From f9158592e1478b2013afc7041d9ed041cf2d2f4a Mon Sep 17 00:00:00 2001 From: David Walter Seikel Date: Mon, 13 Jan 2014 19:47:58 +1000 Subject: Update Irrlicht to 1.8.1. Include actual change markers this time. lol --- .../irrlicht-1.8/doc/html/vector2d_8h_source.html | 404 --------------------- 1 file changed, 404 deletions(-) delete mode 100644 libraries/irrlicht-1.8/doc/html/vector2d_8h_source.html (limited to 'libraries/irrlicht-1.8/doc/html/vector2d_8h_source.html') diff --git a/libraries/irrlicht-1.8/doc/html/vector2d_8h_source.html b/libraries/irrlicht-1.8/doc/html/vector2d_8h_source.html deleted file mode 100644 index ef62717..0000000 --- a/libraries/irrlicht-1.8/doc/html/vector2d_8h_source.html +++ /dev/null @@ -1,404 +0,0 @@ - - - - -Irrlicht 3D Engine: vector2d.h Source File - - - - - - - - - - - - - - -
- - -
- - - - - - - - - - - - - - - - - -
-
Irrlicht 3D Engine - -
- -
- - - - - - -
-
-
- - - - -
-
- -
-
-
- -
-
-
-
vector2d.h
-
-
-Go to the documentation of this file.
00001 // Copyright (C) 2002-2012 Nikolaus Gebhardt
-00002 // This file is part of the "Irrlicht Engine".
-00003 // For conditions of distribution and use, see copyright notice in irrlicht.h
-00004 
-00005 #ifndef __IRR_POINT_2D_H_INCLUDED__
-00006 #define __IRR_POINT_2D_H_INCLUDED__
-00007 
-00008 #include "irrMath.h"
-00009 #include "dimension2d.h"
-00010 
-00011 namespace irr
-00012 {
-00013 namespace core
-00014 {
-00015 
-00016 
-00018 
-00020 template <class T>
-00021 class vector2d
-00022 {
-00023 public:
-00025     vector2d() : X(0), Y(0) {}
-00027     vector2d(T nx, T ny) : X(nx), Y(ny) {}
-00029     explicit vector2d(T n) : X(n), Y(n) {}
-00031     vector2d(const vector2d<T>& other) : X(other.X), Y(other.Y) {}
-00032 
-00033     vector2d(const dimension2d<T>& other) : X(other.Width), Y(other.Height) {}
-00034 
-00035     // operators
-00036 
-00037     vector2d<T> operator-() const { return vector2d<T>(-X, -Y); }
-00038 
-00039     vector2d<T>& operator=(const vector2d<T>& other) { X = other.X; Y = other.Y; return *this; }
-00040 
-00041     vector2d<T>& operator=(const dimension2d<T>& other) { X = other.Width; Y = other.Height; return *this; }
-00042 
-00043     vector2d<T> operator+(const vector2d<T>& other) const { return vector2d<T>(X + other.X, Y + other.Y); }
-00044     vector2d<T> operator+(const dimension2d<T>& other) const { return vector2d<T>(X + other.Width, Y + other.Height); }
-00045     vector2d<T>& operator+=(const vector2d<T>& other) { X+=other.X; Y+=other.Y; return *this; }
-00046     vector2d<T> operator+(const T v) const { return vector2d<T>(X + v, Y + v); }
-00047     vector2d<T>& operator+=(const T v) { X+=v; Y+=v; return *this; }
-00048     vector2d<T>& operator+=(const dimension2d<T>& other) { X += other.Width; Y += other.Height; return *this;  }
-00049 
-00050     vector2d<T> operator-(const vector2d<T>& other) const { return vector2d<T>(X - other.X, Y - other.Y); }
-00051     vector2d<T> operator-(const dimension2d<T>& other) const { return vector2d<T>(X - other.Width, Y - other.Height); }
-00052     vector2d<T>& operator-=(const vector2d<T>& other) { X-=other.X; Y-=other.Y; return *this; }
-00053     vector2d<T> operator-(const T v) const { return vector2d<T>(X - v, Y - v); }
-00054     vector2d<T>& operator-=(const T v) { X-=v; Y-=v; return *this; }
-00055     vector2d<T>& operator-=(const dimension2d<T>& other) { X -= other.Width; Y -= other.Height; return *this;  }
-00056 
-00057     vector2d<T> operator*(const vector2d<T>& other) const { return vector2d<T>(X * other.X, Y * other.Y); }
-00058     vector2d<T>& operator*=(const vector2d<T>& other) { X*=other.X; Y*=other.Y; return *this; }
-00059     vector2d<T> operator*(const T v) const { return vector2d<T>(X * v, Y * v); }
-00060     vector2d<T>& operator*=(const T v) { X*=v; Y*=v; return *this; }
-00061 
-00062     vector2d<T> operator/(const vector2d<T>& other) const { return vector2d<T>(X / other.X, Y / other.Y); }
-00063     vector2d<T>& operator/=(const vector2d<T>& other) { X/=other.X; Y/=other.Y; return *this; }
-00064     vector2d<T> operator/(const T v) const { return vector2d<T>(X / v, Y / v); }
-00065     vector2d<T>& operator/=(const T v) { X/=v; Y/=v; return *this; }
-00066 
-00068     bool operator<=(const vector2d<T>&other) const
-00069     {
-00070         return  (X<other.X || core::equals(X, other.X)) ||
-00071                 (core::equals(X, other.X) && (Y<other.Y || core::equals(Y, other.Y)));
-00072     }
-00073 
-00075     bool operator>=(const vector2d<T>&other) const
-00076     {
-00077         return  (X>other.X || core::equals(X, other.X)) ||
-00078                 (core::equals(X, other.X) && (Y>other.Y || core::equals(Y, other.Y)));
-00079     }
-00080 
-00082     bool operator<(const vector2d<T>&other) const
-00083     {
-00084         return  (X<other.X && !core::equals(X, other.X)) ||
-00085                 (core::equals(X, other.X) && Y<other.Y && !core::equals(Y, other.Y));
-00086     }
-00087 
-00089     bool operator>(const vector2d<T>&other) const
-00090     {
-00091         return  (X>other.X && !core::equals(X, other.X)) ||
-00092                 (core::equals(X, other.X) && Y>other.Y && !core::equals(Y, other.Y));
-00093     }
-00094 
-00095     bool operator==(const vector2d<T>& other) const { return equals(other); }
-00096     bool operator!=(const vector2d<T>& other) const { return !equals(other); }
-00097 
-00098     // functions
-00099 
-00101 
-00104     bool equals(const vector2d<T>& other) const
-00105     {
-00106         return core::equals(X, other.X) && core::equals(Y, other.Y);
-00107     }
-00108 
-00109     vector2d<T>& set(T nx, T ny) {X=nx; Y=ny; return *this; }
-00110     vector2d<T>& set(const vector2d<T>& p) { X=p.X; Y=p.Y; return *this; }
-00111 
-00113 
-00114     T getLength() const { return core::squareroot( X*X + Y*Y ); }
-00115 
-00117 
-00119     T getLengthSQ() const { return X*X + Y*Y; }
-00120 
-00122 
-00124     T dotProduct(const vector2d<T>& other) const
-00125     {
-00126         return X*other.X + Y*other.Y;
-00127     }
-00128 
-00130 
-00133     T getDistanceFrom(const vector2d<T>& other) const
-00134     {
-00135         return vector2d<T>(X - other.X, Y - other.Y).getLength();
-00136     }
-00137 
-00139 
-00142     T getDistanceFromSQ(const vector2d<T>& other) const
-00143     {
-00144         return vector2d<T>(X - other.X, Y - other.Y).getLengthSQ();
-00145     }
-00146 
-00148 
-00151     vector2d<T>& rotateBy(f64 degrees, const vector2d<T>& center=vector2d<T>())
-00152     {
-00153         degrees *= DEGTORAD64;
-00154         const f64 cs = cos(degrees);
-00155         const f64 sn = sin(degrees);
-00156 
-00157         X -= center.X;
-00158         Y -= center.Y;
-00159 
-00160         set((T)(X*cs - Y*sn), (T)(X*sn + Y*cs));
-00161 
-00162         X += center.X;
-00163         Y += center.Y;
-00164         return *this;
-00165     }
-00166 
-00168 
-00170     vector2d<T>& normalize()
-00171     {
-00172         f32 length = (f32)(X*X + Y*Y);
-00173         if ( length == 0 )
-00174             return *this;
-00175         length = core::reciprocal_squareroot ( length );
-00176         X = (T)(X * length);
-00177         Y = (T)(Y * length);
-00178         return *this;
-00179     }
-00180 
-00182 
-00185     f64 getAngleTrig() const
-00186     {
-00187         if (Y == 0)
-00188             return X < 0 ? 180 : 0;
-00189         else
-00190         if (X == 0)
-00191             return Y < 0 ? 270 : 90;
-00192 
-00193         if ( Y > 0)
-00194             if (X > 0)
-00195                 return atan((irr::f64)Y/(irr::f64)X) * RADTODEG64;
-00196             else
-00197                 return 180.0-atan((irr::f64)Y/-(irr::f64)X) * RADTODEG64;
-00198         else
-00199             if (X > 0)
-00200                 return 360.0-atan(-(irr::f64)Y/(irr::f64)X) * RADTODEG64;
-00201             else
-00202                 return 180.0+atan(-(irr::f64)Y/-(irr::f64)X) * RADTODEG64;
-00203     }
-00204 
-00206 
-00208     inline f64 getAngle() const
-00209     {
-00210         if (Y == 0) // corrected thanks to a suggestion by Jox
-00211             return X < 0 ? 180 : 0;
-00212         else if (X == 0)
-00213             return Y < 0 ? 90 : 270;
-00214 
-00215         // don't use getLength here to avoid precision loss with s32 vectors
-00216         // avoid floating-point trouble as sqrt(y*y) is occasionally larger than y, so clamp
-00217         const f64 tmp = core::clamp(Y / sqrt((f64)(X*X + Y*Y)), -1.0, 1.0);
-00218         const f64 angle = atan( core::squareroot(1 - tmp*tmp) / tmp) * RADTODEG64;
-00219 
-00220         if (X>0 && Y>0)
-00221             return angle + 270;
-00222         else
-00223         if (X>0 && Y<0)
-00224             return angle + 90;
-00225         else
-00226         if (X<0 && Y<0)
-00227             return 90 - angle;
-00228         else
-00229         if (X<0 && Y>0)
-00230             return 270 - angle;
-00231 
-00232         return angle;
-00233     }
-00234 
-00236 
-00238     inline f64 getAngleWith(const vector2d<T>& b) const
-00239     {
-00240         f64 tmp = (f64)(X*b.X + Y*b.Y);
-00241 
-00242         if (tmp == 0.0)
-00243             return 90.0;
-00244 
-00245         tmp = tmp / core::squareroot((f64)((X*X + Y*Y) * (b.X*b.X + b.Y*b.Y)));
-00246         if (tmp < 0.0)
-00247             tmp = -tmp;
-00248         if ( tmp > 1.0 ) //   avoid floating-point trouble
-00249             tmp = 1.0;
-00250 
-00251         return atan(sqrt(1 - tmp*tmp) / tmp) * RADTODEG64;
-00252     }
-00253 
-00255 
-00259     bool isBetweenPoints(const vector2d<T>& begin, const vector2d<T>& end) const
-00260     {
-00261         if (begin.X != end.X)
-00262         {
-00263             return ((begin.X <= X && X <= end.X) ||
-00264                 (begin.X >= X && X >= end.X));
-00265         }
-00266         else
-00267         {
-00268             return ((begin.Y <= Y && Y <= end.Y) ||
-00269                 (begin.Y >= Y && Y >= end.Y));
-00270         }
-00271     }
-00272 
-00274 
-00278     vector2d<T> getInterpolated(const vector2d<T>& other, f64 d) const
-00279     {
-00280         f64 inv = 1.0f - d;
-00281         return vector2d<T>((T)(other.X*inv + X*d), (T)(other.Y*inv + Y*d));
-00282     }
-00283 
-00285 
-00290     vector2d<T> getInterpolated_quadratic(const vector2d<T>& v2, const vector2d<T>& v3, f64 d) const
-00291     {
-00292         // this*(1-d)*(1-d) + 2 * v2 * (1-d) + v3 * d * d;
-00293         const f64 inv = 1.0f - d;
-00294         const f64 mul0 = inv * inv;
-00295         const f64 mul1 = 2.0f * d * inv;
-00296         const f64 mul2 = d * d;
-00297 
-00298         return vector2d<T> ( (T)(X * mul0 + v2.X * mul1 + v3.X * mul2),
-00299                     (T)(Y * mul0 + v2.Y * mul1 + v3.Y * mul2));
-00300     }
-00301 
-00303 
-00308     vector2d<T>& interpolate(const vector2d<T>& a, const vector2d<T>& b, f64 d)
-00309     {
-00310         X = (T)((f64)b.X + ( ( a.X - b.X ) * d ));
-00311         Y = (T)((f64)b.Y + ( ( a.Y - b.Y ) * d ));
-00312         return *this;
-00313     }
-00314 
-00316     T X;
-00317 
-00319     T Y;
-00320 };
-00321 
-00323     typedef vector2d<f32> vector2df;
-00324 
-00326     typedef vector2d<s32> vector2di;
-00327 
-00328     template<class S, class T>
-00329     vector2d<T> operator*(const S scalar, const vector2d<T>& vector) { return vector*scalar; }
-00330 
-00331     // These methods are declared in dimension2d, but need definitions of vector2d
-00332     template<class T>
-00333     dimension2d<T>::dimension2d(const vector2d<T>& other) : Width(other.X), Height(other.Y) { }
-00334 
-00335     template<class T>
-00336     bool dimension2d<T>::operator==(const vector2d<T>& other) const { return Width == other.X && Height == other.Y; }
-00337 
-00338 } // end namespace core
-00339 } // end namespace irr
-00340 
-00341 #endif
-00342 
-
-
- - - - - -- cgit v1.1