From f9158592e1478b2013afc7041d9ed041cf2d2f4a Mon Sep 17 00:00:00 2001 From: David Walter Seikel Date: Mon, 13 Jan 2014 19:47:58 +1000 Subject: Update Irrlicht to 1.8.1. Include actual change markers this time. lol --- .../doc/html/vector3d_8h_source.html | 492 +++++++++++++++++++++ 1 file changed, 492 insertions(+) create mode 100644 libraries/irrlicht-1.8.1/doc/html/vector3d_8h_source.html (limited to 'libraries/irrlicht-1.8.1/doc/html/vector3d_8h_source.html') diff --git a/libraries/irrlicht-1.8.1/doc/html/vector3d_8h_source.html b/libraries/irrlicht-1.8.1/doc/html/vector3d_8h_source.html new file mode 100644 index 0000000..4cabef7 --- /dev/null +++ b/libraries/irrlicht-1.8.1/doc/html/vector3d_8h_source.html @@ -0,0 +1,492 @@ + + + + +Irrlicht 3D Engine: vector3d.h Source File + + + + + + + + + + + + + + +
+ + +
+ + + + + + + + + + + + + + + + + +
+
Irrlicht 3D Engine + +
+ +
+ + + + + + +
+
+
+ + + + +
+
+ +
+
+
+ +
+
+
+
vector3d.h
+
+
+Go to the documentation of this file.
00001 // Copyright (C) 2002-2012 Nikolaus Gebhardt
+00002 // This file is part of the "Irrlicht Engine".
+00003 // For conditions of distribution and use, see copyright notice in irrlicht.h
+00004 
+00005 #ifndef __IRR_POINT_3D_H_INCLUDED__
+00006 #define __IRR_POINT_3D_H_INCLUDED__
+00007 
+00008 #include "irrMath.h"
+00009 
+00010 namespace irr
+00011 {
+00012 namespace core
+00013 {
+00014 
+00016 
+00021     template <class T>
+00022     class vector3d
+00023     {
+00024     public:
+00026         vector3d() : X(0), Y(0), Z(0) {}
+00028         vector3d(T nx, T ny, T nz) : X(nx), Y(ny), Z(nz) {}
+00030         explicit vector3d(T n) : X(n), Y(n), Z(n) {}
+00032         vector3d(const vector3d<T>& other) : X(other.X), Y(other.Y), Z(other.Z) {}
+00033 
+00034         // operators
+00035 
+00036         vector3d<T> operator-() const { return vector3d<T>(-X, -Y, -Z); }
+00037 
+00038         vector3d<T>& operator=(const vector3d<T>& other) { X = other.X; Y = other.Y; Z = other.Z; return *this; }
+00039 
+00040         vector3d<T> operator+(const vector3d<T>& other) const { return vector3d<T>(X + other.X, Y + other.Y, Z + other.Z); }
+00041         vector3d<T>& operator+=(const vector3d<T>& other) { X+=other.X; Y+=other.Y; Z+=other.Z; return *this; }
+00042         vector3d<T> operator+(const T val) const { return vector3d<T>(X + val, Y + val, Z + val); }
+00043         vector3d<T>& operator+=(const T val) { X+=val; Y+=val; Z+=val; return *this; }
+00044 
+00045         vector3d<T> operator-(const vector3d<T>& other) const { return vector3d<T>(X - other.X, Y - other.Y, Z - other.Z); }
+00046         vector3d<T>& operator-=(const vector3d<T>& other) { X-=other.X; Y-=other.Y; Z-=other.Z; return *this; }
+00047         vector3d<T> operator-(const T val) const { return vector3d<T>(X - val, Y - val, Z - val); }
+00048         vector3d<T>& operator-=(const T val) { X-=val; Y-=val; Z-=val; return *this; }
+00049 
+00050         vector3d<T> operator*(const vector3d<T>& other) const { return vector3d<T>(X * other.X, Y * other.Y, Z * other.Z); }
+00051         vector3d<T>& operator*=(const vector3d<T>& other) { X*=other.X; Y*=other.Y; Z*=other.Z; return *this; }
+00052         vector3d<T> operator*(const T v) const { return vector3d<T>(X * v, Y * v, Z * v); }
+00053         vector3d<T>& operator*=(const T v) { X*=v; Y*=v; Z*=v; return *this; }
+00054 
+00055         vector3d<T> operator/(const vector3d<T>& other) const { return vector3d<T>(X / other.X, Y / other.Y, Z / other.Z); }
+00056         vector3d<T>& operator/=(const vector3d<T>& other) { X/=other.X; Y/=other.Y; Z/=other.Z; return *this; }
+00057         vector3d<T> operator/(const T v) const { T i=(T)1.0/v; return vector3d<T>(X * i, Y * i, Z * i); }
+00058         vector3d<T>& operator/=(const T v) { T i=(T)1.0/v; X*=i; Y*=i; Z*=i; return *this; }
+00059 
+00061         bool operator<=(const vector3d<T>&other) const
+00062         {
+00063             return  (X<other.X || core::equals(X, other.X)) ||
+00064                     (core::equals(X, other.X) && (Y<other.Y || core::equals(Y, other.Y))) ||
+00065                     (core::equals(X, other.X) && core::equals(Y, other.Y) && (Z<other.Z || core::equals(Z, other.Z)));
+00066         }
+00067 
+00069         bool operator>=(const vector3d<T>&other) const
+00070         {
+00071             return  (X>other.X || core::equals(X, other.X)) ||
+00072                     (core::equals(X, other.X) && (Y>other.Y || core::equals(Y, other.Y))) ||
+00073                     (core::equals(X, other.X) && core::equals(Y, other.Y) && (Z>other.Z || core::equals(Z, other.Z)));
+00074         }
+00075 
+00077         bool operator<(const vector3d<T>&other) const
+00078         {
+00079             return  (X<other.X && !core::equals(X, other.X)) ||
+00080                     (core::equals(X, other.X) && Y<other.Y && !core::equals(Y, other.Y)) ||
+00081                     (core::equals(X, other.X) && core::equals(Y, other.Y) && Z<other.Z && !core::equals(Z, other.Z));
+00082         }
+00083 
+00085         bool operator>(const vector3d<T>&other) const
+00086         {
+00087             return  (X>other.X && !core::equals(X, other.X)) ||
+00088                     (core::equals(X, other.X) && Y>other.Y && !core::equals(Y, other.Y)) ||
+00089                     (core::equals(X, other.X) && core::equals(Y, other.Y) && Z>other.Z && !core::equals(Z, other.Z));
+00090         }
+00091 
+00093         bool operator==(const vector3d<T>& other) const
+00094         {
+00095             return this->equals(other);
+00096         }
+00097 
+00098         bool operator!=(const vector3d<T>& other) const
+00099         {
+00100             return !this->equals(other);
+00101         }
+00102 
+00103         // functions
+00104 
+00106         bool equals(const vector3d<T>& other, const T tolerance = (T)ROUNDING_ERROR_f32 ) const
+00107         {
+00108             return core::equals(X, other.X, tolerance) &&
+00109                 core::equals(Y, other.Y, tolerance) &&
+00110                 core::equals(Z, other.Z, tolerance);
+00111         }
+00112 
+00113         vector3d<T>& set(const T nx, const T ny, const T nz) {X=nx; Y=ny; Z=nz; return *this;}
+00114         vector3d<T>& set(const vector3d<T>& p) {X=p.X; Y=p.Y; Z=p.Z;return *this;}
+00115 
+00117         T getLength() const { return core::squareroot( X*X + Y*Y + Z*Z ); }
+00118 
+00120 
+00122         T getLengthSQ() const { return X*X + Y*Y + Z*Z; }
+00123 
+00125         T dotProduct(const vector3d<T>& other) const
+00126         {
+00127             return X*other.X + Y*other.Y + Z*other.Z;
+00128         }
+00129 
+00131 
+00132         T getDistanceFrom(const vector3d<T>& other) const
+00133         {
+00134             return vector3d<T>(X - other.X, Y - other.Y, Z - other.Z).getLength();
+00135         }
+00136 
+00138 
+00139         T getDistanceFromSQ(const vector3d<T>& other) const
+00140         {
+00141             return vector3d<T>(X - other.X, Y - other.Y, Z - other.Z).getLengthSQ();
+00142         }
+00143 
+00145 
+00147         vector3d<T> crossProduct(const vector3d<T>& p) const
+00148         {
+00149             return vector3d<T>(Y * p.Z - Z * p.Y, Z * p.X - X * p.Z, X * p.Y - Y * p.X);
+00150         }
+00151 
+00153 
+00157         bool isBetweenPoints(const vector3d<T>& begin, const vector3d<T>& end) const
+00158         {
+00159             const T f = (end - begin).getLengthSQ();
+00160             return getDistanceFromSQ(begin) <= f &&
+00161                 getDistanceFromSQ(end) <= f;
+00162         }
+00163 
+00165 
+00168         vector3d<T>& normalize()
+00169         {
+00170             f64 length = X*X + Y*Y + Z*Z;
+00171             if (length == 0 ) // this check isn't an optimization but prevents getting NAN in the sqrt.
+00172                 return *this;
+00173             length = core::reciprocal_squareroot(length);
+00174 
+00175             X = (T)(X * length);
+00176             Y = (T)(Y * length);
+00177             Z = (T)(Z * length);
+00178             return *this;
+00179         }
+00180 
+00182         vector3d<T>& setLength(T newlength)
+00183         {
+00184             normalize();
+00185             return (*this *= newlength);
+00186         }
+00187 
+00189         vector3d<T>& invert()
+00190         {
+00191             X *= -1;
+00192             Y *= -1;
+00193             Z *= -1;
+00194             return *this;
+00195         }
+00196 
+00198 
+00200         void rotateXZBy(f64 degrees, const vector3d<T>& center=vector3d<T>())
+00201         {
+00202             degrees *= DEGTORAD64;
+00203             f64 cs = cos(degrees);
+00204             f64 sn = sin(degrees);
+00205             X -= center.X;
+00206             Z -= center.Z;
+00207             set((T)(X*cs - Z*sn), Y, (T)(X*sn + Z*cs));
+00208             X += center.X;
+00209             Z += center.Z;
+00210         }
+00211 
+00213 
+00215         void rotateXYBy(f64 degrees, const vector3d<T>& center=vector3d<T>())
+00216         {
+00217             degrees *= DEGTORAD64;
+00218             f64 cs = cos(degrees);
+00219             f64 sn = sin(degrees);
+00220             X -= center.X;
+00221             Y -= center.Y;
+00222             set((T)(X*cs - Y*sn), (T)(X*sn + Y*cs), Z);
+00223             X += center.X;
+00224             Y += center.Y;
+00225         }
+00226 
+00228 
+00230         void rotateYZBy(f64 degrees, const vector3d<T>& center=vector3d<T>())
+00231         {
+00232             degrees *= DEGTORAD64;
+00233             f64 cs = cos(degrees);
+00234             f64 sn = sin(degrees);
+00235             Z -= center.Z;
+00236             Y -= center.Y;
+00237             set(X, (T)(Y*cs - Z*sn), (T)(Y*sn + Z*cs));
+00238             Z += center.Z;
+00239             Y += center.Y;
+00240         }
+00241 
+00243 
+00247         vector3d<T> getInterpolated(const vector3d<T>& other, f64 d) const
+00248         {
+00249             const f64 inv = 1.0 - d;
+00250             return vector3d<T>((T)(other.X*inv + X*d), (T)(other.Y*inv + Y*d), (T)(other.Z*inv + Z*d));
+00251         }
+00252 
+00254 
+00259         vector3d<T> getInterpolated_quadratic(const vector3d<T>& v2, const vector3d<T>& v3, f64 d) const
+00260         {
+00261             // this*(1-d)*(1-d) + 2 * v2 * (1-d) + v3 * d * d;
+00262             const f64 inv = (T) 1.0 - d;
+00263             const f64 mul0 = inv * inv;
+00264             const f64 mul1 = (T) 2.0 * d * inv;
+00265             const f64 mul2 = d * d;
+00266 
+00267             return vector3d<T> ((T)(X * mul0 + v2.X * mul1 + v3.X * mul2),
+00268                     (T)(Y * mul0 + v2.Y * mul1 + v3.Y * mul2),
+00269                     (T)(Z * mul0 + v2.Z * mul1 + v3.Z * mul2));
+00270         }
+00271 
+00273 
+00278         vector3d<T>& interpolate(const vector3d<T>& a, const vector3d<T>& b, f64 d)
+00279         {
+00280             X = (T)((f64)b.X + ( ( a.X - b.X ) * d ));
+00281             Y = (T)((f64)b.Y + ( ( a.Y - b.Y ) * d ));
+00282             Z = (T)((f64)b.Z + ( ( a.Z - b.Z ) * d ));
+00283             return *this;
+00284         }
+00285 
+00286 
+00288 
+00301         vector3d<T> getHorizontalAngle() const
+00302         {
+00303             vector3d<T> angle;
+00304 
+00305             const f64 tmp = (atan2((f64)X, (f64)Z) * RADTODEG64);
+00306             angle.Y = (T)tmp;
+00307 
+00308             if (angle.Y < 0)
+00309                 angle.Y += 360;
+00310             if (angle.Y >= 360)
+00311                 angle.Y -= 360;
+00312 
+00313             const f64 z1 = core::squareroot(X*X + Z*Z);
+00314 
+00315             angle.X = (T)(atan2((f64)z1, (f64)Y) * RADTODEG64 - 90.0);
+00316 
+00317             if (angle.X < 0)
+00318                 angle.X += 360;
+00319             if (angle.X >= 360)
+00320                 angle.X -= 360;
+00321 
+00322             return angle;
+00323         }
+00324 
+00326 
+00330         vector3d<T> getSphericalCoordinateAngles() const
+00331         {
+00332             vector3d<T> angle;
+00333             const f64 length = X*X + Y*Y + Z*Z;
+00334 
+00335             if (length)
+00336             {
+00337                 if (X!=0)
+00338                 {
+00339                     angle.Y = (T)(atan2((f64)Z,(f64)X) * RADTODEG64);
+00340                 }
+00341                 else if (Z<0)
+00342                     angle.Y=180;
+00343 
+00344                 angle.X = (T)(acos(Y * core::reciprocal_squareroot(length)) * RADTODEG64);
+00345             }
+00346             return angle;
+00347         }
+00348 
+00350 
+00357         vector3d<T> rotationToDirection(const vector3d<T> & forwards = vector3d<T>(0, 0, 1)) const
+00358         {
+00359             const f64 cr = cos( core::DEGTORAD64 * X );
+00360             const f64 sr = sin( core::DEGTORAD64 * X );
+00361             const f64 cp = cos( core::DEGTORAD64 * Y );
+00362             const f64 sp = sin( core::DEGTORAD64 * Y );
+00363             const f64 cy = cos( core::DEGTORAD64 * Z );
+00364             const f64 sy = sin( core::DEGTORAD64 * Z );
+00365 
+00366             const f64 srsp = sr*sp;
+00367             const f64 crsp = cr*sp;
+00368 
+00369             const f64 pseudoMatrix[] = {
+00370                 ( cp*cy ), ( cp*sy ), ( -sp ),
+00371                 ( srsp*cy-cr*sy ), ( srsp*sy+cr*cy ), ( sr*cp ),
+00372                 ( crsp*cy+sr*sy ), ( crsp*sy-sr*cy ), ( cr*cp )};
+00373 
+00374             return vector3d<T>(
+00375                 (T)(forwards.X * pseudoMatrix[0] +
+00376                     forwards.Y * pseudoMatrix[3] +
+00377                     forwards.Z * pseudoMatrix[6]),
+00378                 (T)(forwards.X * pseudoMatrix[1] +
+00379                     forwards.Y * pseudoMatrix[4] +
+00380                     forwards.Z * pseudoMatrix[7]),
+00381                 (T)(forwards.X * pseudoMatrix[2] +
+00382                     forwards.Y * pseudoMatrix[5] +
+00383                     forwards.Z * pseudoMatrix[8]));
+00384         }
+00385 
+00387 
+00389         void getAs4Values(T* array) const
+00390         {
+00391             array[0] = X;
+00392             array[1] = Y;
+00393             array[2] = Z;
+00394             array[3] = 0;
+00395         }
+00396 
+00398 
+00399         void getAs3Values(T* array) const
+00400         {
+00401             array[0] = X;
+00402             array[1] = Y;
+00403             array[2] = Z;
+00404         }
+00405 
+00406 
+00408         T X;
+00409 
+00411         T Y;
+00412 
+00414         T Z;
+00415     };
+00416 
+00418     // Implementor note: inline keyword needed due to template specialization for s32. Otherwise put specialization into a .cpp
+00419     template <>
+00420     inline vector3d<s32> vector3d<s32>::operator /(s32 val) const {return core::vector3d<s32>(X/val,Y/val,Z/val);}
+00421     template <>
+00422     inline vector3d<s32>& vector3d<s32>::operator /=(s32 val) {X/=val;Y/=val;Z/=val; return *this;}
+00423 
+00424     template <>
+00425     inline vector3d<s32> vector3d<s32>::getSphericalCoordinateAngles() const
+00426     {
+00427         vector3d<s32> angle;
+00428         const f64 length = X*X + Y*Y + Z*Z;
+00429 
+00430         if (length)
+00431         {
+00432             if (X!=0)
+00433             {
+00434                 angle.Y = round32((f32)(atan2((f64)Z,(f64)X) * RADTODEG64));
+00435             }
+00436             else if (Z<0)
+00437                 angle.Y=180;
+00438 
+00439             angle.X = round32((f32)(acos(Y * core::reciprocal_squareroot(length)) * RADTODEG64));
+00440         }
+00441         return angle;
+00442     }
+00443 
+00445     typedef vector3d<f32> vector3df;
+00446 
+00448     typedef vector3d<s32> vector3di;
+00449 
+00451     template<class S, class T>
+00452     vector3d<T> operator*(const S scalar, const vector3d<T>& vector) { return vector*scalar; }
+00453 
+00454 } // end namespace core
+00455 } // end namespace irr
+00456 
+00457 #endif
+00458 
+
+
+ + + + + -- cgit v1.1