From 393b5cd1dc438872af89d334ef6e5fcc59f27d47 Mon Sep 17 00:00:00 2001 From: David Walter Seikel Date: Sun, 13 Jan 2013 17:24:39 +1000 Subject: Added Irrlicht 1.8, but without all the Windows binaries. --- .../irrlicht-1.8/source/Irrlicht/jpeglib/jdarith.c | 776 +++++++++++++++++++++ 1 file changed, 776 insertions(+) create mode 100644 libraries/irrlicht-1.8/source/Irrlicht/jpeglib/jdarith.c (limited to 'libraries/irrlicht-1.8/source/Irrlicht/jpeglib/jdarith.c') diff --git a/libraries/irrlicht-1.8/source/Irrlicht/jpeglib/jdarith.c b/libraries/irrlicht-1.8/source/Irrlicht/jpeglib/jdarith.c new file mode 100644 index 0000000..86a4ac7 --- /dev/null +++ b/libraries/irrlicht-1.8/source/Irrlicht/jpeglib/jdarith.c @@ -0,0 +1,776 @@ +/* + * jdarith.c + * + * Developed 1997-2011 by Guido Vollbeding. + * This file is part of the Independent JPEG Group's software. + * For conditions of distribution and use, see the accompanying README file. + * + * This file contains portable arithmetic entropy decoding routines for JPEG + * (implementing the ISO/IEC IS 10918-1 and CCITT Recommendation ITU-T T.81). + * + * Both sequential and progressive modes are supported in this single module. + * + * Suspension is not currently supported in this module. + */ + +#define JPEG_INTERNALS +#include "jinclude.h" +#include "jpeglib.h" + + +/* Expanded entropy decoder object for arithmetic decoding. */ + +typedef struct { + struct jpeg_entropy_decoder pub; /* public fields */ + + INT32 c; /* C register, base of coding interval + input bit buffer */ + INT32 a; /* A register, normalized size of coding interval */ + int ct; /* bit shift counter, # of bits left in bit buffer part of C */ + /* init: ct = -16 */ + /* run: ct = 0..7 */ + /* error: ct = -1 */ + int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */ + int dc_context[MAX_COMPS_IN_SCAN]; /* context index for DC conditioning */ + + unsigned int restarts_to_go; /* MCUs left in this restart interval */ + + /* Pointers to statistics areas (these workspaces have image lifespan) */ + unsigned char * dc_stats[NUM_ARITH_TBLS]; + unsigned char * ac_stats[NUM_ARITH_TBLS]; + + /* Statistics bin for coding with fixed probability 0.5 */ + unsigned char fixed_bin[4]; +} arith_entropy_decoder; + +typedef arith_entropy_decoder * arith_entropy_ptr; + +/* The following two definitions specify the allocation chunk size + * for the statistics area. + * According to sections F.1.4.4.1.3 and F.1.4.4.2, we need at least + * 49 statistics bins for DC, and 245 statistics bins for AC coding. + * + * We use a compact representation with 1 byte per statistics bin, + * thus the numbers directly represent byte sizes. + * This 1 byte per statistics bin contains the meaning of the MPS + * (more probable symbol) in the highest bit (mask 0x80), and the + * index into the probability estimation state machine table + * in the lower bits (mask 0x7F). + */ + +#define DC_STAT_BINS 64 +#define AC_STAT_BINS 256 + + +LOCAL(int) +get_byte (j_decompress_ptr cinfo) +/* Read next input byte; we do not support suspension in this module. */ +{ + struct jpeg_source_mgr * src = cinfo->src; + + if (src->bytes_in_buffer == 0) + if (! (*src->fill_input_buffer) (cinfo)) + ERREXIT(cinfo, JERR_CANT_SUSPEND); + src->bytes_in_buffer--; + return GETJOCTET(*src->next_input_byte++); +} + + +/* + * The core arithmetic decoding routine (common in JPEG and JBIG). + * This needs to go as fast as possible. + * Machine-dependent optimization facilities + * are not utilized in this portable implementation. + * However, this code should be fairly efficient and + * may be a good base for further optimizations anyway. + * + * Return value is 0 or 1 (binary decision). + * + * Note: I've changed the handling of the code base & bit + * buffer register C compared to other implementations + * based on the standards layout & procedures. + * While it also contains both the actual base of the + * coding interval (16 bits) and the next-bits buffer, + * the cut-point between these two parts is floating + * (instead of fixed) with the bit shift counter CT. + * Thus, we also need only one (variable instead of + * fixed size) shift for the LPS/MPS decision, and + * we can get away with any renormalization update + * of C (except for new data insertion, of course). + * + * I've also introduced a new scheme for accessing + * the probability estimation state machine table, + * derived from Markus Kuhn's JBIG implementation. + */ + +LOCAL(int) +arith_decode (j_decompress_ptr cinfo, unsigned char *st) +{ + register arith_entropy_ptr e = (arith_entropy_ptr) cinfo->entropy; + register unsigned char nl, nm; + register INT32 qe, temp; + register int sv, data; + + /* Renormalization & data input per section D.2.6 */ + while (e->a < 0x8000L) { + if (--e->ct < 0) { + /* Need to fetch next data byte */ + if (cinfo->unread_marker) + data = 0; /* stuff zero data */ + else { + data = get_byte(cinfo); /* read next input byte */ + if (data == 0xFF) { /* zero stuff or marker code */ + do data = get_byte(cinfo); + while (data == 0xFF); /* swallow extra 0xFF bytes */ + if (data == 0) + data = 0xFF; /* discard stuffed zero byte */ + else { + /* Note: Different from the Huffman decoder, hitting + * a marker while processing the compressed data + * segment is legal in arithmetic coding. + * The convention is to supply zero data + * then until decoding is complete. + */ + cinfo->unread_marker = data; + data = 0; + } + } + } + e->c = (e->c << 8) | data; /* insert data into C register */ + if ((e->ct += 8) < 0) /* update bit shift counter */ + /* Need more initial bytes */ + if (++e->ct == 0) + /* Got 2 initial bytes -> re-init A and exit loop */ + e->a = 0x8000L; /* => e->a = 0x10000L after loop exit */ + } + e->a <<= 1; + } + + /* Fetch values from our compact representation of Table D.3(D.2): + * Qe values and probability estimation state machine + */ + sv = *st; + qe = jpeg_aritab[sv & 0x7F]; /* => Qe_Value */ + nl = qe & 0xFF; qe >>= 8; /* Next_Index_LPS + Switch_MPS */ + nm = qe & 0xFF; qe >>= 8; /* Next_Index_MPS */ + + /* Decode & estimation procedures per sections D.2.4 & D.2.5 */ + temp = e->a - qe; + e->a = temp; + temp <<= e->ct; + if (e->c >= temp) { + e->c -= temp; + /* Conditional LPS (less probable symbol) exchange */ + if (e->a < qe) { + e->a = qe; + *st = (sv & 0x80) ^ nm; /* Estimate_after_MPS */ + } else { + e->a = qe; + *st = (sv & 0x80) ^ nl; /* Estimate_after_LPS */ + sv ^= 0x80; /* Exchange LPS/MPS */ + } + } else if (e->a < 0x8000L) { + /* Conditional MPS (more probable symbol) exchange */ + if (e->a < qe) { + *st = (sv & 0x80) ^ nl; /* Estimate_after_LPS */ + sv ^= 0x80; /* Exchange LPS/MPS */ + } else { + *st = (sv & 0x80) ^ nm; /* Estimate_after_MPS */ + } + } + + return sv >> 7; +} + + +/* + * Check for a restart marker & resynchronize decoder. + */ + +LOCAL(void) +process_restart (j_decompress_ptr cinfo) +{ + arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; + int ci; + jpeg_component_info * compptr; + + /* Advance past the RSTn marker */ + if (! (*cinfo->marker->read_restart_marker) (cinfo)) + ERREXIT(cinfo, JERR_CANT_SUSPEND); + + /* Re-initialize statistics areas */ + for (ci = 0; ci < cinfo->comps_in_scan; ci++) { + compptr = cinfo->cur_comp_info[ci]; + if (! cinfo->progressive_mode || (cinfo->Ss == 0 && cinfo->Ah == 0)) { + MEMZERO(entropy->dc_stats[compptr->dc_tbl_no], DC_STAT_BINS); + /* Reset DC predictions to 0 */ + entropy->last_dc_val[ci] = 0; + entropy->dc_context[ci] = 0; + } + if ((! cinfo->progressive_mode && cinfo->lim_Se) || + (cinfo->progressive_mode && cinfo->Ss)) { + MEMZERO(entropy->ac_stats[compptr->ac_tbl_no], AC_STAT_BINS); + } + } + + /* Reset arithmetic decoding variables */ + entropy->c = 0; + entropy->a = 0; + entropy->ct = -16; /* force reading 2 initial bytes to fill C */ + + /* Reset restart counter */ + entropy->restarts_to_go = cinfo->restart_interval; +} + + +/* + * Arithmetic MCU decoding. + * Each of these routines decodes and returns one MCU's worth of + * arithmetic-compressed coefficients. + * The coefficients are reordered from zigzag order into natural array order, + * but are not dequantized. + * + * The i'th block of the MCU is stored into the block pointed to by + * MCU_data[i]. WE ASSUME THIS AREA IS INITIALLY ZEROED BY THE CALLER. + */ + +/* + * MCU decoding for DC initial scan (either spectral selection, + * or first pass of successive approximation). + */ + +METHODDEF(boolean) +decode_mcu_DC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) +{ + arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; + JBLOCKROW block; + unsigned char *st; + int blkn, ci, tbl, sign; + int v, m; + + /* Process restart marker if needed */ + if (cinfo->restart_interval) { + if (entropy->restarts_to_go == 0) + process_restart(cinfo); + entropy->restarts_to_go--; + } + + if (entropy->ct == -1) return TRUE; /* if error do nothing */ + + /* Outer loop handles each block in the MCU */ + + for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { + block = MCU_data[blkn]; + ci = cinfo->MCU_membership[blkn]; + tbl = cinfo->cur_comp_info[ci]->dc_tbl_no; + + /* Sections F.2.4.1 & F.1.4.4.1: Decoding of DC coefficients */ + + /* Table F.4: Point to statistics bin S0 for DC coefficient coding */ + st = entropy->dc_stats[tbl] + entropy->dc_context[ci]; + + /* Figure F.19: Decode_DC_DIFF */ + if (arith_decode(cinfo, st) == 0) + entropy->dc_context[ci] = 0; + else { + /* Figure F.21: Decoding nonzero value v */ + /* Figure F.22: Decoding the sign of v */ + sign = arith_decode(cinfo, st + 1); + st += 2; st += sign; + /* Figure F.23: Decoding the magnitude category of v */ + if ((m = arith_decode(cinfo, st)) != 0) { + st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */ + while (arith_decode(cinfo, st)) { + if ((m <<= 1) == 0x8000) { + WARNMS(cinfo, JWRN_ARITH_BAD_CODE); + entropy->ct = -1; /* magnitude overflow */ + return TRUE; + } + st += 1; + } + } + /* Section F.1.4.4.1.2: Establish dc_context conditioning category */ + if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1)) + entropy->dc_context[ci] = 0; /* zero diff category */ + else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1)) + entropy->dc_context[ci] = 12 + (sign * 4); /* large diff category */ + else + entropy->dc_context[ci] = 4 + (sign * 4); /* small diff category */ + v = m; + /* Figure F.24: Decoding the magnitude bit pattern of v */ + st += 14; + while (m >>= 1) + if (arith_decode(cinfo, st)) v |= m; + v += 1; if (sign) v = -v; + entropy->last_dc_val[ci] += v; + } + + /* Scale and output the DC coefficient (assumes jpeg_natural_order[0]=0) */ + (*block)[0] = (JCOEF) (entropy->last_dc_val[ci] << cinfo->Al); + } + + return TRUE; +} + + +/* + * MCU decoding for AC initial scan (either spectral selection, + * or first pass of successive approximation). + */ + +METHODDEF(boolean) +decode_mcu_AC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) +{ + arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; + JBLOCKROW block; + unsigned char *st; + int tbl, sign, k; + int v, m; + const int * natural_order; + + /* Process restart marker if needed */ + if (cinfo->restart_interval) { + if (entropy->restarts_to_go == 0) + process_restart(cinfo); + entropy->restarts_to_go--; + } + + if (entropy->ct == -1) return TRUE; /* if error do nothing */ + + natural_order = cinfo->natural_order; + + /* There is always only one block per MCU */ + block = MCU_data[0]; + tbl = cinfo->cur_comp_info[0]->ac_tbl_no; + + /* Sections F.2.4.2 & F.1.4.4.2: Decoding of AC coefficients */ + + /* Figure F.20: Decode_AC_coefficients */ + for (k = cinfo->Ss; k <= cinfo->Se; k++) { + st = entropy->ac_stats[tbl] + 3 * (k - 1); + if (arith_decode(cinfo, st)) break; /* EOB flag */ + while (arith_decode(cinfo, st + 1) == 0) { + st += 3; k++; + if (k > cinfo->Se) { + WARNMS(cinfo, JWRN_ARITH_BAD_CODE); + entropy->ct = -1; /* spectral overflow */ + return TRUE; + } + } + /* Figure F.21: Decoding nonzero value v */ + /* Figure F.22: Decoding the sign of v */ + sign = arith_decode(cinfo, entropy->fixed_bin); + st += 2; + /* Figure F.23: Decoding the magnitude category of v */ + if ((m = arith_decode(cinfo, st)) != 0) { + if (arith_decode(cinfo, st)) { + m <<= 1; + st = entropy->ac_stats[tbl] + + (k <= cinfo->arith_ac_K[tbl] ? 189 : 217); + while (arith_decode(cinfo, st)) { + if ((m <<= 1) == 0x8000) { + WARNMS(cinfo, JWRN_ARITH_BAD_CODE); + entropy->ct = -1; /* magnitude overflow */ + return TRUE; + } + st += 1; + } + } + } + v = m; + /* Figure F.24: Decoding the magnitude bit pattern of v */ + st += 14; + while (m >>= 1) + if (arith_decode(cinfo, st)) v |= m; + v += 1; if (sign) v = -v; + /* Scale and output coefficient in natural (dezigzagged) order */ + (*block)[natural_order[k]] = (JCOEF) (v << cinfo->Al); + } + + return TRUE; +} + + +/* + * MCU decoding for DC successive approximation refinement scan. + */ + +METHODDEF(boolean) +decode_mcu_DC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) +{ + arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; + unsigned char *st; + int p1, blkn; + + /* Process restart marker if needed */ + if (cinfo->restart_interval) { + if (entropy->restarts_to_go == 0) + process_restart(cinfo); + entropy->restarts_to_go--; + } + + st = entropy->fixed_bin; /* use fixed probability estimation */ + p1 = 1 << cinfo->Al; /* 1 in the bit position being coded */ + + /* Outer loop handles each block in the MCU */ + + for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { + /* Encoded data is simply the next bit of the two's-complement DC value */ + if (arith_decode(cinfo, st)) + MCU_data[blkn][0][0] |= p1; + } + + return TRUE; +} + + +/* + * MCU decoding for AC successive approximation refinement scan. + */ + +METHODDEF(boolean) +decode_mcu_AC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) +{ + arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; + JBLOCKROW block; + JCOEFPTR thiscoef; + unsigned char *st; + int tbl, k, kex; + int p1, m1; + const int * natural_order; + + /* Process restart marker if needed */ + if (cinfo->restart_interval) { + if (entropy->restarts_to_go == 0) + process_restart(cinfo); + entropy->restarts_to_go--; + } + + if (entropy->ct == -1) return TRUE; /* if error do nothing */ + + natural_order = cinfo->natural_order; + + /* There is always only one block per MCU */ + block = MCU_data[0]; + tbl = cinfo->cur_comp_info[0]->ac_tbl_no; + + p1 = 1 << cinfo->Al; /* 1 in the bit position being coded */ + m1 = (-1) << cinfo->Al; /* -1 in the bit position being coded */ + + /* Establish EOBx (previous stage end-of-block) index */ + for (kex = cinfo->Se; kex > 0; kex--) + if ((*block)[natural_order[kex]]) break; + + for (k = cinfo->Ss; k <= cinfo->Se; k++) { + st = entropy->ac_stats[tbl] + 3 * (k - 1); + if (k > kex) + if (arith_decode(cinfo, st)) break; /* EOB flag */ + for (;;) { + thiscoef = *block + natural_order[k]; + if (*thiscoef) { /* previously nonzero coef */ + if (arith_decode(cinfo, st + 2)) { + if (*thiscoef < 0) + *thiscoef += m1; + else + *thiscoef += p1; + } + break; + } + if (arith_decode(cinfo, st + 1)) { /* newly nonzero coef */ + if (arith_decode(cinfo, entropy->fixed_bin)) + *thiscoef = m1; + else + *thiscoef = p1; + break; + } + st += 3; k++; + if (k > cinfo->Se) { + WARNMS(cinfo, JWRN_ARITH_BAD_CODE); + entropy->ct = -1; /* spectral overflow */ + return TRUE; + } + } + } + + return TRUE; +} + + +/* + * Decode one MCU's worth of arithmetic-compressed coefficients. + */ + +METHODDEF(boolean) +decode_mcu (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) +{ + arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; + jpeg_component_info * compptr; + JBLOCKROW block; + unsigned char *st; + int blkn, ci, tbl, sign, k; + int v, m; + const int * natural_order; + + /* Process restart marker if needed */ + if (cinfo->restart_interval) { + if (entropy->restarts_to_go == 0) + process_restart(cinfo); + entropy->restarts_to_go--; + } + + if (entropy->ct == -1) return TRUE; /* if error do nothing */ + + natural_order = cinfo->natural_order; + + /* Outer loop handles each block in the MCU */ + + for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { + block = MCU_data[blkn]; + ci = cinfo->MCU_membership[blkn]; + compptr = cinfo->cur_comp_info[ci]; + + /* Sections F.2.4.1 & F.1.4.4.1: Decoding of DC coefficients */ + + tbl = compptr->dc_tbl_no; + + /* Table F.4: Point to statistics bin S0 for DC coefficient coding */ + st = entropy->dc_stats[tbl] + entropy->dc_context[ci]; + + /* Figure F.19: Decode_DC_DIFF */ + if (arith_decode(cinfo, st) == 0) + entropy->dc_context[ci] = 0; + else { + /* Figure F.21: Decoding nonzero value v */ + /* Figure F.22: Decoding the sign of v */ + sign = arith_decode(cinfo, st + 1); + st += 2; st += sign; + /* Figure F.23: Decoding the magnitude category of v */ + if ((m = arith_decode(cinfo, st)) != 0) { + st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */ + while (arith_decode(cinfo, st)) { + if ((m <<= 1) == 0x8000) { + WARNMS(cinfo, JWRN_ARITH_BAD_CODE); + entropy->ct = -1; /* magnitude overflow */ + return TRUE; + } + st += 1; + } + } + /* Section F.1.4.4.1.2: Establish dc_context conditioning category */ + if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1)) + entropy->dc_context[ci] = 0; /* zero diff category */ + else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1)) + entropy->dc_context[ci] = 12 + (sign * 4); /* large diff category */ + else + entropy->dc_context[ci] = 4 + (sign * 4); /* small diff category */ + v = m; + /* Figure F.24: Decoding the magnitude bit pattern of v */ + st += 14; + while (m >>= 1) + if (arith_decode(cinfo, st)) v |= m; + v += 1; if (sign) v = -v; + entropy->last_dc_val[ci] += v; + } + + (*block)[0] = (JCOEF) entropy->last_dc_val[ci]; + + /* Sections F.2.4.2 & F.1.4.4.2: Decoding of AC coefficients */ + + if (cinfo->lim_Se == 0) continue; + tbl = compptr->ac_tbl_no; + k = 0; + + /* Figure F.20: Decode_AC_coefficients */ + do { + st = entropy->ac_stats[tbl] + 3 * k; + if (arith_decode(cinfo, st)) break; /* EOB flag */ + for (;;) { + k++; + if (arith_decode(cinfo, st + 1)) break; + st += 3; + if (k >= cinfo->lim_Se) { + WARNMS(cinfo, JWRN_ARITH_BAD_CODE); + entropy->ct = -1; /* spectral overflow */ + return TRUE; + } + } + /* Figure F.21: Decoding nonzero value v */ + /* Figure F.22: Decoding the sign of v */ + sign = arith_decode(cinfo, entropy->fixed_bin); + st += 2; + /* Figure F.23: Decoding the magnitude category of v */ + if ((m = arith_decode(cinfo, st)) != 0) { + if (arith_decode(cinfo, st)) { + m <<= 1; + st = entropy->ac_stats[tbl] + + (k <= cinfo->arith_ac_K[tbl] ? 189 : 217); + while (arith_decode(cinfo, st)) { + if ((m <<= 1) == 0x8000) { + WARNMS(cinfo, JWRN_ARITH_BAD_CODE); + entropy->ct = -1; /* magnitude overflow */ + return TRUE; + } + st += 1; + } + } + } + v = m; + /* Figure F.24: Decoding the magnitude bit pattern of v */ + st += 14; + while (m >>= 1) + if (arith_decode(cinfo, st)) v |= m; + v += 1; if (sign) v = -v; + (*block)[natural_order[k]] = (JCOEF) v; + } while (k < cinfo->lim_Se); + } + + return TRUE; +} + + +/* + * Initialize for an arithmetic-compressed scan. + */ + +METHODDEF(void) +start_pass (j_decompress_ptr cinfo) +{ + arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; + int ci, tbl; + jpeg_component_info * compptr; + + if (cinfo->progressive_mode) { + /* Validate progressive scan parameters */ + if (cinfo->Ss == 0) { + if (cinfo->Se != 0) + goto bad; + } else { + /* need not check Ss/Se < 0 since they came from unsigned bytes */ + if (cinfo->Se < cinfo->Ss || cinfo->Se > cinfo->lim_Se) + goto bad; + /* AC scans may have only one component */ + if (cinfo->comps_in_scan != 1) + goto bad; + } + if (cinfo->Ah != 0) { + /* Successive approximation refinement scan: must have Al = Ah-1. */ + if (cinfo->Ah-1 != cinfo->Al) + goto bad; + } + if (cinfo->Al > 13) { /* need not check for < 0 */ + bad: + ERREXIT4(cinfo, JERR_BAD_PROGRESSION, + cinfo->Ss, cinfo->Se, cinfo->Ah, cinfo->Al); + } + /* Update progression status, and verify that scan order is legal. + * Note that inter-scan inconsistencies are treated as warnings + * not fatal errors ... not clear if this is right way to behave. + */ + for (ci = 0; ci < cinfo->comps_in_scan; ci++) { + int coefi, cindex = cinfo->cur_comp_info[ci]->component_index; + int *coef_bit_ptr = & cinfo->coef_bits[cindex][0]; + if (cinfo->Ss && coef_bit_ptr[0] < 0) /* AC without prior DC scan */ + WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, 0); + for (coefi = cinfo->Ss; coefi <= cinfo->Se; coefi++) { + int expected = (coef_bit_ptr[coefi] < 0) ? 0 : coef_bit_ptr[coefi]; + if (cinfo->Ah != expected) + WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, coefi); + coef_bit_ptr[coefi] = cinfo->Al; + } + } + /* Select MCU decoding routine */ + if (cinfo->Ah == 0) { + if (cinfo->Ss == 0) + entropy->pub.decode_mcu = decode_mcu_DC_first; + else + entropy->pub.decode_mcu = decode_mcu_AC_first; + } else { + if (cinfo->Ss == 0) + entropy->pub.decode_mcu = decode_mcu_DC_refine; + else + entropy->pub.decode_mcu = decode_mcu_AC_refine; + } + } else { + /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG. + * This ought to be an error condition, but we make it a warning. + */ + if (cinfo->Ss != 0 || cinfo->Ah != 0 || cinfo->Al != 0 || + (cinfo->Se < DCTSIZE2 && cinfo->Se != cinfo->lim_Se)) + WARNMS(cinfo, JWRN_NOT_SEQUENTIAL); + /* Select MCU decoding routine */ + entropy->pub.decode_mcu = decode_mcu; + } + + /* Allocate & initialize requested statistics areas */ + for (ci = 0; ci < cinfo->comps_in_scan; ci++) { + compptr = cinfo->cur_comp_info[ci]; + if (! cinfo->progressive_mode || (cinfo->Ss == 0 && cinfo->Ah == 0)) { + tbl = compptr->dc_tbl_no; + if (tbl < 0 || tbl >= NUM_ARITH_TBLS) + ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl); + if (entropy->dc_stats[tbl] == NULL) + entropy->dc_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small) + ((j_common_ptr) cinfo, JPOOL_IMAGE, DC_STAT_BINS); + MEMZERO(entropy->dc_stats[tbl], DC_STAT_BINS); + /* Initialize DC predictions to 0 */ + entropy->last_dc_val[ci] = 0; + entropy->dc_context[ci] = 0; + } + if ((! cinfo->progressive_mode && cinfo->lim_Se) || + (cinfo->progressive_mode && cinfo->Ss)) { + tbl = compptr->ac_tbl_no; + if (tbl < 0 || tbl >= NUM_ARITH_TBLS) + ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl); + if (entropy->ac_stats[tbl] == NULL) + entropy->ac_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small) + ((j_common_ptr) cinfo, JPOOL_IMAGE, AC_STAT_BINS); + MEMZERO(entropy->ac_stats[tbl], AC_STAT_BINS); + } + } + + /* Initialize arithmetic decoding variables */ + entropy->c = 0; + entropy->a = 0; + entropy->ct = -16; /* force reading 2 initial bytes to fill C */ + + /* Initialize restart counter */ + entropy->restarts_to_go = cinfo->restart_interval; +} + + +/* + * Module initialization routine for arithmetic entropy decoding. + */ + +GLOBAL(void) +jinit_arith_decoder (j_decompress_ptr cinfo) +{ + arith_entropy_ptr entropy; + int i; + + entropy = (arith_entropy_ptr) + (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, + SIZEOF(arith_entropy_decoder)); + cinfo->entropy = (struct jpeg_entropy_decoder *) entropy; + entropy->pub.start_pass = start_pass; + + /* Mark tables unallocated */ + for (i = 0; i < NUM_ARITH_TBLS; i++) { + entropy->dc_stats[i] = NULL; + entropy->ac_stats[i] = NULL; + } + + /* Initialize index for fixed probability estimation */ + entropy->fixed_bin[0] = 113; + + if (cinfo->progressive_mode) { + /* Create progression status table */ + int *coef_bit_ptr, ci; + cinfo->coef_bits = (int (*)[DCTSIZE2]) + (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, + cinfo->num_components*DCTSIZE2*SIZEOF(int)); + coef_bit_ptr = & cinfo->coef_bits[0][0]; + for (ci = 0; ci < cinfo->num_components; ci++) + for (i = 0; i < DCTSIZE2; i++) + *coef_bit_ptr++ = -1; + } +} -- cgit v1.1