0.5; + const f64 sp = sin(angle); + const f64 cp = cos(angle); + + angle = z * 0.5; + const f64 sy = sin(angle); + const f64 cy = cos(angle); + + const f64 cpcy = cp * cy; + const f64 spcy = sp * cy; + const f64 cpsy = cp * sy; + const f64 spsy = sp * sy; + + X = (f32)(sr * cpcy - cr * spsy); + Y = (f32)(cr * spcy + sr * cpsy); + Z = (f32)(cr * cpsy - sr * spcy); + W = (f32)(cr * cpcy + sr * spsy); + + return normalize(); +} + +// sets new quaternion based on euler angles +inline quaternion& quaternion::set(const core::vector3df& vec) +{ + return set(vec.X, vec.Y, vec.Z); +} + +// sets new quaternion based on other quaternion +inline quaternion& quaternion::set(const core::quaternion& quat) +{ + return (*this=quat); +} + + +//! returns if this quaternion equals the other one, taking floating point rounding errors into account +inline bool quaternion::equals(const quaternion& other, const f32 tolerance) const +{ + return core::equals(X, other.X, tolerance) && + core::equals(Y, other.Y, tolerance) && + core::equals(Z, other.Z, tolerance) && + core::equals(W, other.W, tolerance); +} + + +// normalizes the quaternion +inline quaternion& quaternion::normalize() +{ + const f32 n = X*X + Y*Y + Z*Z + W*W; + + if (n == 1) + return *this; + + //n = 1.0f / sqrtf(n); + return (*this *= reciprocal_squareroot ( n )); +} + + +// set this quaternion to the result of the linear interpolation between two quaternions +inline quaternion& quaternion::lerp(quaternion q1, quaternion q2, f32 time) +{ + const f32 scale = 1.0f - time; + return (*this = (q1*scale) + (q2*time)); +} + + +// set this quaternion to the result of the interpolation between two quaternions +inline quaternion& quaternion::slerp(quaternion q1, quaternion q2, f32 time, f32 threshold) +{ + f32 angle = q1.dotProduct(q2); + + // make sure we use the short rotation + if (angle < 0.0f) + { + q1 *= -1.0f; + angle *= -1.0f; + } + + if (angle <= (1-threshold)) // spherical interpolation + { + const f32 theta = acosf(angle); + const f32 invsintheta = reciprocal(sinf(theta)); + const f32 scale = sinf(theta * (1.0f-time)) * invsintheta; + const f32 invscale = sinf(theta * time) * invsintheta; + return (*this = (q1*scale) + (q2*invscale)); + } + else // linear interploation + return lerp(q1,q2,time); +} + + +// calculates the dot product +inline f32 quaternion::dotProduct(const quaternion& q2) const +{ + return (X * q2.X) + (Y * q2.Y) + (Z * q2.Z) + (W * q2.W); +} + + +//! axis must be unit length, angle in radians +inline quaternion& quaternion::fromAngleAxis(f32 angle, const vector3df& axis) +{ + const f32 fHalfAngle = 0.5f*angle; + const f32 fSin = sinf(fHalfAngle); + W = cosf(fHalfAngle); + X = fSin*axis.X; + Y = fSin*axis.Y; + Z = fSin*axis.Z; + return *this; +} + + +inline void quaternion::toAngleAxis(f32 &angle, core::vector3df &axis) const +{ + const f32 scale = sqrtf(X*X + Y*Y + Z*Z); + + if (core::iszero(scale) || W > 1.0f || W < -1.0f) + { + angle = 0.0f; + axis.X = 0.0f; + axis.Y = 1.0f; + axis.Z = 0.0f; + } + else + { + const f32 invscale = reciprocal(scale); + angle = 2.0f * acosf(W); + axis.X = X * invscale; + axis.Y = Y * invscale; + axis.Z = Z * invscale; + } +} + +inline void quaternion::toEuler(vector3df& euler) const +{ + const f64 sqw = W*W; + const f64 sqx = X*X; + const f64 sqy = Y*Y; + const f64 sqz = Z*Z; + const f64 test = 2.0 * (Y*W - X*Z); + + if (core::equals(test, 1.0, 0.000001)) + { + // heading = rotation about z-axis + euler.Z = (f32) (-2.0*atan2(X, W)); + // bank = rotation about x-axis + euler.X = 0; + // attitude = rotation about y-axis + euler.Y = (f32) (core::PI64/2.0); + } + else if (core::equals(test, -1.0, 0.000001)) + { + // heading = rotation about z-axis + euler.Z = (f32) (2.0*atan2(X, W)); + // bank = rotation about x-axis + euler.X = 0; + // attitude = rotation about y-axis + euler.Y = (f32) (core::PI64/-2.0); + } + else + { + // heading = rotation about z-axis + euler.Z = (f32) atan2(2.0 * (X*Y +Z*W),(sqx - sqy - sqz + sqw)); + // bank = rotation about x-axis + euler.X = (f32) atan2(2.0 * (Y*Z +X*W),(-sqx - sqy + sqz + sqw)); + // attitude = rotation about y-axis + euler.Y = (f32) asin( clamp(test, -1.0, 1.0) ); + } +} + + +inline vector3df quaternion::operator* (const vector3df& v) const +{ + // nVidia SDK implementation + + vector3df uv, uuv; + vector3df qvec(X, Y, Z); + uv = qvec.crossProduct(v); + uuv = qvec.crossProduct(uv); + uv *= (2.0f * W); + uuv *= 2.0f; + + return v + uv + uuv; +} + +// set quaternion to identity +inline core::quaternion& quaternion::makeIdentity() +{ + W = 1.f; + X = 0.f; + Y = 0.f; + Z = 0.f; + return *this; +} + +inline core::quaternion& quaternion::rotationFromTo(const vector3df& from, const vector3df& to) +{ + // Based on Stan Melax's article in Game Programming Gems + // Copy, since cannot modify local + vector3df v0 = from; + vector3df v1 = to; + v0.normalize(); + v1.normalize(); + + const f32 d = v0.dotProduct(v1); + if (d >= 1.0f) // If dot == 1, vectors are the same + { + return makeIdentity(); + } + else if (d <= -1.0f) // exactly opposite + { + core::vector3df axis(1.0f, 0.f, 0.f); + axis = axis.crossProduct(v0); + if (axis.getLength()==0) + { + axis.set(0.f,1.f,0.f); + axis = axis.crossProduct(v0); + } + // same as fromAngleAxis(core::PI, axis).normalize(); + return set(axis.X, axis.Y, axis.Z, 0).normalize(); + } + + const f32 s = sqrtf( (1+d)*2 ); // optimize inv_sqrt + const f32 invs = 1.f / s; + const vector3df c = v0.crossProduct(v1)*invs; + return set(c.X, c.Y, c.Z, s * 0.5f).normalize(); +} + + +} // end namespace core +} // end namespace irr + +#endif + -- cgit v1.1