From f9158592e1478b2013afc7041d9ed041cf2d2f4a Mon Sep 17 00:00:00 2001 From: David Walter Seikel Date: Mon, 13 Jan 2014 19:47:58 +1000 Subject: Update Irrlicht to 1.8.1. Include actual change markers this time. lol --- .../irrlicht-1.8/doc/html/vector3d_8h_source.html | 492 --------------------- 1 file changed, 492 deletions(-) delete mode 100644 libraries/irrlicht-1.8/doc/html/vector3d_8h_source.html (limited to 'libraries/irrlicht-1.8/doc/html/vector3d_8h_source.html') diff --git a/libraries/irrlicht-1.8/doc/html/vector3d_8h_source.html b/libraries/irrlicht-1.8/doc/html/vector3d_8h_source.html deleted file mode 100644 index a2ed235..0000000 --- a/libraries/irrlicht-1.8/doc/html/vector3d_8h_source.html +++ /dev/null @@ -1,492 +0,0 @@ - - - - -Irrlicht 3D Engine: vector3d.h Source File - - - - - - - - - - - - - - -
- - -
- - - - - - - - - - - - - - - - - -
-
Irrlicht 3D Engine - -
- -
- - - - - - -
-
-
- - - - -
-
- -
-
-
- -
-
-
-
vector3d.h
-
-
-Go to the documentation of this file.
00001 // Copyright (C) 2002-2012 Nikolaus Gebhardt
-00002 // This file is part of the "Irrlicht Engine".
-00003 // For conditions of distribution and use, see copyright notice in irrlicht.h
-00004 
-00005 #ifndef __IRR_POINT_3D_H_INCLUDED__
-00006 #define __IRR_POINT_3D_H_INCLUDED__
-00007 
-00008 #include "irrMath.h"
-00009 
-00010 namespace irr
-00011 {
-00012 namespace core
-00013 {
-00014 
-00016 
-00021     template <class T>
-00022     class vector3d
-00023     {
-00024     public:
-00026         vector3d() : X(0), Y(0), Z(0) {}
-00028         vector3d(T nx, T ny, T nz) : X(nx), Y(ny), Z(nz) {}
-00030         explicit vector3d(T n) : X(n), Y(n), Z(n) {}
-00032         vector3d(const vector3d<T>& other) : X(other.X), Y(other.Y), Z(other.Z) {}
-00033 
-00034         // operators
-00035 
-00036         vector3d<T> operator-() const { return vector3d<T>(-X, -Y, -Z); }
-00037 
-00038         vector3d<T>& operator=(const vector3d<T>& other) { X = other.X; Y = other.Y; Z = other.Z; return *this; }
-00039 
-00040         vector3d<T> operator+(const vector3d<T>& other) const { return vector3d<T>(X + other.X, Y + other.Y, Z + other.Z); }
-00041         vector3d<T>& operator+=(const vector3d<T>& other) { X+=other.X; Y+=other.Y; Z+=other.Z; return *this; }
-00042         vector3d<T> operator+(const T val) const { return vector3d<T>(X + val, Y + val, Z + val); }
-00043         vector3d<T>& operator+=(const T val) { X+=val; Y+=val; Z+=val; return *this; }
-00044 
-00045         vector3d<T> operator-(const vector3d<T>& other) const { return vector3d<T>(X - other.X, Y - other.Y, Z - other.Z); }
-00046         vector3d<T>& operator-=(const vector3d<T>& other) { X-=other.X; Y-=other.Y; Z-=other.Z; return *this; }
-00047         vector3d<T> operator-(const T val) const { return vector3d<T>(X - val, Y - val, Z - val); }
-00048         vector3d<T>& operator-=(const T val) { X-=val; Y-=val; Z-=val; return *this; }
-00049 
-00050         vector3d<T> operator*(const vector3d<T>& other) const { return vector3d<T>(X * other.X, Y * other.Y, Z * other.Z); }
-00051         vector3d<T>& operator*=(const vector3d<T>& other) { X*=other.X; Y*=other.Y; Z*=other.Z; return *this; }
-00052         vector3d<T> operator*(const T v) const { return vector3d<T>(X * v, Y * v, Z * v); }
-00053         vector3d<T>& operator*=(const T v) { X*=v; Y*=v; Z*=v; return *this; }
-00054 
-00055         vector3d<T> operator/(const vector3d<T>& other) const { return vector3d<T>(X / other.X, Y / other.Y, Z / other.Z); }
-00056         vector3d<T>& operator/=(const vector3d<T>& other) { X/=other.X; Y/=other.Y; Z/=other.Z; return *this; }
-00057         vector3d<T> operator/(const T v) const { T i=(T)1.0/v; return vector3d<T>(X * i, Y * i, Z * i); }
-00058         vector3d<T>& operator/=(const T v) { T i=(T)1.0/v; X*=i; Y*=i; Z*=i; return *this; }
-00059 
-00061         bool operator<=(const vector3d<T>&other) const
-00062         {
-00063             return  (X<other.X || core::equals(X, other.X)) ||
-00064                     (core::equals(X, other.X) && (Y<other.Y || core::equals(Y, other.Y))) ||
-00065                     (core::equals(X, other.X) && core::equals(Y, other.Y) && (Z<other.Z || core::equals(Z, other.Z)));
-00066         }
-00067 
-00069         bool operator>=(const vector3d<T>&other) const
-00070         {
-00071             return  (X>other.X || core::equals(X, other.X)) ||
-00072                     (core::equals(X, other.X) && (Y>other.Y || core::equals(Y, other.Y))) ||
-00073                     (core::equals(X, other.X) && core::equals(Y, other.Y) && (Z>other.Z || core::equals(Z, other.Z)));
-00074         }
-00075 
-00077         bool operator<(const vector3d<T>&other) const
-00078         {
-00079             return  (X<other.X && !core::equals(X, other.X)) ||
-00080                     (core::equals(X, other.X) && Y<other.Y && !core::equals(Y, other.Y)) ||
-00081                     (core::equals(X, other.X) && core::equals(Y, other.Y) && Z<other.Z && !core::equals(Z, other.Z));
-00082         }
-00083 
-00085         bool operator>(const vector3d<T>&other) const
-00086         {
-00087             return  (X>other.X && !core::equals(X, other.X)) ||
-00088                     (core::equals(X, other.X) && Y>other.Y && !core::equals(Y, other.Y)) ||
-00089                     (core::equals(X, other.X) && core::equals(Y, other.Y) && Z>other.Z && !core::equals(Z, other.Z));
-00090         }
-00091 
-00093         bool operator==(const vector3d<T>& other) const
-00094         {
-00095             return this->equals(other);
-00096         }
-00097 
-00098         bool operator!=(const vector3d<T>& other) const
-00099         {
-00100             return !this->equals(other);
-00101         }
-00102 
-00103         // functions
-00104 
-00106         bool equals(const vector3d<T>& other, const T tolerance = (T)ROUNDING_ERROR_f32 ) const
-00107         {
-00108             return core::equals(X, other.X, tolerance) &&
-00109                 core::equals(Y, other.Y, tolerance) &&
-00110                 core::equals(Z, other.Z, tolerance);
-00111         }
-00112 
-00113         vector3d<T>& set(const T nx, const T ny, const T nz) {X=nx; Y=ny; Z=nz; return *this;}
-00114         vector3d<T>& set(const vector3d<T>& p) {X=p.X; Y=p.Y; Z=p.Z;return *this;}
-00115 
-00117         T getLength() const { return core::squareroot( X*X + Y*Y + Z*Z ); }
-00118 
-00120 
-00122         T getLengthSQ() const { return X*X + Y*Y + Z*Z; }
-00123 
-00125         T dotProduct(const vector3d<T>& other) const
-00126         {
-00127             return X*other.X + Y*other.Y + Z*other.Z;
-00128         }
-00129 
-00131 
-00132         T getDistanceFrom(const vector3d<T>& other) const
-00133         {
-00134             return vector3d<T>(X - other.X, Y - other.Y, Z - other.Z).getLength();
-00135         }
-00136 
-00138 
-00139         T getDistanceFromSQ(const vector3d<T>& other) const
-00140         {
-00141             return vector3d<T>(X - other.X, Y - other.Y, Z - other.Z).getLengthSQ();
-00142         }
-00143 
-00145 
-00147         vector3d<T> crossProduct(const vector3d<T>& p) const
-00148         {
-00149             return vector3d<T>(Y * p.Z - Z * p.Y, Z * p.X - X * p.Z, X * p.Y - Y * p.X);
-00150         }
-00151 
-00153 
-00157         bool isBetweenPoints(const vector3d<T>& begin, const vector3d<T>& end) const
-00158         {
-00159             const T f = (end - begin).getLengthSQ();
-00160             return getDistanceFromSQ(begin) <= f &&
-00161                 getDistanceFromSQ(end) <= f;
-00162         }
-00163 
-00165 
-00168         vector3d<T>& normalize()
-00169         {
-00170             f64 length = X*X + Y*Y + Z*Z;
-00171             if (length == 0 ) // this check isn't an optimization but prevents getting NAN in the sqrt.
-00172                 return *this;
-00173             length = core::reciprocal_squareroot(length);
-00174 
-00175             X = (T)(X * length);
-00176             Y = (T)(Y * length);
-00177             Z = (T)(Z * length);
-00178             return *this;
-00179         }
-00180 
-00182         vector3d<T>& setLength(T newlength)
-00183         {
-00184             normalize();
-00185             return (*this *= newlength);
-00186         }
-00187 
-00189         vector3d<T>& invert()
-00190         {
-00191             X *= -1;
-00192             Y *= -1;
-00193             Z *= -1;
-00194             return *this;
-00195         }
-00196 
-00198 
-00200         void rotateXZBy(f64 degrees, const vector3d<T>& center=vector3d<T>())
-00201         {
-00202             degrees *= DEGTORAD64;
-00203             f64 cs = cos(degrees);
-00204             f64 sn = sin(degrees);
-00205             X -= center.X;
-00206             Z -= center.Z;
-00207             set((T)(X*cs - Z*sn), Y, (T)(X*sn + Z*cs));
-00208             X += center.X;
-00209             Z += center.Z;
-00210         }
-00211 
-00213 
-00215         void rotateXYBy(f64 degrees, const vector3d<T>& center=vector3d<T>())
-00216         {
-00217             degrees *= DEGTORAD64;
-00218             f64 cs = cos(degrees);
-00219             f64 sn = sin(degrees);
-00220             X -= center.X;
-00221             Y -= center.Y;
-00222             set((T)(X*cs - Y*sn), (T)(X*sn + Y*cs), Z);
-00223             X += center.X;
-00224             Y += center.Y;
-00225         }
-00226 
-00228 
-00230         void rotateYZBy(f64 degrees, const vector3d<T>& center=vector3d<T>())
-00231         {
-00232             degrees *= DEGTORAD64;
-00233             f64 cs = cos(degrees);
-00234             f64 sn = sin(degrees);
-00235             Z -= center.Z;
-00236             Y -= center.Y;
-00237             set(X, (T)(Y*cs - Z*sn), (T)(Y*sn + Z*cs));
-00238             Z += center.Z;
-00239             Y += center.Y;
-00240         }
-00241 
-00243 
-00247         vector3d<T> getInterpolated(const vector3d<T>& other, f64 d) const
-00248         {
-00249             const f64 inv = 1.0 - d;
-00250             return vector3d<T>((T)(other.X*inv + X*d), (T)(other.Y*inv + Y*d), (T)(other.Z*inv + Z*d));
-00251         }
-00252 
-00254 
-00259         vector3d<T> getInterpolated_quadratic(const vector3d<T>& v2, const vector3d<T>& v3, f64 d) const
-00260         {
-00261             // this*(1-d)*(1-d) + 2 * v2 * (1-d) + v3 * d * d;
-00262             const f64 inv = (T) 1.0 - d;
-00263             const f64 mul0 = inv * inv;
-00264             const f64 mul1 = (T) 2.0 * d * inv;
-00265             const f64 mul2 = d * d;
-00266 
-00267             return vector3d<T> ((T)(X * mul0 + v2.X * mul1 + v3.X * mul2),
-00268                     (T)(Y * mul0 + v2.Y * mul1 + v3.Y * mul2),
-00269                     (T)(Z * mul0 + v2.Z * mul1 + v3.Z * mul2));
-00270         }
-00271 
-00273 
-00278         vector3d<T>& interpolate(const vector3d<T>& a, const vector3d<T>& b, f64 d)
-00279         {
-00280             X = (T)((f64)b.X + ( ( a.X - b.X ) * d ));
-00281             Y = (T)((f64)b.Y + ( ( a.Y - b.Y ) * d ));
-00282             Z = (T)((f64)b.Z + ( ( a.Z - b.Z ) * d ));
-00283             return *this;
-00284         }
-00285 
-00286 
-00288 
-00301         vector3d<T> getHorizontalAngle() const
-00302         {
-00303             vector3d<T> angle;
-00304 
-00305             const f64 tmp = (atan2((f64)X, (f64)Z) * RADTODEG64);
-00306             angle.Y = (T)tmp;
-00307 
-00308             if (angle.Y < 0)
-00309                 angle.Y += 360;
-00310             if (angle.Y >= 360)
-00311                 angle.Y -= 360;
-00312 
-00313             const f64 z1 = core::squareroot(X*X + Z*Z);
-00314 
-00315             angle.X = (T)(atan2((f64)z1, (f64)Y) * RADTODEG64 - 90.0);
-00316 
-00317             if (angle.X < 0)
-00318                 angle.X += 360;
-00319             if (angle.X >= 360)
-00320                 angle.X -= 360;
-00321 
-00322             return angle;
-00323         }
-00324 
-00326 
-00330         vector3d<T> getSphericalCoordinateAngles() const
-00331         {
-00332             vector3d<T> angle;
-00333             const f64 length = X*X + Y*Y + Z*Z;
-00334 
-00335             if (length)
-00336             {
-00337                 if (X!=0)
-00338                 {
-00339                     angle.Y = (T)(atan2((f64)Z,(f64)X) * RADTODEG64);
-00340                 }
-00341                 else if (Z<0)
-00342                     angle.Y=180;
-00343 
-00344                 angle.X = (T)(acos(Y * core::reciprocal_squareroot(length)) * RADTODEG64);
-00345             }
-00346             return angle;
-00347         }
-00348 
-00350 
-00357         vector3d<T> rotationToDirection(const vector3d<T> & forwards = vector3d<T>(0, 0, 1)) const
-00358         {
-00359             const f64 cr = cos( core::DEGTORAD64 * X );
-00360             const f64 sr = sin( core::DEGTORAD64 * X );
-00361             const f64 cp = cos( core::DEGTORAD64 * Y );
-00362             const f64 sp = sin( core::DEGTORAD64 * Y );
-00363             const f64 cy = cos( core::DEGTORAD64 * Z );
-00364             const f64 sy = sin( core::DEGTORAD64 * Z );
-00365 
-00366             const f64 srsp = sr*sp;
-00367             const f64 crsp = cr*sp;
-00368 
-00369             const f64 pseudoMatrix[] = {
-00370                 ( cp*cy ), ( cp*sy ), ( -sp ),
-00371                 ( srsp*cy-cr*sy ), ( srsp*sy+cr*cy ), ( sr*cp ),
-00372                 ( crsp*cy+sr*sy ), ( crsp*sy-sr*cy ), ( cr*cp )};
-00373 
-00374             return vector3d<T>(
-00375                 (T)(forwards.X * pseudoMatrix[0] +
-00376                     forwards.Y * pseudoMatrix[3] +
-00377                     forwards.Z * pseudoMatrix[6]),
-00378                 (T)(forwards.X * pseudoMatrix[1] +
-00379                     forwards.Y * pseudoMatrix[4] +
-00380                     forwards.Z * pseudoMatrix[7]),
-00381                 (T)(forwards.X * pseudoMatrix[2] +
-00382                     forwards.Y * pseudoMatrix[5] +
-00383                     forwards.Z * pseudoMatrix[8]));
-00384         }
-00385 
-00387 
-00389         void getAs4Values(T* array) const
-00390         {
-00391             array[0] = X;
-00392             array[1] = Y;
-00393             array[2] = Z;
-00394             array[3] = 0;
-00395         }
-00396 
-00398 
-00399         void getAs3Values(T* array) const
-00400         {
-00401             array[0] = X;
-00402             array[1] = Y;
-00403             array[2] = Z;
-00404         }
-00405 
-00406 
-00408         T X;
-00409 
-00411         T Y;
-00412 
-00414         T Z;
-00415     };
-00416 
-00418     // Implementor note: inline keyword needed due to template specialization for s32. Otherwise put specialization into a .cpp
-00419     template <>
-00420     inline vector3d<s32> vector3d<s32>::operator /(s32 val) const {return core::vector3d<s32>(X/val,Y/val,Z/val);}
-00421     template <>
-00422     inline vector3d<s32>& vector3d<s32>::operator /=(s32 val) {X/=val;Y/=val;Z/=val; return *this;}
-00423 
-00424     template <>
-00425     inline vector3d<s32> vector3d<s32>::getSphericalCoordinateAngles() const
-00426     {
-00427         vector3d<s32> angle;
-00428         const f64 length = X*X + Y*Y + Z*Z;
-00429 
-00430         if (length)
-00431         {
-00432             if (X!=0)
-00433             {
-00434                 angle.Y = round32((f32)(atan2((f64)Z,(f64)X) * RADTODEG64));
-00435             }
-00436             else if (Z<0)
-00437                 angle.Y=180;
-00438 
-00439             angle.X = round32((f32)(acos(Y * core::reciprocal_squareroot(length)) * RADTODEG64));
-00440         }
-00441         return angle;
-00442     }
-00443 
-00445     typedef vector3d<f32> vector3df;
-00446 
-00448     typedef vector3d<s32> vector3di;
-00449 
-00451     template<class S, class T>
-00452     vector3d<T> operator*(const S scalar, const vector3d<T>& vector) { return vector*scalar; }
-00453 
-00454 } // end namespace core
-00455 } // end namespace irr
-00456 
-00457 #endif
-00458 
-
-
- - - - - -- cgit v1.1