From 393b5cd1dc438872af89d334ef6e5fcc59f27d47 Mon Sep 17 00:00:00 2001 From: David Walter Seikel Date: Sun, 13 Jan 2013 17:24:39 +1000 Subject: Added Irrlicht 1.8, but without all the Windows binaries. --- libraries/irrlicht-1.8/include/vector2d.h | 342 ++++++++++++++++++++++++++++++ 1 file changed, 342 insertions(+) create mode 100644 libraries/irrlicht-1.8/include/vector2d.h (limited to 'libraries/irrlicht-1.8/include/vector2d.h') diff --git a/libraries/irrlicht-1.8/include/vector2d.h b/libraries/irrlicht-1.8/include/vector2d.h new file mode 100644 index 0000000..360da8f --- /dev/null +++ b/libraries/irrlicht-1.8/include/vector2d.h @@ -0,0 +1,342 @@ +// Copyright (C) 2002-2012 Nikolaus Gebhardt +// This file is part of the "Irrlicht Engine". +// For conditions of distribution and use, see copyright notice in irrlicht.h + +#ifndef __IRR_POINT_2D_H_INCLUDED__ +#define __IRR_POINT_2D_H_INCLUDED__ + +#include "irrMath.h" +#include "dimension2d.h" + +namespace irr +{ +namespace core +{ + + +//! 2d vector template class with lots of operators and methods. +/** As of Irrlicht 1.6, this class supercedes position2d, which should + be considered deprecated. */ +template +class vector2d +{ +public: + //! Default constructor (null vector) + vector2d() : X(0), Y(0) {} + //! Constructor with two different values + vector2d(T nx, T ny) : X(nx), Y(ny) {} + //! Constructor with the same value for both members + explicit vector2d(T n) : X(n), Y(n) {} + //! Copy constructor + vector2d(const vector2d& other) : X(other.X), Y(other.Y) {} + + vector2d(const dimension2d& other) : X(other.Width), Y(other.Height) {} + + // operators + + vector2d operator-() const { return vector2d(-X, -Y); } + + vector2d& operator=(const vector2d& other) { X = other.X; Y = other.Y; return *this; } + + vector2d& operator=(const dimension2d& other) { X = other.Width; Y = other.Height; return *this; } + + vector2d operator+(const vector2d& other) const { return vector2d(X + other.X, Y + other.Y); } + vector2d operator+(const dimension2d& other) const { return vector2d(X + other.Width, Y + other.Height); } + vector2d& operator+=(const vector2d& other) { X+=other.X; Y+=other.Y; return *this; } + vector2d operator+(const T v) const { return vector2d(X + v, Y + v); } + vector2d& operator+=(const T v) { X+=v; Y+=v; return *this; } + vector2d& operator+=(const dimension2d& other) { X += other.Width; Y += other.Height; return *this; } + + vector2d operator-(const vector2d& other) const { return vector2d(X - other.X, Y - other.Y); } + vector2d operator-(const dimension2d& other) const { return vector2d(X - other.Width, Y - other.Height); } + vector2d& operator-=(const vector2d& other) { X-=other.X; Y-=other.Y; return *this; } + vector2d operator-(const T v) const { return vector2d(X - v, Y - v); } + vector2d& operator-=(const T v) { X-=v; Y-=v; return *this; } + vector2d& operator-=(const dimension2d& other) { X -= other.Width; Y -= other.Height; return *this; } + + vector2d operator*(const vector2d& other) const { return vector2d(X * other.X, Y * other.Y); } + vector2d& operator*=(const vector2d& other) { X*=other.X; Y*=other.Y; return *this; } + vector2d operator*(const T v) const { return vector2d(X * v, Y * v); } + vector2d& operator*=(const T v) { X*=v; Y*=v; return *this; } + + vector2d operator/(const vector2d& other) const { return vector2d(X / other.X, Y / other.Y); } + vector2d& operator/=(const vector2d& other) { X/=other.X; Y/=other.Y; return *this; } + vector2d operator/(const T v) const { return vector2d(X / v, Y / v); } + vector2d& operator/=(const T v) { X/=v; Y/=v; return *this; } + + //! sort in order X, Y. Equality with rounding tolerance. + bool operator<=(const vector2d&other) const + { + return (X=(const vector2d&other) const + { + return (X>other.X || core::equals(X, other.X)) || + (core::equals(X, other.X) && (Y>other.Y || core::equals(Y, other.Y))); + } + + //! sort in order X, Y. Difference must be above rounding tolerance. + bool operator<(const vector2d&other) const + { + return (X(const vector2d&other) const + { + return (X>other.X && !core::equals(X, other.X)) || + (core::equals(X, other.X) && Y>other.Y && !core::equals(Y, other.Y)); + } + + bool operator==(const vector2d& other) const { return equals(other); } + bool operator!=(const vector2d& other) const { return !equals(other); } + + // functions + + //! Checks if this vector equals the other one. + /** Takes floating point rounding errors into account. + \param other Vector to compare with. + \return True if the two vector are (almost) equal, else false. */ + bool equals(const vector2d& other) const + { + return core::equals(X, other.X) && core::equals(Y, other.Y); + } + + vector2d& set(T nx, T ny) {X=nx; Y=ny; return *this; } + vector2d& set(const vector2d& p) { X=p.X; Y=p.Y; return *this; } + + //! Gets the length of the vector. + /** \return The length of the vector. */ + T getLength() const { return core::squareroot( X*X + Y*Y ); } + + //! Get the squared length of this vector + /** This is useful because it is much faster than getLength(). + \return The squared length of the vector. */ + T getLengthSQ() const { return X*X + Y*Y; } + + //! Get the dot product of this vector with another. + /** \param other Other vector to take dot product with. + \return The dot product of the two vectors. */ + T dotProduct(const vector2d& other) const + { + return X*other.X + Y*other.Y; + } + + //! Gets distance from another point. + /** Here, the vector is interpreted as a point in 2-dimensional space. + \param other Other vector to measure from. + \return Distance from other point. */ + T getDistanceFrom(const vector2d& other) const + { + return vector2d(X - other.X, Y - other.Y).getLength(); + } + + //! Returns squared distance from another point. + /** Here, the vector is interpreted as a point in 2-dimensional space. + \param other Other vector to measure from. + \return Squared distance from other point. */ + T getDistanceFromSQ(const vector2d& other) const + { + return vector2d(X - other.X, Y - other.Y).getLengthSQ(); + } + + //! rotates the point anticlockwise around a center by an amount of degrees. + /** \param degrees Amount of degrees to rotate by, anticlockwise. + \param center Rotation center. + \return This vector after transformation. */ + vector2d& rotateBy(f64 degrees, const vector2d& center=vector2d()) + { + degrees *= DEGTORAD64; + const f64 cs = cos(degrees); + const f64 sn = sin(degrees); + + X -= center.X; + Y -= center.Y; + + set((T)(X*cs - Y*sn), (T)(X*sn + Y*cs)); + + X += center.X; + Y += center.Y; + return *this; + } + + //! Normalize the vector. + /** The null vector is left untouched. + \return Reference to this vector, after normalization. */ + vector2d& normalize() + { + f32 length = (f32)(X*X + Y*Y); + if ( length == 0 ) + return *this; + length = core::reciprocal_squareroot ( length ); + X = (T)(X * length); + Y = (T)(Y * length); + return *this; + } + + //! Calculates the angle of this vector in degrees in the trigonometric sense. + /** 0 is to the right (3 o'clock), values increase counter-clockwise. + This method has been suggested by Pr3t3nd3r. + \return Returns a value between 0 and 360. */ + f64 getAngleTrig() const + { + if (Y == 0) + return X < 0 ? 180 : 0; + else + if (X == 0) + return Y < 0 ? 270 : 90; + + if ( Y > 0) + if (X > 0) + return atan((irr::f64)Y/(irr::f64)X) * RADTODEG64; + else + return 180.0-atan((irr::f64)Y/-(irr::f64)X) * RADTODEG64; + else + if (X > 0) + return 360.0-atan(-(irr::f64)Y/(irr::f64)X) * RADTODEG64; + else + return 180.0+atan(-(irr::f64)Y/-(irr::f64)X) * RADTODEG64; + } + + //! Calculates the angle of this vector in degrees in the counter trigonometric sense. + /** 0 is to the right (3 o'clock), values increase clockwise. + \return Returns a value between 0 and 360. */ + inline f64 getAngle() const + { + if (Y == 0) // corrected thanks to a suggestion by Jox + return X < 0 ? 180 : 0; + else if (X == 0) + return Y < 0 ? 90 : 270; + + // don't use getLength here to avoid precision loss with s32 vectors + // avoid floating-point trouble as sqrt(y*y) is occasionally larger than y, so clamp + const f64 tmp = core::clamp(Y / sqrt((f64)(X*X + Y*Y)), -1.0, 1.0); + const f64 angle = atan( core::squareroot(1 - tmp*tmp) / tmp) * RADTODEG64; + + if (X>0 && Y>0) + return angle + 270; + else + if (X>0 && Y<0) + return angle + 90; + else + if (X<0 && Y<0) + return 90 - angle; + else + if (X<0 && Y>0) + return 270 - angle; + + return angle; + } + + //! Calculates the angle between this vector and another one in degree. + /** \param b Other vector to test with. + \return Returns a value between 0 and 90. */ + inline f64 getAngleWith(const vector2d& b) const + { + f64 tmp = (f64)(X*b.X + Y*b.Y); + + if (tmp == 0.0) + return 90.0; + + tmp = tmp / core::squareroot((f64)((X*X + Y*Y) * (b.X*b.X + b.Y*b.Y))); + if (tmp < 0.0) + tmp = -tmp; + if ( tmp > 1.0 ) // avoid floating-point trouble + tmp = 1.0; + + return atan(sqrt(1 - tmp*tmp) / tmp) * RADTODEG64; + } + + //! Returns if this vector interpreted as a point is on a line between two other points. + /** It is assumed that the point is on the line. + \param begin Beginning vector to compare between. + \param end Ending vector to compare between. + \return True if this vector is between begin and end, false if not. */ + bool isBetweenPoints(const vector2d& begin, const vector2d& end) const + { + if (begin.X != end.X) + { + return ((begin.X <= X && X <= end.X) || + (begin.X >= X && X >= end.X)); + } + else + { + return ((begin.Y <= Y && Y <= end.Y) || + (begin.Y >= Y && Y >= end.Y)); + } + } + + //! Creates an interpolated vector between this vector and another vector. + /** \param other The other vector to interpolate with. + \param d Interpolation value between 0.0f (all the other vector) and 1.0f (all this vector). + Note that this is the opposite direction of interpolation to getInterpolated_quadratic() + \return An interpolated vector. This vector is not modified. */ + vector2d getInterpolated(const vector2d& other, f64 d) const + { + f64 inv = 1.0f - d; + return vector2d((T)(other.X*inv + X*d), (T)(other.Y*inv + Y*d)); + } + + //! Creates a quadratically interpolated vector between this and two other vectors. + /** \param v2 Second vector to interpolate with. + \param v3 Third vector to interpolate with (maximum at 1.0f) + \param d Interpolation value between 0.0f (all this vector) and 1.0f (all the 3rd vector). + Note that this is the opposite direction of interpolation to getInterpolated() and interpolate() + \return An interpolated vector. This vector is not modified. */ + vector2d getInterpolated_quadratic(const vector2d& v2, const vector2d& v3, f64 d) const + { + // this*(1-d)*(1-d) + 2 * v2 * (1-d) + v3 * d * d; + const f64 inv = 1.0f - d; + const f64 mul0 = inv * inv; + const f64 mul1 = 2.0f * d * inv; + const f64 mul2 = d * d; + + return vector2d ( (T)(X * mul0 + v2.X * mul1 + v3.X * mul2), + (T)(Y * mul0 + v2.Y * mul1 + v3.Y * mul2)); + } + + //! Sets this vector to the linearly interpolated vector between a and b. + /** \param a first vector to interpolate with, maximum at 1.0f + \param b second vector to interpolate with, maximum at 0.0f + \param d Interpolation value between 0.0f (all vector b) and 1.0f (all vector a) + Note that this is the opposite direction of interpolation to getInterpolated_quadratic() + */ + vector2d& interpolate(const vector2d& a, const vector2d& b, f64 d) + { + X = (T)((f64)b.X + ( ( a.X - b.X ) * d )); + Y = (T)((f64)b.Y + ( ( a.Y - b.Y ) * d )); + return *this; + } + + //! X coordinate of vector. + T X; + + //! Y coordinate of vector. + T Y; +}; + + //! Typedef for f32 2d vector. + typedef vector2d vector2df; + + //! Typedef for integer 2d vector. + typedef vector2d vector2di; + + template + vector2d operator*(const S scalar, const vector2d& vector) { return vector*scalar; } + + // These methods are declared in dimension2d, but need definitions of vector2d + template + dimension2d::dimension2d(const vector2d& other) : Width(other.X), Height(other.Y) { } + + template + bool dimension2d::operator==(const vector2d& other) const { return Width == other.X && Height == other.Y; } + +} // end namespace core +} // end namespace irr + +#endif + -- cgit v1.1