From f9158592e1478b2013afc7041d9ed041cf2d2f4a Mon Sep 17 00:00:00 2001 From: David Walter Seikel Date: Mon, 13 Jan 2014 19:47:58 +1000 Subject: Update Irrlicht to 1.8.1. Include actual change markers this time. lol --- .../source/Irrlicht/aesGladman/aesopt.h | 955 +++++++++++++++++++++ 1 file changed, 955 insertions(+) create mode 100644 libraries/irrlicht-1.8.1/source/Irrlicht/aesGladman/aesopt.h (limited to 'libraries/irrlicht-1.8.1/source/Irrlicht/aesGladman/aesopt.h') diff --git a/libraries/irrlicht-1.8.1/source/Irrlicht/aesGladman/aesopt.h b/libraries/irrlicht-1.8.1/source/Irrlicht/aesGladman/aesopt.h new file mode 100644 index 0000000..9c0d842 --- /dev/null +++ b/libraries/irrlicht-1.8.1/source/Irrlicht/aesGladman/aesopt.h @@ -0,0 +1,955 @@ +/* + --------------------------------------------------------------------------- + Copyright (c) 2003, Dr Brian Gladman < >, Worcester, UK. + All rights reserved. + + LICENSE TERMS + + The free distribution and use of this software in both source and binary + form is allowed (with or without changes) provided that: + + 1. distributions of this source code include the above copyright + notice, this list of conditions and the following disclaimer; + + 2. distributions in binary form include the above copyright + notice, this list of conditions and the following disclaimer + in the documentation and/or other associated materials; + + 3. the copyright holder's name is not used to endorse products + built using this software without specific written permission. + + ALTERNATIVELY, provided that this notice is retained in full, this product + may be distributed under the terms of the GNU General Public License (GPL), + in which case the provisions of the GPL apply INSTEAD OF those given above. + + DISCLAIMER + + This software is provided 'as is' with no explicit or implied warranties + in respect of its properties, including, but not limited to, correctness + and/or fitness for purpose. + --------------------------------------------------------------------------- + Issue Date: 26/08/2003 + + My thanks go to Dag Arne Osvik for devising the schemes used here for key + length derivation from the form of the key schedule + + This file contains the compilation options for AES (Rijndael) and code + that is common across encryption, key scheduling and table generation. + + OPERATION + + These source code files implement the AES algorithm Rijndael designed by + Joan Daemen and Vincent Rijmen. This version is designed for the standard + block size of 16 bytes and for key sizes of 128, 192 and 256 bits (16, 24 + and 32 bytes). + + This version is designed for flexibility and speed using operations on + 32-bit words rather than operations on bytes. It can be compiled with + either big or little endian internal byte order but is faster when the + native byte order for the processor is used. + + THE CIPHER INTERFACE + + The cipher interface is implemented as an array of bytes in which lower + AES bit sequence indexes map to higher numeric significance within bytes. + + aes_08t (an unsigned 8-bit type) + aes_32t (an unsigned 32-bit type) + struct aes_encrypt_ctx (structure for the cipher encryption context) + struct aes_decrypt_ctx (structure for the cipher decryption context) + aes_rval the function return type + + C subroutine calls: + + aes_rval aes_encrypt_key128(const void *in_key, aes_encrypt_ctx cx[1]); + aes_rval aes_encrypt_key192(const void *in_key, aes_encrypt_ctx cx[1]); + aes_rval aes_encrypt_key256(const void *in_key, aes_encrypt_ctx cx[1]); + aes_rval aes_encrypt(const void *in_blk, + void *out_blk, const aes_encrypt_ctx cx[1]); + + aes_rval aes_decrypt_key128(const void *in_key, aes_decrypt_ctx cx[1]); + aes_rval aes_decrypt_key192(const void *in_key, aes_decrypt_ctx cx[1]); + aes_rval aes_decrypt_key256(const void *in_key, aes_decrypt_ctx cx[1]); + aes_rval aes_decrypt(const void *in_blk, + void *out_blk, const aes_decrypt_ctx cx[1]); + + IMPORTANT NOTE: If you are using this C interface with dynamic tables make sure that + you call genTabs() before AES is used so that the tables are initialised. + + C++ aes class subroutines: + + Class AESencrypt for encryption + + Construtors: + AESencrypt(void) + AESencrypt(const void *in_key) - 128 bit key + Members: + void key128(const void *in_key) + void key192(const void *in_key) + void key256(const void *in_key) + void encrypt(const void *in_blk, void *out_blk) const + + Class AESdecrypt for encryption + Construtors: + AESdecrypt(void) + AESdecrypt(const void *in_key) - 128 bit key + Members: + void key128(const void *in_key) + void key192(const void *in_key) + void key256(const void *in_key) + void decrypt(const void *in_blk, void *out_blk) const + + COMPILATION + + The files used to provide AES (Rijndael) are + + a. aes.h for the definitions needed for use in C. + b. aescpp.h for the definitions needed for use in C++. + c. aesopt.h for setting compilation options (also includes common code). + d. aescrypt.c for encryption and decrytpion, or + e. aeskey.c for key scheduling. + f. aestab.c for table loading or generation. + g. aescrypt.asm for encryption and decryption using assembler code. + h. aescrypt.mmx.asm for encryption and decryption using MMX assembler. + + To compile AES (Rijndael) for use in C code use aes.h and set the + defines here for the facilities you need (key lengths, encryption + and/or decryption). Do not define AES_DLL or AES_CPP. Set the options + for optimisations and table sizes here. + + To compile AES (Rijndael) for use in in C++ code use aescpp.h but do + not define AES_DLL + + To compile AES (Rijndael) in C as a Dynamic Link Library DLL) use + aes.h and include the AES_DLL define. + + CONFIGURATION OPTIONS (here and in aes.h) + + a. set AES_DLL in aes.h if AES (Rijndael) is to be compiled as a DLL + b. You may need to set PLATFORM_BYTE_ORDER to define the byte order. + c. If you want the code to run in a specific internal byte order, then + ALGORITHM_BYTE_ORDER must be set accordingly. + d. set other configuration options decribed below. +*/ + +#ifndef _AESOPT_H +#define _AESOPT_H + +#include "aes.h" + +/* CONFIGURATION - USE OF DEFINES + + Later in this section there are a number of defines that control the + operation of the code. In each section, the purpose of each define is + explained so that the relevant form can be included or excluded by + setting either 1's or 0's respectively on the branches of the related + #if clauses. +*/ + +/* BYTE ORDER IN 32-BIT WORDS + + To obtain the highest speed on processors with 32-bit words, this code + needs to determine the byte order of the target machine. The following + block of code is an attempt to capture the most obvious ways in which + various environemnts define byte order. It may well fail, in which case + the definitions will need to be set by editing at the points marked + **** EDIT HERE IF NECESSARY **** below. My thanks to Peter Gutmann for + some of these defines (from cryptlib). +*/ + +#define BRG_LITTLE_ENDIAN 1234 /* byte 0 is least significant (i386) */ +#define BRG_BIG_ENDIAN 4321 /* byte 0 is most significant (mc68k) */ + +#ifdef __BIG_ENDIAN__ +#define PLATFORM_BYTE_ORDER BRG_BIG_ENDIAN +#else +#define PLATFORM_BYTE_ORDER BRG_LITTLE_ENDIAN +#endif + +/* SOME LOCAL DEFINITIONS */ + +#define NO_TABLES 0 +#define ONE_TABLE 1 +#define FOUR_TABLES 4 +#define NONE 0 +#define PARTIAL 1 +#define FULL 2 + +#define aes_sw32 Byteswap::byteswap + +/* 1. FUNCTIONS REQUIRED + + This implementation provides subroutines for encryption, decryption + and for setting the three key lengths (separately) for encryption + and decryption. When the assembler code is not being used the following + definition blocks allow the selection of the routines that are to be + included in the compilation. +*/ +#ifdef AES_ENCRYPT +#define ENCRYPTION +#define ENCRYPTION_KEY_SCHEDULE +#endif + +#ifdef AES_DECRYPT +#define DECRYPTION +#define DECRYPTION_KEY_SCHEDULE +#endif + +/* 2. ASSEMBLER SUPPORT + + This define (which can be on the command line) enables the use of the + assembler code routines for encryption and decryption with the C code + only providing key scheduling +*/ +#if 0 +#define AES_ASM +#endif + +/* 3. BYTE ORDER WITHIN 32 BIT WORDS + + The fundamental data processing units in Rijndael are 8-bit bytes. The + input, output and key input are all enumerated arrays of bytes in which + bytes are numbered starting at zero and increasing to one less than the + number of bytes in the array in question. This enumeration is only used + for naming bytes and does not imply any adjacency or order relationship + from one byte to another. When these inputs and outputs are considered + as bit sequences, bits 8*n to 8*n+7 of the bit sequence are mapped to + byte[n] with bit 8n+i in the sequence mapped to bit 7-i within the byte. + In this implementation bits are numbered from 0 to 7 starting at the + numerically least significant end of each byte (bit n represents 2^n). + + However, Rijndael can be implemented more efficiently using 32-bit + words by packing bytes into words so that bytes 4*n to 4*n+3 are placed + into word[n]. While in principle these bytes can be assembled into words + in any positions, this implementation only supports the two formats in + which bytes in adjacent positions within words also have adjacent byte + numbers. This order is called big-endian if the lowest numbered bytes + in words have the highest numeric significance and little-endian if the + opposite applies. + + This code can work in either order irrespective of the order used by the + machine on which it runs. Normally the internal byte order will be set + to the order of the processor on which the code is to be run but this + define can be used to reverse this in special situations + + NOTE: Assembler code versions rely on PLATFORM_BYTE_ORDER being set +*/ +#if 1 || defined(AES_ASM) +#define ALGORITHM_BYTE_ORDER PLATFORM_BYTE_ORDER +#elif 0 +#define ALGORITHM_BYTE_ORDER BRG_LITTLE_ENDIAN +#elif 0 +#define ALGORITHM_BYTE_ORDER BRG_BIG_ENDIAN +#else +#error The algorithm byte order is not defined +#endif + +/* 4. FAST INPUT/OUTPUT OPERATIONS. + + On some machines it is possible to improve speed by transferring the + bytes in the input and output arrays to and from the internal 32-bit + variables by addressing these arrays as if they are arrays of 32-bit + words. On some machines this will always be possible but there may + be a large performance penalty if the byte arrays are not aligned on + the normal word boundaries. On other machines this technique will + lead to memory access errors when such 32-bit word accesses are not + properly aligned. The option SAFE_IO avoids such problems but will + often be slower on those machines that support misaligned access + (especially so if care is taken to align the input and output byte + arrays on 32-bit word boundaries). If SAFE_IO is not defined it is + assumed that access to byte arrays as if they are arrays of 32-bit + words will not cause problems when such accesses are misaligned. +*/ +#if 1 && !defined(_MSC_VER) +#define SAFE_IO +#endif + +/* 5. LOOP UNROLLING + + The code for encryption and decrytpion cycles through a number of rounds + that can be implemented either in a loop or by expanding the code into a + long sequence of instructions, the latter producing a larger program but + one that will often be much faster. The latter is called loop unrolling. + There are also potential speed advantages in expanding two iterations in + a loop with half the number of iterations, which is called partial loop + unrolling. The following options allow partial or full loop unrolling + to be set independently for encryption and decryption +*/ +#if 1 +#define ENC_UNROLL FULL +#elif 0 +#define ENC_UNROLL PARTIAL +#else +#define ENC_UNROLL NONE +#endif + +#if 1 +#define DEC_UNROLL FULL +#elif 0 +#define DEC_UNROLL PARTIAL +#else +#define DEC_UNROLL NONE +#endif + +/* 6. FAST FINITE FIELD OPERATIONS + + If this section is included, tables are used to provide faster finite + field arithmetic (this has no effect if FIXED_TABLES is defined). +*/ +#if 0 +#define FF_TABLES +#endif + +/* 7. INTERNAL STATE VARIABLE FORMAT + + The internal state of Rijndael is stored in a number of local 32-bit + word varaibles which can be defined either as an array or as individual + names variables. Include this section if you want to store these local + varaibles in arrays. Otherwise individual local variables will be used. +*/ +#if 1 +#define ARRAYS +#endif + +/* In this implementation the columns of the state array are each held in + 32-bit words. The state array can be held in various ways: in an array + of words, in a number of individual word variables or in a number of + processor registers. The following define maps a variable name x and + a column number c to the way the state array variable is to be held. + The first define below maps the state into an array x[c] whereas the + second form maps the state into a number of individual variables x0, + x1, etc. Another form could map individual state colums to machine + register names. +*/ + +#if defined(ARRAYS) +#define s(x,c) x[c] +#else +#define s(x,c) x##c +#endif + +/* 8. FIXED OR DYNAMIC TABLES + + When this section is included the tables used by the code are compiled + statically into the binary file. Otherwise the subroutine gen_tabs() + must be called to compute them before the code is first used. +*/ +#if 1 +#define FIXED_TABLES +#define DO_TABLES +#endif + +/* 9. TABLE ALIGNMENT + + On some systems speed will be improved by aligning the AES large lookup + tables on particular boundaries. This define should be set to a power of + two giving the desired alignment. It can be left undefined if alignment + is not needed. This option is specific to the Microsft VC++ compiler - + it seems to sometimes cause trouble for the VC++ version 6 compiler. +*/ + +#if 0 && defined(_MSC_VER) && (_MSC_VER >= 1300) +#define TABLE_ALIGN 64 +#endif + +/* 10. INTERNAL TABLE CONFIGURATION + + This cipher proceeds by repeating in a number of cycles known as 'rounds' + which are implemented by a round function which can optionally be speeded + up using tables. The basic tables are each 256 32-bit words, with either + one or four tables being required for each round function depending on + how much speed is required. The encryption and decryption round functions + are different and the last encryption and decrytpion round functions are + different again making four different round functions in all. + + This means that: + 1. Normal encryption and decryption rounds can each use either 0, 1 + or 4 tables and table spaces of 0, 1024 or 4096 bytes each. + 2. The last encryption and decryption rounds can also use either 0, 1 + or 4 tables and table spaces of 0, 1024 or 4096 bytes each. + + Include or exclude the appropriate definitions below to set the number + of tables used by this implementation. +*/ + +#if 1 /* set tables for the normal encryption round */ +#define ENC_ROUND FOUR_TABLES +#elif 0 +#define ENC_ROUND ONE_TABLE +#else +#define ENC_ROUND NO_TABLES +#endif + +#if 1 /* set tables for the last encryption round */ +#define LAST_ENC_ROUND FOUR_TABLES +#elif 0 +#define LAST_ENC_ROUND ONE_TABLE +#else +#define LAST_ENC_ROUND NO_TABLES +#endif + +#if 1 /* set tables for the normal decryption round */ +#define DEC_ROUND FOUR_TABLES +#elif 0 +#define DEC_ROUND ONE_TABLE +#else +#define DEC_ROUND NO_TABLES +#endif + +#if 1 /* set tables for the last decryption round */ +#define LAST_DEC_ROUND FOUR_TABLES +#elif 0 +#define LAST_DEC_ROUND ONE_TABLE +#else +#define LAST_DEC_ROUND NO_TABLES +#endif + +/* The decryption key schedule can be speeded up with tables in the same + way that the round functions can. Include or exclude the following + defines to set this requirement. +*/ +#if 1 +#define KEY_SCHED FOUR_TABLES +#elif 0 +#define KEY_SCHED ONE_TABLE +#else +#define KEY_SCHED NO_TABLES +#endif + +/* END OF CONFIGURATION OPTIONS */ + +#define RC_LENGTH (5 * (AES_BLOCK_SIZE / 4 - 2)) + +/* Disable or report errors on some combinations of options */ + +#if ENC_ROUND == NO_TABLES && LAST_ENC_ROUND != NO_TABLES +#undef LAST_ENC_ROUND +#define LAST_ENC_ROUND NO_TABLES +#elif ENC_ROUND == ONE_TABLE && LAST_ENC_ROUND == FOUR_TABLES +#undef LAST_ENC_ROUND +#define LAST_ENC_ROUND ONE_TABLE +#endif + +#if ENC_ROUND == NO_TABLES && ENC_UNROLL != NONE +#undef ENC_UNROLL +#define ENC_UNROLL NONE +#endif + +#if DEC_ROUND == NO_TABLES && LAST_DEC_ROUND != NO_TABLES +#undef LAST_DEC_ROUND +#define LAST_DEC_ROUND NO_TABLES +#elif DEC_ROUND == ONE_TABLE && LAST_DEC_ROUND == FOUR_TABLES +#undef LAST_DEC_ROUND +#define LAST_DEC_ROUND ONE_TABLE +#endif + +#if DEC_ROUND == NO_TABLES && DEC_UNROLL != NONE +#undef DEC_UNROLL +#define DEC_UNROLL NONE +#endif + +/* upr(x,n): rotates bytes within words by n positions, moving bytes to + higher index positions with wrap around into low positions + ups(x,n): moves bytes by n positions to higher index positions in + words but without wrap around + bval(x,n): extracts a byte from a word + + NOTE: The definitions given here are intended only for use with + unsigned variables and with shift counts that are compile + time constants +*/ + +#if (ALGORITHM_BYTE_ORDER == BRG_LITTLE_ENDIAN) +#define upr(x,n) (((aes_32t)(x) << (8 * (n))) | ((aes_32t)(x) >> (32 - 8 * (n)))) +#define ups(x,n) ((aes_32t) (x) << (8 * (n))) +#define bval(x,n) ((aes_08t)((x) >> (8 * (n)))) +#define bytes2word(b0, b1, b2, b3) \ + (((aes_32t)(b3) << 24) | ((aes_32t)(b2) << 16) | ((aes_32t)(b1) << 8) | (b0)) +#endif + +#if (ALGORITHM_BYTE_ORDER == BRG_BIG_ENDIAN) +#define upr(x,n) (((aes_32t)(x) >> (8 * (n))) | ((aes_32t)(x) << (32 - 8 * (n)))) +#define ups(x,n) ((aes_32t) (x) >> (8 * (n)))) +#define bval(x,n) ((aes_08t)((x) >> (24 - 8 * (n)))) +#define bytes2word(b0, b1, b2, b3) \ + (((aes_32t)(b0) << 24) | ((aes_32t)(b1) << 16) | ((aes_32t)(b2) << 8) | (b3)) +#endif + +#if defined(SAFE_IO) + +#define word_in(x,c) bytes2word(((aes_08t*)(x)+4*c)[0], ((aes_08t*)(x)+4*c)[1], \ + ((aes_08t*)(x)+4*c)[2], ((aes_08t*)(x)+4*c)[3]) +#define word_out(x,c,v) { ((aes_08t*)(x)+4*c)[0] = bval(v,0); ((aes_08t*)(x)+4*c)[1] = bval(v,1); \ + ((aes_08t*)(x)+4*c)[2] = bval(v,2); ((aes_08t*)(x)+4*c)[3] = bval(v,3); } + +#elif (ALGORITHM_BYTE_ORDER == PLATFORM_BYTE_ORDER) + +#define word_in(x,c) (*((aes_32t*)(x)+(c))) +#define word_out(x,c,v) (*((aes_32t*)(x)+(c)) = (v)) + +#else + +#define word_in(x,c) aes_sw32(*((aes_32t*)(x)+(c))) +#define word_out(x,c,v) (*((aes_32t*)(x)+(c)) = aes_sw32(v)) + +#endif + +/* the finite field modular polynomial and elements */ + +#define WPOLY 0x011b +#define BPOLY 0x1b + +/* multiply four bytes in GF(2^8) by 'x' {02} in parallel */ + +#define m1 0x80808080 +#define m2 0x7f7f7f7f +#define gf_mulx(x) ((((x) & m2) << 1) ^ ((((x) & m1) >> 7) * BPOLY)) + +/* The following defines provide alternative definitions of gf_mulx that might + give improved performance if a fast 32-bit multiply is not available. Note + that a temporary variable u needs to be defined where gf_mulx is used. + +#define gf_mulx(x) (u = (x) & m1, u |= (u >> 1), ((x) & m2) << 1) ^ ((u >> 3) | (u >> 6)) +#define m4 (0x01010101 * BPOLY) +#define gf_mulx(x) (u = (x) & m1, ((x) & m2) << 1) ^ ((u - (u >> 7)) & m4) +*/ + +/* Work out which tables are needed for the different options */ + +#ifdef AES_ASM +#ifdef ENC_ROUND +#undef ENC_ROUND +#endif +#define ENC_ROUND FOUR_TABLES +#ifdef LAST_ENC_ROUND +#undef LAST_ENC_ROUND +#endif +#define LAST_ENC_ROUND FOUR_TABLES +#ifdef DEC_ROUND +#undef DEC_ROUND +#endif +#define DEC_ROUND FOUR_TABLES +#ifdef LAST_DEC_ROUND +#undef LAST_DEC_ROUND +#endif +#define LAST_DEC_ROUND FOUR_TABLES +#ifdef KEY_SCHED +#undef KEY_SCHED +#define KEY_SCHED FOUR_TABLES +#endif +#endif + +#if defined(ENCRYPTION) || defined(AES_ASM) +#if ENC_ROUND == ONE_TABLE +#define FT1_SET +#elif ENC_ROUND == FOUR_TABLES +#define FT4_SET +#else +#define SBX_SET +#endif +#if LAST_ENC_ROUND == ONE_TABLE +#define FL1_SET +#elif LAST_ENC_ROUND == FOUR_TABLES +#define FL4_SET +#elif !defined(SBX_SET) +#define SBX_SET +#endif +#endif + +#if defined(DECRYPTION) || defined(AES_ASM) +#if DEC_ROUND == ONE_TABLE +#define IT1_SET +#elif DEC_ROUND == FOUR_TABLES +#define IT4_SET +#else +#define ISB_SET +#endif +#if LAST_DEC_ROUND == ONE_TABLE +#define IL1_SET +#elif LAST_DEC_ROUND == FOUR_TABLES +#define IL4_SET +#elif !defined(ISB_SET) +#define ISB_SET +#endif +#endif + +#if defined(ENCRYPTION_KEY_SCHEDULE) || defined(DECRYPTION_KEY_SCHEDULE) +#if KEY_SCHED == ONE_TABLE +#define LS1_SET +#define IM1_SET +#elif KEY_SCHED == FOUR_TABLES +#define LS4_SET +#define IM4_SET +#elif !defined(SBX_SET) +#define SBX_SET +#endif +#endif + +/* generic definitions of Rijndael macros that use tables */ + +#define no_table(x,box,vf,rf,c) bytes2word( \ + box[bval(vf(x,0,c),rf(0,c))], \ + box[bval(vf(x,1,c),rf(1,c))], \ + box[bval(vf(x,2,c),rf(2,c))], \ + box[bval(vf(x,3,c),rf(3,c))]) + +#define one_table(x,op,tab,vf,rf,c) \ + ( tab[bval(vf(x,0,c),rf(0,c))] \ + ^ op(tab[bval(vf(x,1,c),rf(1,c))],1) \ + ^ op(tab[bval(vf(x,2,c),rf(2,c))],2) \ + ^ op(tab[bval(vf(x,3,c),rf(3,c))],3)) + +#define four_tables(x,tab,vf,rf,c) \ + ( tab[0][bval(vf(x,0,c),rf(0,c))] \ + ^ tab[1][bval(vf(x,1,c),rf(1,c))] \ + ^ tab[2][bval(vf(x,2,c),rf(2,c))] \ + ^ tab[3][bval(vf(x,3,c),rf(3,c))]) + +#define vf1(x,r,c) (x) +#define rf1(r,c) (r) +#define rf2(r,c) ((8+r-c)&3) + +/* perform forward and inverse column mix operation on four bytes in long word x in */ +/* parallel. NOTE: x must be a simple variable, NOT an expression in these macros. */ + +#if defined(FM4_SET) /* not currently used */ +#define fwd_mcol(x) four_tables(x,t_use(f,m),vf1,rf1,0) +#elif defined(FM1_SET) /* not currently used */ +#define fwd_mcol(x) one_table(x,upr,t_use(f,m),vf1,rf1,0) +#else +#define dec_fmvars aes_32t g2 +#define fwd_mcol(x) (g2 = gf_mulx(x), g2 ^ upr((x) ^ g2, 3) ^ upr((x), 2) ^ upr((x), 1)) +#endif + +#if defined(IM4_SET) +#define inv_mcol(x) four_tables(x,t_use(i,m),vf1,rf1,0) +#elif defined(IM1_SET) +#define inv_mcol(x) one_table(x,upr,t_use(i,m),vf1,rf1,0) +#else +#define dec_imvars aes_32t g2, g4, g9 +#define inv_mcol(x) (g2 = gf_mulx(x), g4 = gf_mulx(g2), g9 = (x) ^ gf_mulx(g4), g4 ^= g9, \ + (x) ^ g2 ^ g4 ^ upr(g2 ^ g9, 3) ^ upr(g4, 2) ^ upr(g9, 1)) +#endif + +#if defined(FL4_SET) +#define ls_box(x,c) four_tables(x,t_use(f,l),vf1,rf2,c) +#elif defined(LS4_SET) +#define ls_box(x,c) four_tables(x,t_use(l,s),vf1,rf2,c) +#elif defined(FL1_SET) +#define ls_box(x,c) one_table(x,upr,t_use(f,l),vf1,rf2,c) +#elif defined(LS1_SET) +#define ls_box(x,c) one_table(x,upr,t_use(l,s),vf1,rf2,c) +#else +#define ls_box(x,c) no_table(x,t_use(s,box),vf1,rf2,c) +#endif + +/* If there are no global variables, the definitions here can be + used to put the AES tables in a structure so that a pointer + can then be added to the AES context to pass them to the AES + routines that need them. If this facility is used, the calling + program has to ensure that this pointer is managed appropriately. + In particular, the value of the t_dec(in,it) item in the table + structure must be set to zero in order to ensure that the tables + are initialised. In practice the three code sequences in aeskey.c + that control the calls to gen_tabs() and the gen_tabs() routine + itself will have to be changed for a specific implementation. If + global variables are available it will generally be preferable to + use them with the precomputed FIXED_TABLES option that uses static + global tables. + + The following defines can be used to control the way the tables + are defined, initialised and used in embedded environments that + require special features for these purposes + + the 't_dec' construction is used to declare fixed table arrays + the 't_set' construction is used to set fixed table values + the 't_use' construction is used to access fixed table values + + 256 byte tables: + + t_xxx(s,box) => forward S box + t_xxx(i,box) => inverse S box + + 256 32-bit word OR 4 x 256 32-bit word tables: + + t_xxx(f,n) => forward normal round + t_xxx(f,l) => forward last round + t_xxx(i,n) => inverse normal round + t_xxx(i,l) => inverse last round + t_xxx(l,s) => key schedule table + t_xxx(i,m) => key schedule table + + Other variables and tables: + + t_xxx(r,c) => the rcon table +*/ + +#define t_dec(m,n) t_##m##n +#define t_set(m,n) t_##m##n +#define t_use(m,n) t_##m##n + +#if defined(DO_TABLES) /* declare and instantiate tables */ + +/* finite field arithmetic operations for table generation */ + +#if defined(FIXED_TABLES) || !defined(FF_TABLES) + +#define f2(x) ((x<<1) ^ (((x>>7) & 1) * WPOLY)) +#define f4(x) ((x<<2) ^ (((x>>6) & 1) * WPOLY) ^ (((x>>6) & 2) * WPOLY)) +#define f8(x) ((x<<3) ^ (((x>>5) & 1) * WPOLY) ^ (((x>>5) & 2) * WPOLY) \ + ^ (((x>>5) & 4) * WPOLY)) +#define f3(x) (f2(x) ^ x) +#define f9(x) (f8(x) ^ x) +#define fb(x) (f8(x) ^ f2(x) ^ x) +#define fd(x) (f8(x) ^ f4(x) ^ x) +#define fe(x) (f8(x) ^ f4(x) ^ f2(x)) + +#else + +#define f2(x) ((x) ? pow[log[x] + 0x19] : 0) +#define f3(x) ((x) ? pow[log[x] + 0x01] : 0) +#define f9(x) ((x) ? pow[log[x] + 0xc7] : 0) +#define fb(x) ((x) ? pow[log[x] + 0x68] : 0) +#define fd(x) ((x) ? pow[log[x] + 0xee] : 0) +#define fe(x) ((x) ? pow[log[x] + 0xdf] : 0) +#define fi(x) ((x) ? pow[ 255 - log[x]] : 0) + +#endif + +#if defined(FIXED_TABLES) /* declare and set values for static tables */ + +#define sb_data(w) \ + w(0x63), w(0x7c), w(0x77), w(0x7b), w(0xf2), w(0x6b), w(0x6f), w(0xc5),\ + w(0x30), w(0x01), w(0x67), w(0x2b), w(0xfe), w(0xd7), w(0xab), w(0x76),\ + w(0xca), w(0x82), w(0xc9), w(0x7d), w(0xfa), w(0x59), w(0x47), w(0xf0),\ + w(0xad), w(0xd4), w(0xa2), w(0xaf), w(0x9c), w(0xa4), w(0x72), w(0xc0),\ + w(0xb7), w(0xfd), w(0x93), w(0x26), w(0x36), w(0x3f), w(0xf7), w(0xcc),\ + w(0x34), w(0xa5), w(0xe5), w(0xf1), w(0x71), w(0xd8), w(0x31), w(0x15),\ + w(0x04), w(0xc7), w(0x23), w(0xc3), w(0x18), w(0x96), w(0x05), w(0x9a),\ + w(0x07), w(0x12), w(0x80), w(0xe2), w(0xeb), w(0x27), w(0xb2), w(0x75),\ + w(0x09), w(0x83), w(0x2c), w(0x1a), w(0x1b), w(0x6e), w(0x5a), w(0xa0),\ + w(0x52), w(0x3b), w(0xd6), w(0xb3), w(0x29), w(0xe3), w(0x2f), w(0x84),\ + w(0x53), w(0xd1), w(0x00), w(0xed), w(0x20), w(0xfc), w(0xb1), w(0x5b),\ + w(0x6a), w(0xcb), w(0xbe), w(0x39), w(0x4a), w(0x4c), w(0x58), w(0xcf),\ + w(0xd0), w(0xef), w(0xaa), w(0xfb), w(0x43), w(0x4d), w(0x33), w(0x85),\ + w(0x45), w(0xf9), w(0x02), w(0x7f), w(0x50), w(0x3c), w(0x9f), w(0xa8),\ + w(0x51), w(0xa3), w(0x40), w(0x8f), w(0x92), w(0x9d), w(0x38), w(0xf5),\ + w(0xbc), w(0xb6), w(0xda), w(0x21), w(0x10), w(0xff), w(0xf3), w(0xd2),\ + w(0xcd), w(0x0c), w(0x13), w(0xec), w(0x5f), w(0x97), w(0x44), w(0x17),\ + w(0xc4), w(0xa7), w(0x7e), w(0x3d), w(0x64), w(0x5d), w(0x19), w(0x73),\ + w(0x60), w(0x81), w(0x4f), w(0xdc), w(0x22), w(0x2a), w(0x90), w(0x88),\ + w(0x46), w(0xee), w(0xb8), w(0x14), w(0xde), w(0x5e), w(0x0b), w(0xdb),\ + w(0xe0), w(0x32), w(0x3a), w(0x0a), w(0x49), w(0x06), w(0x24), w(0x5c),\ + w(0xc2), w(0xd3), w(0xac), w(0x62), w(0x91), w(0x95), w(0xe4), w(0x79),\ + w(0xe7), w(0xc8), w(0x37), w(0x6d), w(0x8d), w(0xd5), w(0x4e), w(0xa9),\ + w(0x6c), w(0x56), w(0xf4), w(0xea), w(0x65), w(0x7a), w(0xae), w(0x08),\ + w(0xba), w(0x78), w(0x25), w(0x2e), w(0x1c), w(0xa6), w(0xb4), w(0xc6),\ + w(0xe8), w(0xdd), w(0x74), w(0x1f), w(0x4b), w(0xbd), w(0x8b), w(0x8a),\ + w(0x70), w(0x3e), w(0xb5), w(0x66), w(0x48), w(0x03), w(0xf6), w(0x0e),\ + w(0x61), w(0x35), w(0x57), w(0xb9), w(0x86), w(0xc1), w(0x1d), w(0x9e),\ + w(0xe1), w(0xf8), w(0x98), w(0x11), w(0x69), w(0xd9), w(0x8e), w(0x94),\ + w(0x9b), w(0x1e), w(0x87), w(0xe9), w(0xce), w(0x55), w(0x28), w(0xdf),\ + w(0x8c), w(0xa1), w(0x89), w(0x0d), w(0xbf), w(0xe6), w(0x42), w(0x68),\ + w(0x41), w(0x99), w(0x2d), w(0x0f), w(0xb0), w(0x54), w(0xbb), w(0x16) + +#define isb_data(w) \ + w(0x52), w(0x09), w(0x6a), w(0xd5), w(0x30), w(0x36), w(0xa5), w(0x38),\ + w(0xbf), w(0x40), w(0xa3), w(0x9e), w(0x81), w(0xf3), w(0xd7), w(0xfb),\ + w(0x7c), w(0xe3), w(0x39), w(0x82), w(0x9b), w(0x2f), w(0xff), w(0x87),\ + w(0x34), w(0x8e), w(0x43), w(0x44), w(0xc4), w(0xde), w(0xe9), w(0xcb),\ + w(0x54), w(0x7b), w(0x94), w(0x32), w(0xa6), w(0xc2), w(0x23), w(0x3d),\ + w(0xee), w(0x4c), w(0x95), w(0x0b), w(0x42), w(0xfa), w(0xc3), w(0x4e),\ + w(0x08), w(0x2e), w(0xa1), w(0x66), w(0x28), w(0xd9), w(0x24), w(0xb2),\ + w(0x76), w(0x5b), w(0xa2), w(0x49), w(0x6d), w(0x8b), w(0xd1), w(0x25),\ + w(0x72), w(0xf8), w(0xf6), w(0x64), w(0x86), w(0x68), w(0x98), w(0x16),\ + w(0xd4), w(0xa4), w(0x5c), w(0xcc), w(0x5d), w(0x65), w(0xb6), w(0x92),\ + w(0x6c), w(0x70), w(0x48), w(0x50), w(0xfd), w(0xed), w(0xb9), w(0xda),\ + w(0x5e), w(0x15), w(0x46), w(0x57), w(0xa7), w(0x8d), w(0x9d), w(0x84),\ + w(0x90), w(0xd8), w(0xab), w(0x00), w(0x8c), w(0xbc), w(0xd3), w(0x0a),\ + w(0xf7), w(0xe4), w(0x58), w(0x05), w(0xb8), w(0xb3), w(0x45), w(0x06),\ + w(0xd0), w(0x2c), w(0x1e), w(0x8f), w(0xca), w(0x3f), w(0x0f), w(0x02),\ + w(0xc1), w(0xaf), w(0xbd), w(0x03), w(0x01), w(0x13), w(0x8a), w(0x6b),\ + w(0x3a), w(0x91), w(0x11), w(0x41), w(0x4f), w(0x67), w(0xdc), w(0xea),\ + w(0x97), w(0xf2), w(0xcf), w(0xce), w(0xf0), w(0xb4), w(0xe6), w(0x73),\ + w(0x96), w(0xac), w(0x74), w(0x22), w(0xe7), w(0xad), w(0x35), w(0x85),\ + w(0xe2), w(0xf9), w(0x37), w(0xe8), w(0x1c), w(0x75), w(0xdf), w(0x6e),\ + w(0x47), w(0xf1), w(0x1a), w(0x71), w(0x1d), w(0x29), w(0xc5), w(0x89),\ + w(0x6f), w(0xb7), w(0x62), w(0x0e), w(0xaa), w(0x18), w(0xbe), w(0x1b),\ + w(0xfc), w(0x56), w(0x3e), w(0x4b), w(0xc6), w(0xd2), w(0x79), w(0x20),\ + w(0x9a), w(0xdb), w(0xc0), w(0xfe), w(0x78), w(0xcd), w(0x5a), w(0xf4),\ + w(0x1f), w(0xdd), w(0xa8), w(0x33), w(0x88), w(0x07), w(0xc7), w(0x31),\ + w(0xb1), w(0x12), w(0x10), w(0x59), w(0x27), w(0x80), w(0xec), w(0x5f),\ + w(0x60), w(0x51), w(0x7f), w(0xa9), w(0x19), w(0xb5), w(0x4a), w(0x0d),\ + w(0x2d), w(0xe5), w(0x7a), w(0x9f), w(0x93), w(0xc9), w(0x9c), w(0xef),\ + w(0xa0), w(0xe0), w(0x3b), w(0x4d), w(0xae), w(0x2a), w(0xf5), w(0xb0),\ + w(0xc8), w(0xeb), w(0xbb), w(0x3c), w(0x83), w(0x53), w(0x99), w(0x61),\ + w(0x17), w(0x2b), w(0x04), w(0x7e), w(0xba), w(0x77), w(0xd6), w(0x26),\ + w(0xe1), w(0x69), w(0x14), w(0x63), w(0x55), w(0x21), w(0x0c), w(0x7d), + +#define mm_data(w) \ + w(0x00), w(0x01), w(0x02), w(0x03), w(0x04), w(0x05), w(0x06), w(0x07),\ + w(0x08), w(0x09), w(0x0a), w(0x0b), w(0x0c), w(0x0d), w(0x0e), w(0x0f),\ + w(0x10), w(0x11), w(0x12), w(0x13), w(0x14), w(0x15), w(0x16), w(0x17),\ + w(0x18), w(0x19), w(0x1a), w(0x1b), w(0x1c), w(0x1d), w(0x1e), w(0x1f),\ + w(0x20), w(0x21), w(0x22), w(0x23), w(0x24), w(0x25), w(0x26), w(0x27),\ + w(0x28), w(0x29), w(0x2a), w(0x2b), w(0x2c), w(0x2d), w(0x2e), w(0x2f),\ + w(0x30), w(0x31), w(0x32), w(0x33), w(0x34), w(0x35), w(0x36), w(0x37),\ + w(0x38), w(0x39), w(0x3a), w(0x3b), w(0x3c), w(0x3d), w(0x3e), w(0x3f),\ + w(0x40), w(0x41), w(0x42), w(0x43), w(0x44), w(0x45), w(0x46), w(0x47),\ + w(0x48), w(0x49), w(0x4a), w(0x4b), w(0x4c), w(0x4d), w(0x4e), w(0x4f),\ + w(0x50), w(0x51), w(0x52), w(0x53), w(0x54), w(0x55), w(0x56), w(0x57),\ + w(0x58), w(0x59), w(0x5a), w(0x5b), w(0x5c), w(0x5d), w(0x5e), w(0x5f),\ + w(0x60), w(0x61), w(0x62), w(0x63), w(0x64), w(0x65), w(0x66), w(0x67),\ + w(0x68), w(0x69), w(0x6a), w(0x6b), w(0x6c), w(0x6d), w(0x6e), w(0x6f),\ + w(0x70), w(0x71), w(0x72), w(0x73), w(0x74), w(0x75), w(0x76), w(0x77),\ + w(0x78), w(0x79), w(0x7a), w(0x7b), w(0x7c), w(0x7d), w(0x7e), w(0x7f),\ + w(0x80), w(0x81), w(0x82), w(0x83), w(0x84), w(0x85), w(0x86), w(0x87),\ + w(0x88), w(0x89), w(0x8a), w(0x8b), w(0x8c), w(0x8d), w(0x8e), w(0x8f),\ + w(0x90), w(0x91), w(0x92), w(0x93), w(0x94), w(0x95), w(0x96), w(0x97),\ + w(0x98), w(0x99), w(0x9a), w(0x9b), w(0x9c), w(0x9d), w(0x9e), w(0x9f),\ + w(0xa0), w(0xa1), w(0xa2), w(0xa3), w(0xa4), w(0xa5), w(0xa6), w(0xa7),\ + w(0xa8), w(0xa9), w(0xaa), w(0xab), w(0xac), w(0xad), w(0xae), w(0xaf),\ + w(0xb0), w(0xb1), w(0xb2), w(0xb3), w(0xb4), w(0xb5), w(0xb6), w(0xb7),\ + w(0xb8), w(0xb9), w(0xba), w(0xbb), w(0xbc), w(0xbd), w(0xbe), w(0xbf),\ + w(0xc0), w(0xc1), w(0xc2), w(0xc3), w(0xc4), w(0xc5), w(0xc6), w(0xc7),\ + w(0xc8), w(0xc9), w(0xca), w(0xcb), w(0xcc), w(0xcd), w(0xce), w(0xcf),\ + w(0xd0), w(0xd1), w(0xd2), w(0xd3), w(0xd4), w(0xd5), w(0xd6), w(0xd7),\ + w(0xd8), w(0xd9), w(0xda), w(0xdb), w(0xdc), w(0xdd), w(0xde), w(0xdf),\ + w(0xe0), w(0xe1), w(0xe2), w(0xe3), w(0xe4), w(0xe5), w(0xe6), w(0xe7),\ + w(0xe8), w(0xe9), w(0xea), w(0xeb), w(0xec), w(0xed), w(0xee), w(0xef),\ + w(0xf0), w(0xf1), w(0xf2), w(0xf3), w(0xf4), w(0xf5), w(0xf6), w(0xf7),\ + w(0xf8), w(0xf9), w(0xfa), w(0xfb), w(0xfc), w(0xfd), w(0xfe), w(0xff) + +#define h0(x) (x) + +/* These defines are used to ensure tables are generated in the + right format depending on the internal byte order required +*/ + +#define w0(p) bytes2word(p, 0, 0, 0) +#define w1(p) bytes2word(0, p, 0, 0) +#define w2(p) bytes2word(0, 0, p, 0) +#define w3(p) bytes2word(0, 0, 0, p) + +#define u0(p) bytes2word(f2(p), p, p, f3(p)) +#define u1(p) bytes2word(f3(p), f2(p), p, p) +#define u2(p) bytes2word(p, f3(p), f2(p), p) +#define u3(p) bytes2word(p, p, f3(p), f2(p)) + +#define v0(p) bytes2word(fe(p), f9(p), fd(p), fb(p)) +#define v1(p) bytes2word(fb(p), fe(p), f9(p), fd(p)) +#define v2(p) bytes2word(fd(p), fb(p), fe(p), f9(p)) +#define v3(p) bytes2word(f9(p), fd(p), fb(p), fe(p)) + +const aes_32t t_dec(r,c)[RC_LENGTH] = +{ + w0(0x01), w0(0x02), w0(0x04), w0(0x08), w0(0x10), + w0(0x20), w0(0x40), w0(0x80), w0(0x1b), w0(0x36) +}; + +#if defined(__BORLANDC__) + #define concat(s1, s2) s1##s2 + #define d_1(t,n,b,v) const t n[256] = { b(concat(v,0)) } + #define d_4(t,n,b,v) const t n[4][256] = { { b(concat(v,0)) }, { b(concat(v,1)) }, { b(concat(v,2)) }, { b(concat(v,3)) } } +#else + #define d_1(t,n,b,v) const t n[256] = { b(v##0) } + #define d_4(t,n,b,v) const t n[4][256] = { { b(v##0) }, { b(v##1) }, { b(v##2) }, { b(v##3) } } +#endif + +#else /* declare and instantiate tables for dynamic value generation in in tab.c */ + +aes_32t t_dec(r,c)[RC_LENGTH]; + +#define d_1(t,n,b,v) t n[256] +#define d_4(t,n,b,v) t n[4][256] + +#endif + +#else /* declare tables without instantiation */ + +#if defined(FIXED_TABLES) + +extern const aes_32t t_dec(r,c)[RC_LENGTH]; + +#if defined(_MSC_VER) && defined(TABLE_ALIGN) +#define d_1(t,n,b,v) extern __declspec(align(TABLE_ALIGN)) const t n[256] +#define d_4(t,n,b,v) extern __declspec(align(TABLE_ALIGN)) const t n[4][256] +#else +#define d_1(t,n,b,v) extern const t n[256] +#define d_4(t,n,b,v) extern const t n[4][256] +#endif +#else + +extern aes_32t t_dec(r,c)[RC_LENGTH]; + +#if defined(_MSC_VER) && defined(TABLE_ALIGN) +#define d_1(t,n,b,v) extern __declspec(align(TABLE_ALIGN)) t n[256] +#define d_4(t,n,b,v) extern __declspec(align(TABLE_ALIGN)) t n[4][256] +#else +#define d_1(t,n,b,v) extern t n[256] +#define d_4(t,n,b,v) extern t n[4][256] +#endif +#endif + +#endif + +#ifdef SBX_SET + d_1(aes_08t, t_dec(s,box), sb_data, h); +#endif +#ifdef ISB_SET + d_1(aes_08t, t_dec(i,box), isb_data, h); +#endif + +#ifdef FT1_SET + d_1(aes_32t, t_dec(f,n), sb_data, u); +#endif +#ifdef FT4_SET + d_4(aes_32t, t_dec(f,n), sb_data, u); +#endif + +#ifdef FL1_SET + d_1(aes_32t, t_dec(f,l), sb_data, w); +#endif +#ifdef FL4_SET + d_4(aes_32t, t_dec(f,l), sb_data, w); +#endif + +#ifdef IT1_SET + d_1(aes_32t, t_dec(i,n), isb_data, v); +#endif +#ifdef IT4_SET + d_4(aes_32t, t_dec(i,n), isb_data, v); +#endif + +#ifdef IL1_SET + d_1(aes_32t, t_dec(i,l), isb_data, w); +#endif +#ifdef IL4_SET + d_4(aes_32t, t_dec(i,l), isb_data, w); +#endif + +#ifdef LS1_SET +#ifdef FL1_SET +#undef LS1_SET +#else + d_1(aes_32t, t_dec(l,s), sb_data, w); +#endif +#endif + +#ifdef LS4_SET +#ifdef FL4_SET +#undef LS4_SET +#else + d_4(aes_32t, t_dec(l,s), sb_data, w); +#endif +#endif + +#ifdef IM1_SET + d_1(aes_32t, t_dec(i,m), mm_data, v); +#endif +#ifdef IM4_SET + d_4(aes_32t, t_dec(i,m), mm_data, v); +#endif + +#endif + -- cgit v1.1