From e6a8af898de06e5dea07c8bd84bc53e5118881ff Mon Sep 17 00:00:00 2001 From: David Walter Seikel Date: Mon, 28 Mar 2016 22:18:15 +1000 Subject: Move lemon to the src/others directory. --- .gitignore | 4 +- libraries/lemon/README | 4 - libraries/lemon/lemon.c | 5040 --------------------------------------------- libraries/lemon/lempar.c | 850 -------- src/LuaSL/build.lua | 4 +- src/others/lemon/README | 4 + src/others/lemon/lemon.c | 5040 +++++++++++++++++++++++++++++++++++++++++++++ src/others/lemon/lempar.c | 850 ++++++++ 8 files changed, 5899 insertions(+), 5897 deletions(-) delete mode 100644 libraries/lemon/README delete mode 100644 libraries/lemon/lemon.c delete mode 100644 libraries/lemon/lempar.c create mode 100644 src/others/lemon/README create mode 100644 src/others/lemon/lemon.c create mode 100644 src/others/lemon/lempar.c diff --git a/.gitignore b/.gitignore index 0e0e9b0..52694c4 100644 --- a/.gitignore +++ b/.gitignore @@ -319,7 +319,6 @@ *.diff *.lsl.lua *.lsl2 -/libraries/lemon/lemon /lib/constants.lsl media/bad_scripts/ media/really_bad_scripts/ @@ -334,4 +333,7 @@ media/Test%20sim/test/bulk_scripts_dump/ /src/LuaSL/LuaSL_lexer.h /src/LuaSL/LuaSL_LSL_lexer.c /src/LuaSL/LuaSL_LSL_lexer.h +/src/others/lemon/lemon +/src/others/netsurf/ +/src/others/polipo/ valgrind_*.log diff --git a/libraries/lemon/README b/libraries/lemon/README deleted file mode 100644 index aa84547..0000000 --- a/libraries/lemon/README +++ /dev/null @@ -1,4 +0,0 @@ -The lemon parser is maintained at http://www.hwaci.com/sw/lemon/ in -particular the documentation is at - - -http://www.hwaci.com/sw/lemon/lemon.html diff --git a/libraries/lemon/lemon.c b/libraries/lemon/lemon.c deleted file mode 100644 index 85e94f7..0000000 --- a/libraries/lemon/lemon.c +++ /dev/null @@ -1,5040 +0,0 @@ -/* -** This file contains all sources (including headers) to the LEMON -** LALR(1) parser generator. The sources have been combined into a -** single file to make it easy to include LEMON in the source tree -** and Makefile of another program. -** -** The author of this program disclaims copyright. -*/ -#include -#include -#include -#include -#include -#include - -#ifndef __WIN32__ -# if defined(_WIN32) || defined(WIN32) -# define __WIN32__ -# endif -#endif - -#ifdef __WIN32__ -#ifdef __cplusplus -extern "C" { -#endif -extern int access(const char *path, int mode); -#ifdef __cplusplus -} -#endif -#else -#include -#endif - -/* #define PRIVATE static */ -#define PRIVATE - -#ifdef TEST -#define MAXRHS 5 /* Set low to exercise exception code */ -#else -#define MAXRHS 1000 -#endif - -static int showPrecedenceConflict = 0; -static char *msort(char*,char**,int(*)(const char*,const char*)); - -/* -** Compilers are getting increasingly pedantic about type conversions -** as C evolves ever closer to Ada.... To work around the latest problems -** we have to define the following variant of strlen(). -*/ -#define lemonStrlen(X) ((int)strlen(X)) - -/* -** Compilers are starting to complain about the use of sprintf() and strcpy(), -** saying they are unsafe. So we define our own versions of those routines too. -** -** There are three routines here: lemon_sprintf(), lemon_vsprintf(), and -** lemon_addtext(). The first two are replacements for sprintf() and vsprintf(). -** The third is a helper routine for vsnprintf() that adds texts to the end of a -** buffer, making sure the buffer is always zero-terminated. -** -** The string formatter is a minimal subset of stdlib sprintf() supporting only -** a few simply conversions: -** -** %d -** %s -** %.*s -** -*/ -static void lemon_addtext( - char *zBuf, /* The buffer to which text is added */ - int *pnUsed, /* Slots of the buffer used so far */ - const char *zIn, /* Text to add */ - int nIn, /* Bytes of text to add. -1 to use strlen() */ - int iWidth /* Field width. Negative to left justify */ -){ - if( nIn<0 ) for(nIn=0; zIn[nIn]; nIn++){} - while( iWidth>nIn ){ zBuf[(*pnUsed)++] = ' '; iWidth--; } - if( nIn==0 ) return; - memcpy(&zBuf[*pnUsed], zIn, nIn); - *pnUsed += nIn; - while( (-iWidth)>nIn ){ zBuf[(*pnUsed)++] = ' '; iWidth++; } - zBuf[*pnUsed] = 0; -} -static int lemon_vsprintf(char *str, const char *zFormat, va_list ap){ - int i, j, k, c; - int nUsed = 0; - const char *z; - char zTemp[50]; - str[0] = 0; - for(i=j=0; (c = zFormat[i])!=0; i++){ - if( c=='%' ){ - int iWidth = 0; - lemon_addtext(str, &nUsed, &zFormat[j], i-j, 0); - c = zFormat[++i]; - if( isdigit(c) || (c=='-' && isdigit(zFormat[i+1])) ){ - if( c=='-' ) i++; - while( isdigit(zFormat[i]) ) iWidth = iWidth*10 + zFormat[i++] - '0'; - if( c=='-' ) iWidth = -iWidth; - c = zFormat[i]; - } - if( c=='d' ){ - int v = va_arg(ap, int); - if( v<0 ){ - lemon_addtext(str, &nUsed, "-", 1, iWidth); - v = -v; - }else if( v==0 ){ - lemon_addtext(str, &nUsed, "0", 1, iWidth); - } - k = 0; - while( v>0 ){ - k++; - zTemp[sizeof(zTemp)-k] = (v%10) + '0'; - v /= 10; - } - lemon_addtext(str, &nUsed, &zTemp[sizeof(zTemp)-k], k, iWidth); - }else if( c=='s' ){ - z = va_arg(ap, const char*); - lemon_addtext(str, &nUsed, z, -1, iWidth); - }else if( c=='.' && memcmp(&zFormat[i], ".*s", 3)==0 ){ - i += 2; - k = va_arg(ap, int); - z = va_arg(ap, const char*); - lemon_addtext(str, &nUsed, z, k, iWidth); - }else if( c=='%' ){ - lemon_addtext(str, &nUsed, "%", 1, 0); - }else{ - fprintf(stderr, "illegal format\n"); - exit(1); - } - j = i+1; - } - } - lemon_addtext(str, &nUsed, &zFormat[j], i-j, 0); - return nUsed; -} -static int lemon_sprintf(char *str, const char *format, ...){ - va_list ap; - int rc; - va_start(ap, format); - rc = lemon_vsprintf(str, format, ap); - va_end(ap); - return rc; -} -static void lemon_strcpy(char *dest, const char *src){ - while( (*(dest++) = *(src++))!=0 ){} -} -static void lemon_strcat(char *dest, const char *src){ - while( *dest ) dest++; - lemon_strcpy(dest, src); -} - - -/* a few forward declarations... */ -struct rule; -struct lemon; -struct action; - -static struct action *Action_new(void); -static struct action *Action_sort(struct action *); - -/********** From the file "build.h" ************************************/ -void FindRulePrecedences(); -void FindFirstSets(); -void FindStates(); -void FindLinks(); -void FindFollowSets(); -void FindActions(); - -/********* From the file "configlist.h" *********************************/ -void Configlist_init(void); -struct config *Configlist_add(struct rule *, int); -struct config *Configlist_addbasis(struct rule *, int); -void Configlist_closure(struct lemon *); -void Configlist_sort(void); -void Configlist_sortbasis(void); -struct config *Configlist_return(void); -struct config *Configlist_basis(void); -void Configlist_eat(struct config *); -void Configlist_reset(void); - -/********* From the file "error.h" ***************************************/ -void ErrorMsg(const char *, int,const char *, ...); - -/****** From the file "option.h" ******************************************/ -enum option_type { OPT_FLAG=1, OPT_INT, OPT_DBL, OPT_STR, - OPT_FFLAG, OPT_FINT, OPT_FDBL, OPT_FSTR}; -struct s_options { - enum option_type type; - const char *label; - char *arg; - const char *message; -}; -int OptInit(char**,struct s_options*,FILE*); -int OptNArgs(void); -char *OptArg(int); -void OptErr(int); -void OptPrint(void); - -/******** From the file "parse.h" *****************************************/ -void Parse(struct lemon *lemp); - -/********* From the file "plink.h" ***************************************/ -struct plink *Plink_new(void); -void Plink_add(struct plink **, struct config *); -void Plink_copy(struct plink **, struct plink *); -void Plink_delete(struct plink *); - -/********** From the file "report.h" *************************************/ -void Reprint(struct lemon *); -void ReportOutput(struct lemon *); -void ReportTable(struct lemon *, int); -void ReportHeader(struct lemon *); -void CompressTables(struct lemon *); -void ResortStates(struct lemon *); - -/********** From the file "set.h" ****************************************/ -void SetSize(int); /* All sets will be of size N */ -char *SetNew(void); /* A new set for element 0..N */ -void SetFree(char*); /* Deallocate a set */ -int SetAdd(char*,int); /* Add element to a set */ -int SetUnion(char *,char *); /* A <- A U B, thru element N */ -#define SetFind(X,Y) (X[Y]) /* True if Y is in set X */ - -/********** From the file "struct.h" *************************************/ -/* -** Principal data structures for the LEMON parser generator. -*/ - -typedef enum {LEMON_FALSE=0, LEMON_TRUE} Boolean; - -/* Symbols (terminals and nonterminals) of the grammar are stored -** in the following: */ -enum symbol_type { - TERMINAL, - NONTERMINAL, - MULTITERMINAL -}; -enum e_assoc { - LEFT, - RIGHT, - NONE, - UNK -}; -struct symbol { - const char *name; /* Name of the symbol */ - int index; /* Index number for this symbol */ - enum symbol_type type; /* Symbols are all either TERMINALS or NTs */ - struct rule *rule; /* Linked list of rules of this (if an NT) */ - struct symbol *fallback; /* fallback token in case this token doesn't parse */ - int prec; /* Precedence if defined (-1 otherwise) */ - enum e_assoc assoc; /* Associativity if precedence is defined */ - char *firstset; /* First-set for all rules of this symbol */ - Boolean lambda; /* True if NT and can generate an empty string */ - int useCnt; /* Number of times used */ - char *destructor; /* Code which executes whenever this symbol is - ** popped from the stack during error processing */ - int destLineno; /* Line number for start of destructor */ - char *datatype; /* The data type of information held by this - ** object. Only used if type==NONTERMINAL */ - int dtnum; /* The data type number. In the parser, the value - ** stack is a union. The .yy%d element of this - ** union is the correct data type for this object */ - /* The following fields are used by MULTITERMINALs only */ - int nsubsym; /* Number of constituent symbols in the MULTI */ - struct symbol **subsym; /* Array of constituent symbols */ -}; - -/* Each production rule in the grammar is stored in the following -** structure. */ -struct rule { - struct symbol *lhs; /* Left-hand side of the rule */ - const char *lhsalias; /* Alias for the LHS (NULL if none) */ - int lhsStart; /* True if left-hand side is the start symbol */ - int ruleline; /* Line number for the rule */ - int nrhs; /* Number of RHS symbols */ - struct symbol **rhs; /* The RHS symbols */ - const char **rhsalias; /* An alias for each RHS symbol (NULL if none) */ - int line; /* Line number at which code begins */ - const char *code; /* The code executed when this rule is reduced */ - struct symbol *precsym; /* Precedence symbol for this rule */ - int index; /* An index number for this rule */ - Boolean canReduce; /* True if this rule is ever reduced */ - struct rule *nextlhs; /* Next rule with the same LHS */ - struct rule *next; /* Next rule in the global list */ -}; - -/* A configuration is a production rule of the grammar together with -** a mark (dot) showing how much of that rule has been processed so far. -** Configurations also contain a follow-set which is a list of terminal -** symbols which are allowed to immediately follow the end of the rule. -** Every configuration is recorded as an instance of the following: */ -enum cfgstatus { - COMPLETE, - INCOMPLETE -}; -struct config { - struct rule *rp; /* The rule upon which the configuration is based */ - int dot; /* The parse point */ - char *fws; /* Follow-set for this configuration only */ - struct plink *fplp; /* Follow-set forward propagation links */ - struct plink *bplp; /* Follow-set backwards propagation links */ - struct state *stp; /* Pointer to state which contains this */ - enum cfgstatus status; /* used during followset and shift computations */ - struct config *next; /* Next configuration in the state */ - struct config *bp; /* The next basis configuration */ -}; - -enum e_action { - SHIFT, - ACCEPT, - REDUCE, - ERROR, - SSCONFLICT, /* A shift/shift conflict */ - SRCONFLICT, /* Was a reduce, but part of a conflict */ - RRCONFLICT, /* Was a reduce, but part of a conflict */ - SH_RESOLVED, /* Was a shift. Precedence resolved conflict */ - RD_RESOLVED, /* Was reduce. Precedence resolved conflict */ - NOT_USED /* Deleted by compression */ -}; - -/* Every shift or reduce operation is stored as one of the following */ -struct action { - struct symbol *sp; /* The look-ahead symbol */ - enum e_action type; - union { - struct state *stp; /* The new state, if a shift */ - struct rule *rp; /* The rule, if a reduce */ - } x; - struct action *next; /* Next action for this state */ - struct action *collide; /* Next action with the same hash */ -}; - -/* Each state of the generated parser's finite state machine -** is encoded as an instance of the following structure. */ -struct state { - struct config *bp; /* The basis configurations for this state */ - struct config *cfp; /* All configurations in this set */ - int statenum; /* Sequential number for this state */ - struct action *ap; /* Array of actions for this state */ - int nTknAct, nNtAct; /* Number of actions on terminals and nonterminals */ - int iTknOfst, iNtOfst; /* yy_action[] offset for terminals and nonterms */ - int iDflt; /* Default action */ -}; -#define NO_OFFSET (-2147483647) - -/* A followset propagation link indicates that the contents of one -** configuration followset should be propagated to another whenever -** the first changes. */ -struct plink { - struct config *cfp; /* The configuration to which linked */ - struct plink *next; /* The next propagate link */ -}; - -/* The state vector for the entire parser generator is recorded as -** follows. (LEMON uses no global variables and makes little use of -** static variables. Fields in the following structure can be thought -** of as begin global variables in the program.) */ -struct lemon { - struct state **sorted; /* Table of states sorted by state number */ - struct rule *rule; /* List of all rules */ - int nstate; /* Number of states */ - int nrule; /* Number of rules */ - int nsymbol; /* Number of terminal and nonterminal symbols */ - int nterminal; /* Number of terminal symbols */ - struct symbol **symbols; /* Sorted array of pointers to symbols */ - int errorcnt; /* Number of errors */ - struct symbol *errsym; /* The error symbol */ - struct symbol *wildcard; /* Token that matches anything */ - char *name; /* Name of the generated parser */ - char *arg; /* Declaration of the 3th argument to parser */ - char *tokentype; /* Type of terminal symbols in the parser stack */ - char *vartype; /* The default type of non-terminal symbols */ - char *start; /* Name of the start symbol for the grammar */ - char *stacksize; /* Size of the parser stack */ - char *include; /* Code to put at the start of the C file */ - char *error; /* Code to execute when an error is seen */ - char *overflow; /* Code to execute on a stack overflow */ - char *failure; /* Code to execute on parser failure */ - char *accept; /* Code to execute when the parser excepts */ - char *extracode; /* Code appended to the generated file */ - char *tokendest; /* Code to execute to destroy token data */ - char *vardest; /* Code for the default non-terminal destructor */ - char *filename; /* Name of the input file */ - char *outname; /* Name of the current output file */ - char *tokenprefix; /* A prefix added to token names in the .h file */ - int nconflict; /* Number of parsing conflicts */ - int tablesize; /* Size of the parse tables */ - int basisflag; /* Print only basis configurations */ - int has_fallback; /* True if any %fallback is seen in the grammar */ - int nolinenosflag; /* True if #line statements should not be printed */ - char *argv0; /* Name of the program */ -}; - -#define MemoryCheck(X) if((X)==0){ \ - extern void memory_error(); \ - memory_error(); \ -} - -/**************** From the file "table.h" *********************************/ -/* -** All code in this file has been automatically generated -** from a specification in the file -** "table.q" -** by the associative array code building program "aagen". -** Do not edit this file! Instead, edit the specification -** file, then rerun aagen. -*/ -/* -** Code for processing tables in the LEMON parser generator. -*/ -/* Routines for handling a strings */ - -const char *Strsafe(const char *); - -void Strsafe_init(void); -int Strsafe_insert(const char *); -const char *Strsafe_find(const char *); - -/* Routines for handling symbols of the grammar */ - -struct symbol *Symbol_new(const char *); -int Symbolcmpp(const void *, const void *); -void Symbol_init(void); -int Symbol_insert(struct symbol *, const char *); -struct symbol *Symbol_find(const char *); -struct symbol *Symbol_Nth(int); -int Symbol_count(void); -struct symbol **Symbol_arrayof(void); - -/* Routines to manage the state table */ - -int Configcmp(const char *, const char *); -struct state *State_new(void); -void State_init(void); -int State_insert(struct state *, struct config *); -struct state *State_find(struct config *); -struct state **State_arrayof(/* */); - -/* Routines used for efficiency in Configlist_add */ - -void Configtable_init(void); -int Configtable_insert(struct config *); -struct config *Configtable_find(struct config *); -void Configtable_clear(int(*)(struct config *)); - -/****************** From the file "action.c" *******************************/ -/* -** Routines processing parser actions in the LEMON parser generator. -*/ - -/* Allocate a new parser action */ -static struct action *Action_new(void){ - static struct action *freelist = 0; - struct action *newaction; - - if( freelist==0 ){ - int i; - int amt = 100; - freelist = (struct action *)calloc(amt, sizeof(struct action)); - if( freelist==0 ){ - fprintf(stderr,"Unable to allocate memory for a new parser action."); - exit(1); - } - for(i=0; inext; - return newaction; -} - -/* Compare two actions for sorting purposes. Return negative, zero, or -** positive if the first action is less than, equal to, or greater than -** the first -*/ -static int actioncmp( - struct action *ap1, - struct action *ap2 -){ - int rc; - rc = ap1->sp->index - ap2->sp->index; - if( rc==0 ){ - rc = (int)ap1->type - (int)ap2->type; - } - if( rc==0 && ap1->type==REDUCE ){ - rc = ap1->x.rp->index - ap2->x.rp->index; - } - if( rc==0 ){ - rc = (int) (ap2 - ap1); - } - return rc; -} - -/* Sort parser actions */ -static struct action *Action_sort( - struct action *ap -){ - ap = (struct action *)msort((char *)ap,(char **)&ap->next, - (int(*)(const char*,const char*))actioncmp); - return ap; -} - -void Action_add( - struct action **app, - enum e_action type, - struct symbol *sp, - char *arg -){ - struct action *newaction; - newaction = Action_new(); - newaction->next = *app; - *app = newaction; - newaction->type = type; - newaction->sp = sp; - if( type==SHIFT ){ - newaction->x.stp = (struct state *)arg; - }else{ - newaction->x.rp = (struct rule *)arg; - } -} -/********************** New code to implement the "acttab" module ***********/ -/* -** This module implements routines use to construct the yy_action[] table. -*/ - -/* -** The state of the yy_action table under construction is an instance of -** the following structure. -** -** The yy_action table maps the pair (state_number, lookahead) into an -** action_number. The table is an array of integers pairs. The state_number -** determines an initial offset into the yy_action array. The lookahead -** value is then added to this initial offset to get an index X into the -** yy_action array. If the aAction[X].lookahead equals the value of the -** of the lookahead input, then the value of the action_number output is -** aAction[X].action. If the lookaheads do not match then the -** default action for the state_number is returned. -** -** All actions associated with a single state_number are first entered -** into aLookahead[] using multiple calls to acttab_action(). Then the -** actions for that single state_number are placed into the aAction[] -** array with a single call to acttab_insert(). The acttab_insert() call -** also resets the aLookahead[] array in preparation for the next -** state number. -*/ -struct lookahead_action { - int lookahead; /* Value of the lookahead token */ - int action; /* Action to take on the given lookahead */ -}; -typedef struct acttab acttab; -struct acttab { - int nAction; /* Number of used slots in aAction[] */ - int nActionAlloc; /* Slots allocated for aAction[] */ - struct lookahead_action - *aAction, /* The yy_action[] table under construction */ - *aLookahead; /* A single new transaction set */ - int mnLookahead; /* Minimum aLookahead[].lookahead */ - int mnAction; /* Action associated with mnLookahead */ - int mxLookahead; /* Maximum aLookahead[].lookahead */ - int nLookahead; /* Used slots in aLookahead[] */ - int nLookaheadAlloc; /* Slots allocated in aLookahead[] */ -}; - -/* Return the number of entries in the yy_action table */ -#define acttab_size(X) ((X)->nAction) - -/* The value for the N-th entry in yy_action */ -#define acttab_yyaction(X,N) ((X)->aAction[N].action) - -/* The value for the N-th entry in yy_lookahead */ -#define acttab_yylookahead(X,N) ((X)->aAction[N].lookahead) - -/* Free all memory associated with the given acttab */ -void acttab_free(acttab *p){ - free( p->aAction ); - free( p->aLookahead ); - free( p ); -} - -/* Allocate a new acttab structure */ -acttab *acttab_alloc(void){ - acttab *p = (acttab *) calloc( 1, sizeof(*p) ); - if( p==0 ){ - fprintf(stderr,"Unable to allocate memory for a new acttab."); - exit(1); - } - memset(p, 0, sizeof(*p)); - return p; -} - -/* Add a new action to the current transaction set. -** -** This routine is called once for each lookahead for a particular -** state. -*/ -void acttab_action(acttab *p, int lookahead, int action){ - if( p->nLookahead>=p->nLookaheadAlloc ){ - p->nLookaheadAlloc += 25; - p->aLookahead = (struct lookahead_action *) realloc( p->aLookahead, - sizeof(p->aLookahead[0])*p->nLookaheadAlloc ); - if( p->aLookahead==0 ){ - fprintf(stderr,"malloc failed\n"); - exit(1); - } - } - if( p->nLookahead==0 ){ - p->mxLookahead = lookahead; - p->mnLookahead = lookahead; - p->mnAction = action; - }else{ - if( p->mxLookaheadmxLookahead = lookahead; - if( p->mnLookahead>lookahead ){ - p->mnLookahead = lookahead; - p->mnAction = action; - } - } - p->aLookahead[p->nLookahead].lookahead = lookahead; - p->aLookahead[p->nLookahead].action = action; - p->nLookahead++; -} - -/* -** Add the transaction set built up with prior calls to acttab_action() -** into the current action table. Then reset the transaction set back -** to an empty set in preparation for a new round of acttab_action() calls. -** -** Return the offset into the action table of the new transaction. -*/ -int acttab_insert(acttab *p){ - int i, j, k, n; - assert( p->nLookahead>0 ); - - /* Make sure we have enough space to hold the expanded action table - ** in the worst case. The worst case occurs if the transaction set - ** must be appended to the current action table - */ - n = p->mxLookahead + 1; - if( p->nAction + n >= p->nActionAlloc ){ - int oldAlloc = p->nActionAlloc; - p->nActionAlloc = p->nAction + n + p->nActionAlloc + 20; - p->aAction = (struct lookahead_action *) realloc( p->aAction, - sizeof(p->aAction[0])*p->nActionAlloc); - if( p->aAction==0 ){ - fprintf(stderr,"malloc failed\n"); - exit(1); - } - for(i=oldAlloc; inActionAlloc; i++){ - p->aAction[i].lookahead = -1; - p->aAction[i].action = -1; - } - } - - /* Scan the existing action table looking for an offset that is a - ** duplicate of the current transaction set. Fall out of the loop - ** if and when the duplicate is found. - ** - ** i is the index in p->aAction[] where p->mnLookahead is inserted. - */ - for(i=p->nAction-1; i>=0; i--){ - if( p->aAction[i].lookahead==p->mnLookahead ){ - /* All lookaheads and actions in the aLookahead[] transaction - ** must match against the candidate aAction[i] entry. */ - if( p->aAction[i].action!=p->mnAction ) continue; - for(j=0; jnLookahead; j++){ - k = p->aLookahead[j].lookahead - p->mnLookahead + i; - if( k<0 || k>=p->nAction ) break; - if( p->aLookahead[j].lookahead!=p->aAction[k].lookahead ) break; - if( p->aLookahead[j].action!=p->aAction[k].action ) break; - } - if( jnLookahead ) continue; - - /* No possible lookahead value that is not in the aLookahead[] - ** transaction is allowed to match aAction[i] */ - n = 0; - for(j=0; jnAction; j++){ - if( p->aAction[j].lookahead<0 ) continue; - if( p->aAction[j].lookahead==j+p->mnLookahead-i ) n++; - } - if( n==p->nLookahead ){ - break; /* An exact match is found at offset i */ - } - } - } - - /* If no existing offsets exactly match the current transaction, find an - ** an empty offset in the aAction[] table in which we can add the - ** aLookahead[] transaction. - */ - if( i<0 ){ - /* Look for holes in the aAction[] table that fit the current - ** aLookahead[] transaction. Leave i set to the offset of the hole. - ** If no holes are found, i is left at p->nAction, which means the - ** transaction will be appended. */ - for(i=0; inActionAlloc - p->mxLookahead; i++){ - if( p->aAction[i].lookahead<0 ){ - for(j=0; jnLookahead; j++){ - k = p->aLookahead[j].lookahead - p->mnLookahead + i; - if( k<0 ) break; - if( p->aAction[k].lookahead>=0 ) break; - } - if( jnLookahead ) continue; - for(j=0; jnAction; j++){ - if( p->aAction[j].lookahead==j+p->mnLookahead-i ) break; - } - if( j==p->nAction ){ - break; /* Fits in empty slots */ - } - } - } - } - /* Insert transaction set at index i. */ - for(j=0; jnLookahead; j++){ - k = p->aLookahead[j].lookahead - p->mnLookahead + i; - p->aAction[k] = p->aLookahead[j]; - if( k>=p->nAction ) p->nAction = k+1; - } - p->nLookahead = 0; - - /* Return the offset that is added to the lookahead in order to get the - ** index into yy_action of the action */ - return i - p->mnLookahead; -} - -/********************** From the file "build.c" *****************************/ -/* -** Routines to construction the finite state machine for the LEMON -** parser generator. -*/ - -/* Find a precedence symbol of every rule in the grammar. -** -** Those rules which have a precedence symbol coded in the input -** grammar using the "[symbol]" construct will already have the -** rp->precsym field filled. Other rules take as their precedence -** symbol the first RHS symbol with a defined precedence. If there -** are not RHS symbols with a defined precedence, the precedence -** symbol field is left blank. -*/ -void FindRulePrecedences(struct lemon *xp) -{ - struct rule *rp; - for(rp=xp->rule; rp; rp=rp->next){ - if( rp->precsym==0 ){ - int i, j; - for(i=0; inrhs && rp->precsym==0; i++){ - struct symbol *sp = rp->rhs[i]; - if( sp->type==MULTITERMINAL ){ - for(j=0; jnsubsym; j++){ - if( sp->subsym[j]->prec>=0 ){ - rp->precsym = sp->subsym[j]; - break; - } - } - }else if( sp->prec>=0 ){ - rp->precsym = rp->rhs[i]; - } - } - } - } - return; -} - -/* Find all nonterminals which will generate the empty string. -** Then go back and compute the first sets of every nonterminal. -** The first set is the set of all terminal symbols which can begin -** a string generated by that nonterminal. -*/ -void FindFirstSets(struct lemon *lemp) -{ - int i, j; - struct rule *rp; - int progress; - - for(i=0; insymbol; i++){ - lemp->symbols[i]->lambda = LEMON_FALSE; - } - for(i=lemp->nterminal; insymbol; i++){ - lemp->symbols[i]->firstset = SetNew(); - } - - /* First compute all lambdas */ - do{ - progress = 0; - for(rp=lemp->rule; rp; rp=rp->next){ - if( rp->lhs->lambda ) continue; - for(i=0; inrhs; i++){ - struct symbol *sp = rp->rhs[i]; - assert( sp->type==NONTERMINAL || sp->lambda==LEMON_FALSE ); - if( sp->lambda==LEMON_FALSE ) break; - } - if( i==rp->nrhs ){ - rp->lhs->lambda = LEMON_TRUE; - progress = 1; - } - } - }while( progress ); - - /* Now compute all first sets */ - do{ - struct symbol *s1, *s2; - progress = 0; - for(rp=lemp->rule; rp; rp=rp->next){ - s1 = rp->lhs; - for(i=0; inrhs; i++){ - s2 = rp->rhs[i]; - if( s2->type==TERMINAL ){ - progress += SetAdd(s1->firstset,s2->index); - break; - }else if( s2->type==MULTITERMINAL ){ - for(j=0; jnsubsym; j++){ - progress += SetAdd(s1->firstset,s2->subsym[j]->index); - } - break; - }else if( s1==s2 ){ - if( s1->lambda==LEMON_FALSE ) break; - }else{ - progress += SetUnion(s1->firstset,s2->firstset); - if( s2->lambda==LEMON_FALSE ) break; - } - } - } - }while( progress ); - return; -} - -/* Compute all LR(0) states for the grammar. Links -** are added to between some states so that the LR(1) follow sets -** can be computed later. -*/ -PRIVATE struct state *getstate(struct lemon *); /* forward reference */ -void FindStates(struct lemon *lemp) -{ - struct symbol *sp; - struct rule *rp; - - Configlist_init(); - - /* Find the start symbol */ - if( lemp->start ){ - sp = Symbol_find(lemp->start); - if( sp==0 ){ - ErrorMsg(lemp->filename,0, -"The specified start symbol \"%s\" is not \ -in a nonterminal of the grammar. \"%s\" will be used as the start \ -symbol instead.",lemp->start,lemp->rule->lhs->name); - lemp->errorcnt++; - sp = lemp->rule->lhs; - } - }else{ - sp = lemp->rule->lhs; - } - - /* Make sure the start symbol doesn't occur on the right-hand side of - ** any rule. Report an error if it does. (YACC would generate a new - ** start symbol in this case.) */ - for(rp=lemp->rule; rp; rp=rp->next){ - int i; - for(i=0; inrhs; i++){ - if( rp->rhs[i]==sp ){ /* FIX ME: Deal with multiterminals */ - ErrorMsg(lemp->filename,0, -"The start symbol \"%s\" occurs on the \ -right-hand side of a rule. This will result in a parser which \ -does not work properly.",sp->name); - lemp->errorcnt++; - } - } - } - - /* The basis configuration set for the first state - ** is all rules which have the start symbol as their - ** left-hand side */ - for(rp=sp->rule; rp; rp=rp->nextlhs){ - struct config *newcfp; - rp->lhsStart = 1; - newcfp = Configlist_addbasis(rp,0); - SetAdd(newcfp->fws,0); - } - - /* Compute the first state. All other states will be - ** computed automatically during the computation of the first one. - ** The returned pointer to the first state is not used. */ - (void)getstate(lemp); - return; -} - -/* Return a pointer to a state which is described by the configuration -** list which has been built from calls to Configlist_add. -*/ -PRIVATE void buildshifts(struct lemon *, struct state *); /* Forwd ref */ -PRIVATE struct state *getstate(struct lemon *lemp) -{ - struct config *cfp, *bp; - struct state *stp; - - /* Extract the sorted basis of the new state. The basis was constructed - ** by prior calls to "Configlist_addbasis()". */ - Configlist_sortbasis(); - bp = Configlist_basis(); - - /* Get a state with the same basis */ - stp = State_find(bp); - if( stp ){ - /* A state with the same basis already exists! Copy all the follow-set - ** propagation links from the state under construction into the - ** preexisting state, then return a pointer to the preexisting state */ - struct config *x, *y; - for(x=bp, y=stp->bp; x && y; x=x->bp, y=y->bp){ - Plink_copy(&y->bplp,x->bplp); - Plink_delete(x->fplp); - x->fplp = x->bplp = 0; - } - cfp = Configlist_return(); - Configlist_eat(cfp); - }else{ - /* This really is a new state. Construct all the details */ - Configlist_closure(lemp); /* Compute the configuration closure */ - Configlist_sort(); /* Sort the configuration closure */ - cfp = Configlist_return(); /* Get a pointer to the config list */ - stp = State_new(); /* A new state structure */ - MemoryCheck(stp); - stp->bp = bp; /* Remember the configuration basis */ - stp->cfp = cfp; /* Remember the configuration closure */ - stp->statenum = lemp->nstate++; /* Every state gets a sequence number */ - stp->ap = 0; /* No actions, yet. */ - State_insert(stp,stp->bp); /* Add to the state table */ - buildshifts(lemp,stp); /* Recursively compute successor states */ - } - return stp; -} - -/* -** Return true if two symbols are the same. -*/ -int same_symbol(struct symbol *a, struct symbol *b) -{ - int i; - if( a==b ) return 1; - if( a->type!=MULTITERMINAL ) return 0; - if( b->type!=MULTITERMINAL ) return 0; - if( a->nsubsym!=b->nsubsym ) return 0; - for(i=0; insubsym; i++){ - if( a->subsym[i]!=b->subsym[i] ) return 0; - } - return 1; -} - -/* Construct all successor states to the given state. A "successor" -** state is any state which can be reached by a shift action. -*/ -PRIVATE void buildshifts(struct lemon *lemp, struct state *stp) -{ - struct config *cfp; /* For looping thru the config closure of "stp" */ - struct config *bcfp; /* For the inner loop on config closure of "stp" */ - struct config *newcfg; /* */ - struct symbol *sp; /* Symbol following the dot in configuration "cfp" */ - struct symbol *bsp; /* Symbol following the dot in configuration "bcfp" */ - struct state *newstp; /* A pointer to a successor state */ - - /* Each configuration becomes complete after it contibutes to a successor - ** state. Initially, all configurations are incomplete */ - for(cfp=stp->cfp; cfp; cfp=cfp->next) cfp->status = INCOMPLETE; - - /* Loop through all configurations of the state "stp" */ - for(cfp=stp->cfp; cfp; cfp=cfp->next){ - if( cfp->status==COMPLETE ) continue; /* Already used by inner loop */ - if( cfp->dot>=cfp->rp->nrhs ) continue; /* Can't shift this config */ - Configlist_reset(); /* Reset the new config set */ - sp = cfp->rp->rhs[cfp->dot]; /* Symbol after the dot */ - - /* For every configuration in the state "stp" which has the symbol "sp" - ** following its dot, add the same configuration to the basis set under - ** construction but with the dot shifted one symbol to the right. */ - for(bcfp=cfp; bcfp; bcfp=bcfp->next){ - if( bcfp->status==COMPLETE ) continue; /* Already used */ - if( bcfp->dot>=bcfp->rp->nrhs ) continue; /* Can't shift this one */ - bsp = bcfp->rp->rhs[bcfp->dot]; /* Get symbol after dot */ - if( !same_symbol(bsp,sp) ) continue; /* Must be same as for "cfp" */ - bcfp->status = COMPLETE; /* Mark this config as used */ - newcfg = Configlist_addbasis(bcfp->rp,bcfp->dot+1); - Plink_add(&newcfg->bplp,bcfp); - } - - /* Get a pointer to the state described by the basis configuration set - ** constructed in the preceding loop */ - newstp = getstate(lemp); - - /* The state "newstp" is reached from the state "stp" by a shift action - ** on the symbol "sp" */ - if( sp->type==MULTITERMINAL ){ - int i; - for(i=0; insubsym; i++){ - Action_add(&stp->ap,SHIFT,sp->subsym[i],(char*)newstp); - } - }else{ - Action_add(&stp->ap,SHIFT,sp,(char *)newstp); - } - } -} - -/* -** Construct the propagation links -*/ -void FindLinks(struct lemon *lemp) -{ - int i; - struct config *cfp, *other; - struct state *stp; - struct plink *plp; - - /* Housekeeping detail: - ** Add to every propagate link a pointer back to the state to - ** which the link is attached. */ - for(i=0; instate; i++){ - stp = lemp->sorted[i]; - for(cfp=stp->cfp; cfp; cfp=cfp->next){ - cfp->stp = stp; - } - } - - /* Convert all backlinks into forward links. Only the forward - ** links are used in the follow-set computation. */ - for(i=0; instate; i++){ - stp = lemp->sorted[i]; - for(cfp=stp->cfp; cfp; cfp=cfp->next){ - for(plp=cfp->bplp; plp; plp=plp->next){ - other = plp->cfp; - Plink_add(&other->fplp,cfp); - } - } - } -} - -/* Compute all followsets. -** -** A followset is the set of all symbols which can come immediately -** after a configuration. -*/ -void FindFollowSets(struct lemon *lemp) -{ - int i; - struct config *cfp; - struct plink *plp; - int progress; - int change; - - for(i=0; instate; i++){ - for(cfp=lemp->sorted[i]->cfp; cfp; cfp=cfp->next){ - cfp->status = INCOMPLETE; - } - } - - do{ - progress = 0; - for(i=0; instate; i++){ - for(cfp=lemp->sorted[i]->cfp; cfp; cfp=cfp->next){ - if( cfp->status==COMPLETE ) continue; - for(plp=cfp->fplp; plp; plp=plp->next){ - change = SetUnion(plp->cfp->fws,cfp->fws); - if( change ){ - plp->cfp->status = INCOMPLETE; - progress = 1; - } - } - cfp->status = COMPLETE; - } - } - }while( progress ); -} - -static int resolve_conflict(struct action *,struct action *); - -/* Compute the reduce actions, and resolve conflicts. -*/ -void FindActions(struct lemon *lemp) -{ - int i,j; - struct config *cfp; - struct state *stp; - struct symbol *sp; - struct rule *rp; - - /* Add all of the reduce actions - ** A reduce action is added for each element of the followset of - ** a configuration which has its dot at the extreme right. - */ - for(i=0; instate; i++){ /* Loop over all states */ - stp = lemp->sorted[i]; - for(cfp=stp->cfp; cfp; cfp=cfp->next){ /* Loop over all configurations */ - if( cfp->rp->nrhs==cfp->dot ){ /* Is dot at extreme right? */ - for(j=0; jnterminal; j++){ - if( SetFind(cfp->fws,j) ){ - /* Add a reduce action to the state "stp" which will reduce by the - ** rule "cfp->rp" if the lookahead symbol is "lemp->symbols[j]" */ - Action_add(&stp->ap,REDUCE,lemp->symbols[j],(char *)cfp->rp); - } - } - } - } - } - - /* Add the accepting token */ - if( lemp->start ){ - sp = Symbol_find(lemp->start); - if( sp==0 ) sp = lemp->rule->lhs; - }else{ - sp = lemp->rule->lhs; - } - /* Add to the first state (which is always the starting state of the - ** finite state machine) an action to ACCEPT if the lookahead is the - ** start nonterminal. */ - Action_add(&lemp->sorted[0]->ap,ACCEPT,sp,0); - - /* Resolve conflicts */ - for(i=0; instate; i++){ - struct action *ap, *nap; - struct state *stp; - stp = lemp->sorted[i]; - /* assert( stp->ap ); */ - stp->ap = Action_sort(stp->ap); - for(ap=stp->ap; ap && ap->next; ap=ap->next){ - for(nap=ap->next; nap && nap->sp==ap->sp; nap=nap->next){ - /* The two actions "ap" and "nap" have the same lookahead. - ** Figure out which one should be used */ - lemp->nconflict += resolve_conflict(ap,nap); - } - } - } - - /* Report an error for each rule that can never be reduced. */ - for(rp=lemp->rule; rp; rp=rp->next) rp->canReduce = LEMON_FALSE; - for(i=0; instate; i++){ - struct action *ap; - for(ap=lemp->sorted[i]->ap; ap; ap=ap->next){ - if( ap->type==REDUCE ) ap->x.rp->canReduce = LEMON_TRUE; - } - } - for(rp=lemp->rule; rp; rp=rp->next){ - if( rp->canReduce ) continue; - ErrorMsg(lemp->filename,rp->ruleline,"This rule can not be reduced.\n"); - lemp->errorcnt++; - } -} - -/* Resolve a conflict between the two given actions. If the -** conflict can't be resolved, return non-zero. -** -** NO LONGER TRUE: -** To resolve a conflict, first look to see if either action -** is on an error rule. In that case, take the action which -** is not associated with the error rule. If neither or both -** actions are associated with an error rule, then try to -** use precedence to resolve the conflict. -** -** If either action is a SHIFT, then it must be apx. This -** function won't work if apx->type==REDUCE and apy->type==SHIFT. -*/ -static int resolve_conflict( - struct action *apx, - struct action *apy -){ - struct symbol *spx, *spy; - int errcnt = 0; - assert( apx->sp==apy->sp ); /* Otherwise there would be no conflict */ - if( apx->type==SHIFT && apy->type==SHIFT ){ - apy->type = SSCONFLICT; - errcnt++; - } - if( apx->type==SHIFT && apy->type==REDUCE ){ - spx = apx->sp; - spy = apy->x.rp->precsym; - if( spy==0 || spx->prec<0 || spy->prec<0 ){ - /* Not enough precedence information. */ - apy->type = SRCONFLICT; - errcnt++; - }else if( spx->prec>spy->prec ){ /* higher precedence wins */ - apy->type = RD_RESOLVED; - }else if( spx->precprec ){ - apx->type = SH_RESOLVED; - }else if( spx->prec==spy->prec && spx->assoc==RIGHT ){ /* Use operator */ - apy->type = RD_RESOLVED; /* associativity */ - }else if( spx->prec==spy->prec && spx->assoc==LEFT ){ /* to break tie */ - apx->type = SH_RESOLVED; - }else{ - assert( spx->prec==spy->prec && spx->assoc==NONE ); - apx->type = ERROR; - } - }else if( apx->type==REDUCE && apy->type==REDUCE ){ - spx = apx->x.rp->precsym; - spy = apy->x.rp->precsym; - if( spx==0 || spy==0 || spx->prec<0 || - spy->prec<0 || spx->prec==spy->prec ){ - apy->type = RRCONFLICT; - errcnt++; - }else if( spx->prec>spy->prec ){ - apy->type = RD_RESOLVED; - }else if( spx->precprec ){ - apx->type = RD_RESOLVED; - } - }else{ - assert( - apx->type==SH_RESOLVED || - apx->type==RD_RESOLVED || - apx->type==SSCONFLICT || - apx->type==SRCONFLICT || - apx->type==RRCONFLICT || - apy->type==SH_RESOLVED || - apy->type==RD_RESOLVED || - apy->type==SSCONFLICT || - apy->type==SRCONFLICT || - apy->type==RRCONFLICT - ); - /* The REDUCE/SHIFT case cannot happen because SHIFTs come before - ** REDUCEs on the list. If we reach this point it must be because - ** the parser conflict had already been resolved. */ - } - return errcnt; -} -/********************* From the file "configlist.c" *************************/ -/* -** Routines to processing a configuration list and building a state -** in the LEMON parser generator. -*/ - -static struct config *freelist = 0; /* List of free configurations */ -static struct config *current = 0; /* Top of list of configurations */ -static struct config **currentend = 0; /* Last on list of configs */ -static struct config *basis = 0; /* Top of list of basis configs */ -static struct config **basisend = 0; /* End of list of basis configs */ - -/* Return a pointer to a new configuration */ -PRIVATE struct config *newconfig(){ - struct config *newcfg; - if( freelist==0 ){ - int i; - int amt = 3; - freelist = (struct config *)calloc( amt, sizeof(struct config) ); - if( freelist==0 ){ - fprintf(stderr,"Unable to allocate memory for a new configuration."); - exit(1); - } - for(i=0; inext; - return newcfg; -} - -/* The configuration "old" is no longer used */ -PRIVATE void deleteconfig(struct config *old) -{ - old->next = freelist; - freelist = old; -} - -/* Initialized the configuration list builder */ -void Configlist_init(){ - current = 0; - currentend = ¤t; - basis = 0; - basisend = &basis; - Configtable_init(); - return; -} - -/* Initialized the configuration list builder */ -void Configlist_reset(){ - current = 0; - currentend = ¤t; - basis = 0; - basisend = &basis; - Configtable_clear(0); - return; -} - -/* Add another configuration to the configuration list */ -struct config *Configlist_add( - struct rule *rp, /* The rule */ - int dot /* Index into the RHS of the rule where the dot goes */ -){ - struct config *cfp, model; - - assert( currentend!=0 ); - model.rp = rp; - model.dot = dot; - cfp = Configtable_find(&model); - if( cfp==0 ){ - cfp = newconfig(); - cfp->rp = rp; - cfp->dot = dot; - cfp->fws = SetNew(); - cfp->stp = 0; - cfp->fplp = cfp->bplp = 0; - cfp->next = 0; - cfp->bp = 0; - *currentend = cfp; - currentend = &cfp->next; - Configtable_insert(cfp); - } - return cfp; -} - -/* Add a basis configuration to the configuration list */ -struct config *Configlist_addbasis(struct rule *rp, int dot) -{ - struct config *cfp, model; - - assert( basisend!=0 ); - assert( currentend!=0 ); - model.rp = rp; - model.dot = dot; - cfp = Configtable_find(&model); - if( cfp==0 ){ - cfp = newconfig(); - cfp->rp = rp; - cfp->dot = dot; - cfp->fws = SetNew(); - cfp->stp = 0; - cfp->fplp = cfp->bplp = 0; - cfp->next = 0; - cfp->bp = 0; - *currentend = cfp; - currentend = &cfp->next; - *basisend = cfp; - basisend = &cfp->bp; - Configtable_insert(cfp); - } - return cfp; -} - -/* Compute the closure of the configuration list */ -void Configlist_closure(struct lemon *lemp) -{ - struct config *cfp, *newcfp; - struct rule *rp, *newrp; - struct symbol *sp, *xsp; - int i, dot; - - assert( currentend!=0 ); - for(cfp=current; cfp; cfp=cfp->next){ - rp = cfp->rp; - dot = cfp->dot; - if( dot>=rp->nrhs ) continue; - sp = rp->rhs[dot]; - if( sp->type==NONTERMINAL ){ - if( sp->rule==0 && sp!=lemp->errsym ){ - ErrorMsg(lemp->filename,rp->line,"Nonterminal \"%s\" has no rules.", - sp->name); - lemp->errorcnt++; - } - for(newrp=sp->rule; newrp; newrp=newrp->nextlhs){ - newcfp = Configlist_add(newrp,0); - for(i=dot+1; inrhs; i++){ - xsp = rp->rhs[i]; - if( xsp->type==TERMINAL ){ - SetAdd(newcfp->fws,xsp->index); - break; - }else if( xsp->type==MULTITERMINAL ){ - int k; - for(k=0; knsubsym; k++){ - SetAdd(newcfp->fws, xsp->subsym[k]->index); - } - break; - }else{ - SetUnion(newcfp->fws,xsp->firstset); - if( xsp->lambda==LEMON_FALSE ) break; - } - } - if( i==rp->nrhs ) Plink_add(&cfp->fplp,newcfp); - } - } - } - return; -} - -/* Sort the configuration list */ -void Configlist_sort(){ - current = (struct config *)msort((char *)current,(char **)&(current->next),Configcmp); - currentend = 0; - return; -} - -/* Sort the basis configuration list */ -void Configlist_sortbasis(){ - basis = (struct config *)msort((char *)current,(char **)&(current->bp),Configcmp); - basisend = 0; - return; -} - -/* Return a pointer to the head of the configuration list and -** reset the list */ -struct config *Configlist_return(){ - struct config *old; - old = current; - current = 0; - currentend = 0; - return old; -} - -/* Return a pointer to the head of the configuration list and -** reset the list */ -struct config *Configlist_basis(){ - struct config *old; - old = basis; - basis = 0; - basisend = 0; - return old; -} - -/* Free all elements of the given configuration list */ -void Configlist_eat(struct config *cfp) -{ - struct config *nextcfp; - for(; cfp; cfp=nextcfp){ - nextcfp = cfp->next; - assert( cfp->fplp==0 ); - assert( cfp->bplp==0 ); - if( cfp->fws ) SetFree(cfp->fws); - deleteconfig(cfp); - } - return; -} -/***************** From the file "error.c" *********************************/ -/* -** Code for printing error message. -*/ - -void ErrorMsg(const char *filename, int lineno, const char *format, ...){ - va_list ap; - fprintf(stderr, "%s:%d: ", filename, lineno); - va_start(ap, format); - vfprintf(stderr,format,ap); - va_end(ap); - fprintf(stderr, "\n"); -} -/**************** From the file "main.c" ************************************/ -/* -** Main program file for the LEMON parser generator. -*/ - -/* Report an out-of-memory condition and abort. This function -** is used mostly by the "MemoryCheck" macro in struct.h -*/ -void memory_error(){ - fprintf(stderr,"Out of memory. Aborting...\n"); - exit(1); -} - -static int nDefine = 0; /* Number of -D options on the command line */ -static char **azDefine = 0; /* Name of the -D macros */ - -/* This routine is called with the argument to each -D command-line option. -** Add the macro defined to the azDefine array. -*/ -static void handle_D_option(char *z){ - char **paz; - nDefine++; - azDefine = (char **) realloc(azDefine, sizeof(azDefine[0])*nDefine); - if( azDefine==0 ){ - fprintf(stderr,"out of memory\n"); - exit(1); - } - paz = &azDefine[nDefine-1]; - *paz = (char *) malloc( lemonStrlen(z)+1 ); - if( *paz==0 ){ - fprintf(stderr,"out of memory\n"); - exit(1); - } - lemon_strcpy(*paz, z); - for(z=*paz; *z && *z!='='; z++){} - *z = 0; -} - -static char *user_templatename = NULL; -static void handle_T_option(char *z){ - user_templatename = (char *) malloc( lemonStrlen(z)+1 ); - if( user_templatename==0 ){ - memory_error(); - } - lemon_strcpy(user_templatename, z); -} - -/* The main program. Parse the command line and do it... */ -int main(int argc, char **argv) -{ - static int version = 0; - static int rpflag = 0; - static int basisflag = 0; - static int compress = 0; - static int quiet = 0; - static int statistics = 0; - static int mhflag = 0; - static int nolinenosflag = 0; - static int noResort = 0; - static struct s_options options[] = { - {OPT_FLAG, "b", (char*)&basisflag, "Print only the basis in report."}, - {OPT_FLAG, "c", (char*)&compress, "Don't compress the action table."}, - {OPT_FSTR, "D", (char*)handle_D_option, "Define an %ifdef macro."}, - {OPT_FSTR, "T", (char*)handle_T_option, "Specify a template file."}, - {OPT_FLAG, "g", (char*)&rpflag, "Print grammar without actions."}, - {OPT_FLAG, "m", (char*)&mhflag, "Output a makeheaders compatible file."}, - {OPT_FLAG, "l", (char*)&nolinenosflag, "Do not print #line statements."}, - {OPT_FLAG, "p", (char*)&showPrecedenceConflict, - "Show conflicts resolved by precedence rules"}, - {OPT_FLAG, "q", (char*)&quiet, "(Quiet) Don't print the report file."}, - {OPT_FLAG, "r", (char*)&noResort, "Do not sort or renumber states"}, - {OPT_FLAG, "s", (char*)&statistics, - "Print parser stats to standard output."}, - {OPT_FLAG, "x", (char*)&version, "Print the version number."}, - {OPT_FLAG,0,0,0} - }; - int i; - int exitcode; - struct lemon lem; - - OptInit(argv,options,stderr); - if( version ){ - printf("Lemon version 1.0\n"); - exit(0); - } - if( OptNArgs()!=1 ){ - fprintf(stderr,"Exactly one filename argument is required.\n"); - exit(1); - } - memset(&lem, 0, sizeof(lem)); - lem.errorcnt = 0; - - /* Initialize the machine */ - Strsafe_init(); - Symbol_init(); - State_init(); - lem.argv0 = argv[0]; - lem.filename = OptArg(0); - lem.basisflag = basisflag; - lem.nolinenosflag = nolinenosflag; - Symbol_new("$"); - lem.errsym = Symbol_new("error"); - lem.errsym->useCnt = 0; - - /* Parse the input file */ - Parse(&lem); - if( lem.errorcnt ) exit(lem.errorcnt); - if( lem.nrule==0 ){ - fprintf(stderr,"Empty grammar.\n"); - exit(1); - } - - /* Count and index the symbols of the grammar */ - Symbol_new("{default}"); - lem.nsymbol = Symbol_count(); - lem.symbols = Symbol_arrayof(); - for(i=0; iindex = i; - qsort(lem.symbols,lem.nsymbol,sizeof(struct symbol*), Symbolcmpp); - for(i=0; iindex = i; - while( lem.symbols[i-1]->type==MULTITERMINAL ){ i--; } - assert( strcmp(lem.symbols[i-1]->name,"{default}")==0 ); - lem.nsymbol = i - 1; - for(i=1; isupper(lem.symbols[i]->name[0]); i++); - lem.nterminal = i; - - /* Generate a reprint of the grammar, if requested on the command line */ - if( rpflag ){ - Reprint(&lem); - }else{ - /* Initialize the size for all follow and first sets */ - SetSize(lem.nterminal+1); - - /* Find the precedence for every production rule (that has one) */ - FindRulePrecedences(&lem); - - /* Compute the lambda-nonterminals and the first-sets for every - ** nonterminal */ - FindFirstSets(&lem); - - /* Compute all LR(0) states. Also record follow-set propagation - ** links so that the follow-set can be computed later */ - lem.nstate = 0; - FindStates(&lem); - lem.sorted = State_arrayof(); - - /* Tie up loose ends on the propagation links */ - FindLinks(&lem); - - /* Compute the follow set of every reducible configuration */ - FindFollowSets(&lem); - - /* Compute the action tables */ - FindActions(&lem); - - /* Compress the action tables */ - if( compress==0 ) CompressTables(&lem); - - /* Reorder and renumber the states so that states with fewer choices - ** occur at the end. This is an optimization that helps make the - ** generated parser tables smaller. */ - if( noResort==0 ) ResortStates(&lem); - - /* Generate a report of the parser generated. (the "y.output" file) */ - if( !quiet ) ReportOutput(&lem); - - /* Generate the source code for the parser */ - ReportTable(&lem, mhflag); - - /* Produce a header file for use by the scanner. (This step is - ** omitted if the "-m" option is used because makeheaders will - ** generate the file for us.) */ - if( !mhflag ) ReportHeader(&lem); - } - if( statistics ){ - printf("Parser statistics: %d terminals, %d nonterminals, %d rules\n", - lem.nterminal, lem.nsymbol - lem.nterminal, lem.nrule); - printf(" %d states, %d parser table entries, %d conflicts\n", - lem.nstate, lem.tablesize, lem.nconflict); - } - if( lem.nconflict > 0 ){ - fprintf(stderr,"%d parsing conflicts.\n",lem.nconflict); - } - - /* return 0 on success, 1 on failure. */ - exitcode = ((lem.errorcnt > 0) || (lem.nconflict > 0)) ? 1 : 0; - exit(exitcode); - return (exitcode); -} -/******************** From the file "msort.c" *******************************/ -/* -** A generic merge-sort program. -** -** USAGE: -** Let "ptr" be a pointer to some structure which is at the head of -** a null-terminated list. Then to sort the list call: -** -** ptr = msort(ptr,&(ptr->next),cmpfnc); -** -** In the above, "cmpfnc" is a pointer to a function which compares -** two instances of the structure and returns an integer, as in -** strcmp. The second argument is a pointer to the pointer to the -** second element of the linked list. This address is used to compute -** the offset to the "next" field within the structure. The offset to -** the "next" field must be constant for all structures in the list. -** -** The function returns a new pointer which is the head of the list -** after sorting. -** -** ALGORITHM: -** Merge-sort. -*/ - -/* -** Return a pointer to the next structure in the linked list. -*/ -#define NEXT(A) (*(char**)(((char*)A)+offset)) - -/* -** Inputs: -** a: A sorted, null-terminated linked list. (May be null). -** b: A sorted, null-terminated linked list. (May be null). -** cmp: A pointer to the comparison function. -** offset: Offset in the structure to the "next" field. -** -** Return Value: -** A pointer to the head of a sorted list containing the elements -** of both a and b. -** -** Side effects: -** The "next" pointers for elements in the lists a and b are -** changed. -*/ -static char *merge( - char *a, - char *b, - int (*cmp)(const char*,const char*), - int offset -){ - char *ptr, *head; - - if( a==0 ){ - head = b; - }else if( b==0 ){ - head = a; - }else{ - if( (*cmp)(a,b)<=0 ){ - ptr = a; - a = NEXT(a); - }else{ - ptr = b; - b = NEXT(b); - } - head = ptr; - while( a && b ){ - if( (*cmp)(a,b)<=0 ){ - NEXT(ptr) = a; - ptr = a; - a = NEXT(a); - }else{ - NEXT(ptr) = b; - ptr = b; - b = NEXT(b); - } - } - if( a ) NEXT(ptr) = a; - else NEXT(ptr) = b; - } - return head; -} - -/* -** Inputs: -** list: Pointer to a singly-linked list of structures. -** next: Pointer to pointer to the second element of the list. -** cmp: A comparison function. -** -** Return Value: -** A pointer to the head of a sorted list containing the elements -** orginally in list. -** -** Side effects: -** The "next" pointers for elements in list are changed. -*/ -#define LISTSIZE 30 -static char *msort( - char *list, - char **next, - int (*cmp)(const char*,const char*) -){ - unsigned long offset; - char *ep; - char *set[LISTSIZE]; - int i; - offset = (unsigned long)next - (unsigned long)list; - for(i=0; istate = WAITING_FOR_DECL_KEYWORD; - }else if( islower(x[0]) ){ - psp->lhs = Symbol_new(x); - psp->nrhs = 0; - psp->lhsalias = 0; - psp->state = WAITING_FOR_ARROW; - }else if( x[0]=='{' ){ - if( psp->prevrule==0 ){ - ErrorMsg(psp->filename,psp->tokenlineno, -"There is no prior rule upon which to attach the code \ -fragment which begins on this line."); - psp->errorcnt++; - }else if( psp->prevrule->code!=0 ){ - ErrorMsg(psp->filename,psp->tokenlineno, -"Code fragment beginning on this line is not the first \ -to follow the previous rule."); - psp->errorcnt++; - }else{ - psp->prevrule->line = psp->tokenlineno; - psp->prevrule->code = &x[1]; - } - }else if( x[0]=='[' ){ - psp->state = PRECEDENCE_MARK_1; - }else{ - ErrorMsg(psp->filename,psp->tokenlineno, - "Token \"%s\" should be either \"%%\" or a nonterminal name.", - x); - psp->errorcnt++; - } - break; - case PRECEDENCE_MARK_1: - if( !isupper(x[0]) ){ - ErrorMsg(psp->filename,psp->tokenlineno, - "The precedence symbol must be a terminal."); - psp->errorcnt++; - }else if( psp->prevrule==0 ){ - ErrorMsg(psp->filename,psp->tokenlineno, - "There is no prior rule to assign precedence \"[%s]\".",x); - psp->errorcnt++; - }else if( psp->prevrule->precsym!=0 ){ - ErrorMsg(psp->filename,psp->tokenlineno, -"Precedence mark on this line is not the first \ -to follow the previous rule."); - psp->errorcnt++; - }else{ - psp->prevrule->precsym = Symbol_new(x); - } - psp->state = PRECEDENCE_MARK_2; - break; - case PRECEDENCE_MARK_2: - if( x[0]!=']' ){ - ErrorMsg(psp->filename,psp->tokenlineno, - "Missing \"]\" on precedence mark."); - psp->errorcnt++; - } - psp->state = WAITING_FOR_DECL_OR_RULE; - break; - case WAITING_FOR_ARROW: - if( x[0]==':' && x[1]==':' && x[2]=='=' ){ - psp->state = IN_RHS; - }else if( x[0]=='(' ){ - psp->state = LHS_ALIAS_1; - }else{ - ErrorMsg(psp->filename,psp->tokenlineno, - "Expected to see a \":\" following the LHS symbol \"%s\".", - psp->lhs->name); - psp->errorcnt++; - psp->state = RESYNC_AFTER_RULE_ERROR; - } - break; - case LHS_ALIAS_1: - if( isalpha(x[0]) ){ - psp->lhsalias = x; - psp->state = LHS_ALIAS_2; - }else{ - ErrorMsg(psp->filename,psp->tokenlineno, - "\"%s\" is not a valid alias for the LHS \"%s\"\n", - x,psp->lhs->name); - psp->errorcnt++; - psp->state = RESYNC_AFTER_RULE_ERROR; - } - break; - case LHS_ALIAS_2: - if( x[0]==')' ){ - psp->state = LHS_ALIAS_3; - }else{ - ErrorMsg(psp->filename,psp->tokenlineno, - "Missing \")\" following LHS alias name \"%s\".",psp->lhsalias); - psp->errorcnt++; - psp->state = RESYNC_AFTER_RULE_ERROR; - } - break; - case LHS_ALIAS_3: - if( x[0]==':' && x[1]==':' && x[2]=='=' ){ - psp->state = IN_RHS; - }else{ - ErrorMsg(psp->filename,psp->tokenlineno, - "Missing \"->\" following: \"%s(%s)\".", - psp->lhs->name,psp->lhsalias); - psp->errorcnt++; - psp->state = RESYNC_AFTER_RULE_ERROR; - } - break; - case IN_RHS: - if( x[0]=='.' ){ - struct rule *rp; - rp = (struct rule *)calloc( sizeof(struct rule) + - sizeof(struct symbol*)*psp->nrhs + sizeof(char*)*psp->nrhs, 1); - if( rp==0 ){ - ErrorMsg(psp->filename,psp->tokenlineno, - "Can't allocate enough memory for this rule."); - psp->errorcnt++; - psp->prevrule = 0; - }else{ - int i; - rp->ruleline = psp->tokenlineno; - rp->rhs = (struct symbol**)&rp[1]; - rp->rhsalias = (const char**)&(rp->rhs[psp->nrhs]); - for(i=0; inrhs; i++){ - rp->rhs[i] = psp->rhs[i]; - rp->rhsalias[i] = psp->alias[i]; - } - rp->lhs = psp->lhs; - rp->lhsalias = psp->lhsalias; - rp->nrhs = psp->nrhs; - rp->code = 0; - rp->precsym = 0; - rp->index = psp->gp->nrule++; - rp->nextlhs = rp->lhs->rule; - rp->lhs->rule = rp; - rp->next = 0; - if( psp->firstrule==0 ){ - psp->firstrule = psp->lastrule = rp; - }else{ - psp->lastrule->next = rp; - psp->lastrule = rp; - } - psp->prevrule = rp; - } - psp->state = WAITING_FOR_DECL_OR_RULE; - }else if( isalpha(x[0]) ){ - if( psp->nrhs>=MAXRHS ){ - ErrorMsg(psp->filename,psp->tokenlineno, - "Too many symbols on RHS of rule beginning at \"%s\".", - x); - psp->errorcnt++; - psp->state = RESYNC_AFTER_RULE_ERROR; - }else{ - psp->rhs[psp->nrhs] = Symbol_new(x); - psp->alias[psp->nrhs] = 0; - psp->nrhs++; - } - }else if( (x[0]=='|' || x[0]=='/') && psp->nrhs>0 ){ - struct symbol *msp = psp->rhs[psp->nrhs-1]; - if( msp->type!=MULTITERMINAL ){ - struct symbol *origsp = msp; - msp = (struct symbol *) calloc(1,sizeof(*msp)); - memset(msp, 0, sizeof(*msp)); - msp->type = MULTITERMINAL; - msp->nsubsym = 1; - msp->subsym = (struct symbol **) calloc(1,sizeof(struct symbol*)); - msp->subsym[0] = origsp; - msp->name = origsp->name; - psp->rhs[psp->nrhs-1] = msp; - } - msp->nsubsym++; - msp->subsym = (struct symbol **) realloc(msp->subsym, - sizeof(struct symbol*)*msp->nsubsym); - msp->subsym[msp->nsubsym-1] = Symbol_new(&x[1]); - if( islower(x[1]) || islower(msp->subsym[0]->name[0]) ){ - ErrorMsg(psp->filename,psp->tokenlineno, - "Cannot form a compound containing a non-terminal"); - psp->errorcnt++; - } - }else if( x[0]=='(' && psp->nrhs>0 ){ - psp->state = RHS_ALIAS_1; - }else{ - ErrorMsg(psp->filename,psp->tokenlineno, - "Illegal character on RHS of rule: \"%s\".",x); - psp->errorcnt++; - psp->state = RESYNC_AFTER_RULE_ERROR; - } - break; - case RHS_ALIAS_1: - if( isalpha(x[0]) ){ - psp->alias[psp->nrhs-1] = x; - psp->state = RHS_ALIAS_2; - }else{ - ErrorMsg(psp->filename,psp->tokenlineno, - "\"%s\" is not a valid alias for the RHS symbol \"%s\"\n", - x,psp->rhs[psp->nrhs-1]->name); - psp->errorcnt++; - psp->state = RESYNC_AFTER_RULE_ERROR; - } - break; - case RHS_ALIAS_2: - if( x[0]==')' ){ - psp->state = IN_RHS; - }else{ - ErrorMsg(psp->filename,psp->tokenlineno, - "Missing \")\" following LHS alias name \"%s\".",psp->lhsalias); - psp->errorcnt++; - psp->state = RESYNC_AFTER_RULE_ERROR; - } - break; - case WAITING_FOR_DECL_KEYWORD: - if( isalpha(x[0]) ){ - psp->declkeyword = x; - psp->declargslot = 0; - psp->decllinenoslot = 0; - psp->insertLineMacro = 1; - psp->state = WAITING_FOR_DECL_ARG; - if( strcmp(x,"name")==0 ){ - psp->declargslot = &(psp->gp->name); - psp->insertLineMacro = 0; - }else if( strcmp(x,"include")==0 ){ - psp->declargslot = &(psp->gp->include); - }else if( strcmp(x,"code")==0 ){ - psp->declargslot = &(psp->gp->extracode); - }else if( strcmp(x,"token_destructor")==0 ){ - psp->declargslot = &psp->gp->tokendest; - }else if( strcmp(x,"default_destructor")==0 ){ - psp->declargslot = &psp->gp->vardest; - }else if( strcmp(x,"token_prefix")==0 ){ - psp->declargslot = &psp->gp->tokenprefix; - psp->insertLineMacro = 0; - }else if( strcmp(x,"syntax_error")==0 ){ - psp->declargslot = &(psp->gp->error); - }else if( strcmp(x,"parse_accept")==0 ){ - psp->declargslot = &(psp->gp->accept); - }else if( strcmp(x,"parse_failure")==0 ){ - psp->declargslot = &(psp->gp->failure); - }else if( strcmp(x,"stack_overflow")==0 ){ - psp->declargslot = &(psp->gp->overflow); - }else if( strcmp(x,"extra_argument")==0 ){ - psp->declargslot = &(psp->gp->arg); - psp->insertLineMacro = 0; - }else if( strcmp(x,"token_type")==0 ){ - psp->declargslot = &(psp->gp->tokentype); - psp->insertLineMacro = 0; - }else if( strcmp(x,"default_type")==0 ){ - psp->declargslot = &(psp->gp->vartype); - psp->insertLineMacro = 0; - }else if( strcmp(x,"stack_size")==0 ){ - psp->declargslot = &(psp->gp->stacksize); - psp->insertLineMacro = 0; - }else if( strcmp(x,"start_symbol")==0 ){ - psp->declargslot = &(psp->gp->start); - psp->insertLineMacro = 0; - }else if( strcmp(x,"left")==0 ){ - psp->preccounter++; - psp->declassoc = LEFT; - psp->state = WAITING_FOR_PRECEDENCE_SYMBOL; - }else if( strcmp(x,"right")==0 ){ - psp->preccounter++; - psp->declassoc = RIGHT; - psp->state = WAITING_FOR_PRECEDENCE_SYMBOL; - }else if( strcmp(x,"nonassoc")==0 ){ - psp->preccounter++; - psp->declassoc = NONE; - psp->state = WAITING_FOR_PRECEDENCE_SYMBOL; - }else if( strcmp(x,"destructor")==0 ){ - psp->state = WAITING_FOR_DESTRUCTOR_SYMBOL; - }else if( strcmp(x,"type")==0 ){ - psp->state = WAITING_FOR_DATATYPE_SYMBOL; - }else if( strcmp(x,"fallback")==0 ){ - psp->fallback = 0; - psp->state = WAITING_FOR_FALLBACK_ID; - }else if( strcmp(x,"wildcard")==0 ){ - psp->state = WAITING_FOR_WILDCARD_ID; - }else if( strcmp(x,"token_class")==0 ){ - psp->state = WAITING_FOR_CLASS_ID; - }else{ - ErrorMsg(psp->filename,psp->tokenlineno, - "Unknown declaration keyword: \"%%%s\".",x); - psp->errorcnt++; - psp->state = RESYNC_AFTER_DECL_ERROR; - } - }else{ - ErrorMsg(psp->filename,psp->tokenlineno, - "Illegal declaration keyword: \"%s\".",x); - psp->errorcnt++; - psp->state = RESYNC_AFTER_DECL_ERROR; - } - break; - case WAITING_FOR_DESTRUCTOR_SYMBOL: - if( !isalpha(x[0]) ){ - ErrorMsg(psp->filename,psp->tokenlineno, - "Symbol name missing after %%destructor keyword"); - psp->errorcnt++; - psp->state = RESYNC_AFTER_DECL_ERROR; - }else{ - struct symbol *sp = Symbol_new(x); - psp->declargslot = &sp->destructor; - psp->decllinenoslot = &sp->destLineno; - psp->insertLineMacro = 1; - psp->state = WAITING_FOR_DECL_ARG; - } - break; - case WAITING_FOR_DATATYPE_SYMBOL: - if( !isalpha(x[0]) ){ - ErrorMsg(psp->filename,psp->tokenlineno, - "Symbol name missing after %%type keyword"); - psp->errorcnt++; - psp->state = RESYNC_AFTER_DECL_ERROR; - }else{ - struct symbol *sp = Symbol_find(x); - if((sp) && (sp->datatype)){ - ErrorMsg(psp->filename,psp->tokenlineno, - "Symbol %%type \"%s\" already defined", x); - psp->errorcnt++; - psp->state = RESYNC_AFTER_DECL_ERROR; - }else{ - if (!sp){ - sp = Symbol_new(x); - } - psp->declargslot = &sp->datatype; - psp->insertLineMacro = 0; - psp->state = WAITING_FOR_DECL_ARG; - } - } - break; - case WAITING_FOR_PRECEDENCE_SYMBOL: - if( x[0]=='.' ){ - psp->state = WAITING_FOR_DECL_OR_RULE; - }else if( isupper(x[0]) ){ - struct symbol *sp; - sp = Symbol_new(x); - if( sp->prec>=0 ){ - ErrorMsg(psp->filename,psp->tokenlineno, - "Symbol \"%s\" has already be given a precedence.",x); - psp->errorcnt++; - }else{ - sp->prec = psp->preccounter; - sp->assoc = psp->declassoc; - } - }else{ - ErrorMsg(psp->filename,psp->tokenlineno, - "Can't assign a precedence to \"%s\".",x); - psp->errorcnt++; - } - break; - case WAITING_FOR_DECL_ARG: - if( x[0]=='{' || x[0]=='\"' || isalnum(x[0]) ){ - const char *zOld, *zNew; - char *zBuf, *z; - int nOld, n, nLine, nNew, nBack; - int addLineMacro; - char zLine[50]; - zNew = x; - if( zNew[0]=='"' || zNew[0]=='{' ) zNew++; - nNew = lemonStrlen(zNew); - if( *psp->declargslot ){ - zOld = *psp->declargslot; - }else{ - zOld = ""; - } - nOld = lemonStrlen(zOld); - n = nOld + nNew + 20; - addLineMacro = !psp->gp->nolinenosflag && psp->insertLineMacro && - (psp->decllinenoslot==0 || psp->decllinenoslot[0]!=0); - if( addLineMacro ){ - for(z=psp->filename, nBack=0; *z; z++){ - if( *z=='\\' ) nBack++; - } - lemon_sprintf(zLine, "#line %d ", psp->tokenlineno); - nLine = lemonStrlen(zLine); - n += nLine + lemonStrlen(psp->filename) + nBack; - } - *psp->declargslot = (char *) realloc(*psp->declargslot, n); - zBuf = *psp->declargslot + nOld; - if( addLineMacro ){ - if( nOld && zBuf[-1]!='\n' ){ - *(zBuf++) = '\n'; - } - memcpy(zBuf, zLine, nLine); - zBuf += nLine; - *(zBuf++) = '"'; - for(z=psp->filename; *z; z++){ - if( *z=='\\' ){ - *(zBuf++) = '\\'; - } - *(zBuf++) = *z; - } - *(zBuf++) = '"'; - *(zBuf++) = '\n'; - } - if( psp->decllinenoslot && psp->decllinenoslot[0]==0 ){ - psp->decllinenoslot[0] = psp->tokenlineno; - } - memcpy(zBuf, zNew, nNew); - zBuf += nNew; - *zBuf = 0; - psp->state = WAITING_FOR_DECL_OR_RULE; - }else{ - ErrorMsg(psp->filename,psp->tokenlineno, - "Illegal argument to %%%s: %s",psp->declkeyword,x); - psp->errorcnt++; - psp->state = RESYNC_AFTER_DECL_ERROR; - } - break; - case WAITING_FOR_FALLBACK_ID: - if( x[0]=='.' ){ - psp->state = WAITING_FOR_DECL_OR_RULE; - }else if( !isupper(x[0]) ){ - ErrorMsg(psp->filename, psp->tokenlineno, - "%%fallback argument \"%s\" should be a token", x); - psp->errorcnt++; - }else{ - struct symbol *sp = Symbol_new(x); - if( psp->fallback==0 ){ - psp->fallback = sp; - }else if( sp->fallback ){ - ErrorMsg(psp->filename, psp->tokenlineno, - "More than one fallback assigned to token %s", x); - psp->errorcnt++; - }else{ - sp->fallback = psp->fallback; - psp->gp->has_fallback = 1; - } - } - break; - case WAITING_FOR_WILDCARD_ID: - if( x[0]=='.' ){ - psp->state = WAITING_FOR_DECL_OR_RULE; - }else if( !isupper(x[0]) ){ - ErrorMsg(psp->filename, psp->tokenlineno, - "%%wildcard argument \"%s\" should be a token", x); - psp->errorcnt++; - }else{ - struct symbol *sp = Symbol_new(x); - if( psp->gp->wildcard==0 ){ - psp->gp->wildcard = sp; - }else{ - ErrorMsg(psp->filename, psp->tokenlineno, - "Extra wildcard to token: %s", x); - psp->errorcnt++; - } - } - break; - case WAITING_FOR_CLASS_ID: - if( !islower(x[0]) ){ - ErrorMsg(psp->filename, psp->tokenlineno, - "%%token_class must be followed by an identifier: ", x); - psp->errorcnt++; - psp->state = RESYNC_AFTER_DECL_ERROR; - }else if( Symbol_find(x) ){ - ErrorMsg(psp->filename, psp->tokenlineno, - "Symbol \"%s\" already used", x); - psp->errorcnt++; - psp->state = RESYNC_AFTER_DECL_ERROR; - }else{ - psp->tkclass = Symbol_new(x); - psp->tkclass->type = MULTITERMINAL; - psp->state = WAITING_FOR_CLASS_TOKEN; - } - break; - case WAITING_FOR_CLASS_TOKEN: - if( x[0]=='.' ){ - psp->state = WAITING_FOR_DECL_OR_RULE; - }else if( isupper(x[0]) || ((x[0]=='|' || x[0]=='/') && isupper(x[1])) ){ - struct symbol *msp = psp->tkclass; - msp->nsubsym++; - msp->subsym = (struct symbol **) realloc(msp->subsym, - sizeof(struct symbol*)*msp->nsubsym); - if( !isupper(x[0]) ) x++; - msp->subsym[msp->nsubsym-1] = Symbol_new(x); - }else{ - ErrorMsg(psp->filename, psp->tokenlineno, - "%%token_class argument \"%s\" should be a token", x); - psp->errorcnt++; - psp->state = RESYNC_AFTER_DECL_ERROR; - } - break; - case RESYNC_AFTER_RULE_ERROR: -/* if( x[0]=='.' ) psp->state = WAITING_FOR_DECL_OR_RULE; -** break; */ - case RESYNC_AFTER_DECL_ERROR: - if( x[0]=='.' ) psp->state = WAITING_FOR_DECL_OR_RULE; - if( x[0]=='%' ) psp->state = WAITING_FOR_DECL_KEYWORD; - break; - } -} - -/* Run the preprocessor over the input file text. The global variables -** azDefine[0] through azDefine[nDefine-1] contains the names of all defined -** macros. This routine looks for "%ifdef" and "%ifndef" and "%endif" and -** comments them out. Text in between is also commented out as appropriate. -*/ -static void preprocess_input(char *z){ - int i, j, k, n; - int exclude = 0; - int start = 0; - int lineno = 1; - int start_lineno = 1; - for(i=0; z[i]; i++){ - if( z[i]=='\n' ) lineno++; - if( z[i]!='%' || (i>0 && z[i-1]!='\n') ) continue; - if( strncmp(&z[i],"%endif",6)==0 && isspace(z[i+6]) ){ - if( exclude ){ - exclude--; - if( exclude==0 ){ - for(j=start; jfilename; - ps.errorcnt = 0; - ps.state = INITIALIZE; - - /* Begin by reading the input file */ - fp = fopen(ps.filename,"rb"); - if( fp==0 ){ - ErrorMsg(ps.filename,0,"Can't open this file for reading."); - gp->errorcnt++; - return; - } - fseek(fp,0,2); - filesize = ftell(fp); - rewind(fp); - filebuf = (char *)malloc( filesize+1 ); - if( filesize>100000000 || filebuf==0 ){ - ErrorMsg(ps.filename,0,"Input file too large."); - gp->errorcnt++; - fclose(fp); - return; - } - if( fread(filebuf,1,filesize,fp)!=filesize ){ - ErrorMsg(ps.filename,0,"Can't read in all %d bytes of this file.", - filesize); - free(filebuf); - gp->errorcnt++; - fclose(fp); - return; - } - fclose(fp); - filebuf[filesize] = 0; - - /* Make an initial pass through the file to handle %ifdef and %ifndef */ - preprocess_input(filebuf); - - /* Now scan the text of the input file */ - lineno = 1; - for(cp=filebuf; (c= *cp)!=0; ){ - if( c=='\n' ) lineno++; /* Keep track of the line number */ - if( isspace(c) ){ cp++; continue; } /* Skip all white space */ - if( c=='/' && cp[1]=='/' ){ /* Skip C++ style comments */ - cp+=2; - while( (c= *cp)!=0 && c!='\n' ) cp++; - continue; - } - if( c=='/' && cp[1]=='*' ){ /* Skip C style comments */ - cp+=2; - while( (c= *cp)!=0 && (c!='/' || cp[-1]!='*') ){ - if( c=='\n' ) lineno++; - cp++; - } - if( c ) cp++; - continue; - } - ps.tokenstart = cp; /* Mark the beginning of the token */ - ps.tokenlineno = lineno; /* Linenumber on which token begins */ - if( c=='\"' ){ /* String literals */ - cp++; - while( (c= *cp)!=0 && c!='\"' ){ - if( c=='\n' ) lineno++; - cp++; - } - if( c==0 ){ - ErrorMsg(ps.filename,startline, -"String starting on this line is not terminated before the end of the file."); - ps.errorcnt++; - nextcp = cp; - }else{ - nextcp = cp+1; - } - }else if( c=='{' ){ /* A block of C code */ - int level; - cp++; - for(level=1; (c= *cp)!=0 && (level>1 || c!='}'); cp++){ - if( c=='\n' ) lineno++; - else if( c=='{' ) level++; - else if( c=='}' ) level--; - else if( c=='/' && cp[1]=='*' ){ /* Skip comments */ - int prevc; - cp = &cp[2]; - prevc = 0; - while( (c= *cp)!=0 && (c!='/' || prevc!='*') ){ - if( c=='\n' ) lineno++; - prevc = c; - cp++; - } - }else if( c=='/' && cp[1]=='/' ){ /* Skip C++ style comments too */ - cp = &cp[2]; - while( (c= *cp)!=0 && c!='\n' ) cp++; - if( c ) lineno++; - }else if( c=='\'' || c=='\"' ){ /* String a character literals */ - int startchar, prevc; - startchar = c; - prevc = 0; - for(cp++; (c= *cp)!=0 && (c!=startchar || prevc=='\\'); cp++){ - if( c=='\n' ) lineno++; - if( prevc=='\\' ) prevc = 0; - else prevc = c; - } - } - } - if( c==0 ){ - ErrorMsg(ps.filename,ps.tokenlineno, -"C code starting on this line is not terminated before the end of the file."); - ps.errorcnt++; - nextcp = cp; - }else{ - nextcp = cp+1; - } - }else if( isalnum(c) ){ /* Identifiers */ - while( (c= *cp)!=0 && (isalnum(c) || c=='_') ) cp++; - nextcp = cp; - }else if( c==':' && cp[1]==':' && cp[2]=='=' ){ /* The operator "::=" */ - cp += 3; - nextcp = cp; - }else if( (c=='/' || c=='|') && isalpha(cp[1]) ){ - cp += 2; - while( (c = *cp)!=0 && (isalnum(c) || c=='_') ) cp++; - nextcp = cp; - }else{ /* All other (one character) operators */ - cp++; - nextcp = cp; - } - c = *cp; - *cp = 0; /* Null terminate the token */ - parseonetoken(&ps); /* Parse the token */ - *cp = c; /* Restore the buffer */ - cp = nextcp; - } - free(filebuf); /* Release the buffer after parsing */ - gp->rule = ps.firstrule; - gp->errorcnt = ps.errorcnt; -} -/*************************** From the file "plink.c" *********************/ -/* -** Routines processing configuration follow-set propagation links -** in the LEMON parser generator. -*/ -static struct plink *plink_freelist = 0; - -/* Allocate a new plink */ -struct plink *Plink_new(){ - struct plink *newlink; - - if( plink_freelist==0 ){ - int i; - int amt = 100; - plink_freelist = (struct plink *)calloc( amt, sizeof(struct plink) ); - if( plink_freelist==0 ){ - fprintf(stderr, - "Unable to allocate memory for a new follow-set propagation link.\n"); - exit(1); - } - for(i=0; inext; - return newlink; -} - -/* Add a plink to a plink list */ -void Plink_add(struct plink **plpp, struct config *cfp) -{ - struct plink *newlink; - newlink = Plink_new(); - newlink->next = *plpp; - *plpp = newlink; - newlink->cfp = cfp; -} - -/* Transfer every plink on the list "from" to the list "to" */ -void Plink_copy(struct plink **to, struct plink *from) -{ - struct plink *nextpl; - while( from ){ - nextpl = from->next; - from->next = *to; - *to = from; - from = nextpl; - } -} - -/* Delete every plink on the list */ -void Plink_delete(struct plink *plp) -{ - struct plink *nextpl; - - while( plp ){ - nextpl = plp->next; - plp->next = plink_freelist; - plink_freelist = plp; - plp = nextpl; - } -} -/*********************** From the file "report.c" **************************/ -/* -** Procedures for generating reports and tables in the LEMON parser generator. -*/ - -/* Generate a filename with the given suffix. Space to hold the -** name comes from malloc() and must be freed by the calling -** function. -*/ -PRIVATE char *file_makename(struct lemon *lemp, const char *suffix) -{ - char *name; - char *cp; - - name = (char*)malloc( lemonStrlen(lemp->filename) + lemonStrlen(suffix) + 5 ); - if( name==0 ){ - fprintf(stderr,"Can't allocate space for a filename.\n"); - exit(1); - } - lemon_strcpy(name,lemp->filename); - cp = strrchr(name,'.'); - if( cp ) *cp = 0; - lemon_strcat(name,suffix); - return name; -} - -/* Open a file with a name based on the name of the input file, -** but with a different (specified) suffix, and return a pointer -** to the stream */ -PRIVATE FILE *file_open( - struct lemon *lemp, - const char *suffix, - const char *mode -){ - FILE *fp; - - if( lemp->outname ) free(lemp->outname); - lemp->outname = file_makename(lemp, suffix); - fp = fopen(lemp->outname,mode); - if( fp==0 && *mode=='w' ){ - fprintf(stderr,"Can't open file \"%s\".\n",lemp->outname); - lemp->errorcnt++; - return 0; - } - return fp; -} - -/* Duplicate the input file without comments and without actions -** on rules */ -void Reprint(struct lemon *lemp) -{ - struct rule *rp; - struct symbol *sp; - int i, j, maxlen, len, ncolumns, skip; - printf("// Reprint of input file \"%s\".\n// Symbols:\n",lemp->filename); - maxlen = 10; - for(i=0; insymbol; i++){ - sp = lemp->symbols[i]; - len = lemonStrlen(sp->name); - if( len>maxlen ) maxlen = len; - } - ncolumns = 76/(maxlen+5); - if( ncolumns<1 ) ncolumns = 1; - skip = (lemp->nsymbol + ncolumns - 1)/ncolumns; - for(i=0; insymbol; j+=skip){ - sp = lemp->symbols[j]; - assert( sp->index==j ); - printf(" %3d %-*.*s",j,maxlen,maxlen,sp->name); - } - printf("\n"); - } - for(rp=lemp->rule; rp; rp=rp->next){ - printf("%s",rp->lhs->name); - /* if( rp->lhsalias ) printf("(%s)",rp->lhsalias); */ - printf(" ::="); - for(i=0; inrhs; i++){ - sp = rp->rhs[i]; - if( sp->type==MULTITERMINAL ){ - printf(" %s", sp->subsym[0]->name); - for(j=1; jnsubsym; j++){ - printf("|%s", sp->subsym[j]->name); - } - }else{ - printf(" %s", sp->name); - } - /* if( rp->rhsalias[i] ) printf("(%s)",rp->rhsalias[i]); */ - } - printf("."); - if( rp->precsym ) printf(" [%s]",rp->precsym->name); - /* if( rp->code ) printf("\n %s",rp->code); */ - printf("\n"); - } -} - -void ConfigPrint(FILE *fp, struct config *cfp) -{ - struct rule *rp; - struct symbol *sp; - int i, j; - rp = cfp->rp; - fprintf(fp,"%s ::=",rp->lhs->name); - for(i=0; i<=rp->nrhs; i++){ - if( i==cfp->dot ) fprintf(fp," *"); - if( i==rp->nrhs ) break; - sp = rp->rhs[i]; - if( sp->type==MULTITERMINAL ){ - fprintf(fp," %s", sp->subsym[0]->name); - for(j=1; jnsubsym; j++){ - fprintf(fp,"|%s",sp->subsym[j]->name); - } - }else{ - fprintf(fp," %s", sp->name); - } - } -} - -/* #define TEST */ -#if 0 -/* Print a set */ -PRIVATE void SetPrint(out,set,lemp) -FILE *out; -char *set; -struct lemon *lemp; -{ - int i; - char *spacer; - spacer = ""; - fprintf(out,"%12s[",""); - for(i=0; interminal; i++){ - if( SetFind(set,i) ){ - fprintf(out,"%s%s",spacer,lemp->symbols[i]->name); - spacer = " "; - } - } - fprintf(out,"]\n"); -} - -/* Print a plink chain */ -PRIVATE void PlinkPrint(out,plp,tag) -FILE *out; -struct plink *plp; -char *tag; -{ - while( plp ){ - fprintf(out,"%12s%s (state %2d) ","",tag,plp->cfp->stp->statenum); - ConfigPrint(out,plp->cfp); - fprintf(out,"\n"); - plp = plp->next; - } -} -#endif - -/* Print an action to the given file descriptor. Return FALSE if -** nothing was actually printed. -*/ -int PrintAction(struct action *ap, FILE *fp, int indent){ - int result = 1; - switch( ap->type ){ - case SHIFT: - fprintf(fp,"%*s shift %d",indent,ap->sp->name,ap->x.stp->statenum); - break; - case REDUCE: - fprintf(fp,"%*s reduce %d",indent,ap->sp->name,ap->x.rp->index); - break; - case ACCEPT: - fprintf(fp,"%*s accept",indent,ap->sp->name); - break; - case ERROR: - fprintf(fp,"%*s error",indent,ap->sp->name); - break; - case SRCONFLICT: - case RRCONFLICT: - fprintf(fp,"%*s reduce %-3d ** Parsing conflict **", - indent,ap->sp->name,ap->x.rp->index); - break; - case SSCONFLICT: - fprintf(fp,"%*s shift %-3d ** Parsing conflict **", - indent,ap->sp->name,ap->x.stp->statenum); - break; - case SH_RESOLVED: - if( showPrecedenceConflict ){ - fprintf(fp,"%*s shift %-3d -- dropped by precedence", - indent,ap->sp->name,ap->x.stp->statenum); - }else{ - result = 0; - } - break; - case RD_RESOLVED: - if( showPrecedenceConflict ){ - fprintf(fp,"%*s reduce %-3d -- dropped by precedence", - indent,ap->sp->name,ap->x.rp->index); - }else{ - result = 0; - } - break; - case NOT_USED: - result = 0; - break; - } - return result; -} - -/* Generate the "y.output" log file */ -void ReportOutput(struct lemon *lemp) -{ - int i; - struct state *stp; - struct config *cfp; - struct action *ap; - FILE *fp; - - fp = file_open(lemp,".out","wb"); - if( fp==0 ) return; - for(i=0; instate; i++){ - stp = lemp->sorted[i]; - fprintf(fp,"State %d:\n",stp->statenum); - if( lemp->basisflag ) cfp=stp->bp; - else cfp=stp->cfp; - while( cfp ){ - char buf[20]; - if( cfp->dot==cfp->rp->nrhs ){ - lemon_sprintf(buf,"(%d)",cfp->rp->index); - fprintf(fp," %5s ",buf); - }else{ - fprintf(fp," "); - } - ConfigPrint(fp,cfp); - fprintf(fp,"\n"); -#if 0 - SetPrint(fp,cfp->fws,lemp); - PlinkPrint(fp,cfp->fplp,"To "); - PlinkPrint(fp,cfp->bplp,"From"); -#endif - if( lemp->basisflag ) cfp=cfp->bp; - else cfp=cfp->next; - } - fprintf(fp,"\n"); - for(ap=stp->ap; ap; ap=ap->next){ - if( PrintAction(ap,fp,30) ) fprintf(fp,"\n"); - } - fprintf(fp,"\n"); - } - fprintf(fp, "----------------------------------------------------\n"); - fprintf(fp, "Symbols:\n"); - for(i=0; insymbol; i++){ - int j; - struct symbol *sp; - - sp = lemp->symbols[i]; - fprintf(fp, " %3d: %s", i, sp->name); - if( sp->type==NONTERMINAL ){ - fprintf(fp, ":"); - if( sp->lambda ){ - fprintf(fp, " "); - } - for(j=0; jnterminal; j++){ - if( sp->firstset && SetFind(sp->firstset, j) ){ - fprintf(fp, " %s", lemp->symbols[j]->name); - } - } - } - fprintf(fp, "\n"); - } - fclose(fp); - return; -} - -/* Search for the file "name" which is in the same directory as -** the exacutable */ -PRIVATE char *pathsearch(char *argv0, char *name, int modemask) -{ - const char *pathlist; - char *pathbufptr; - char *pathbuf; - char *path,*cp; - char c; - -#ifdef __WIN32__ - cp = strrchr(argv0,'\\'); -#else - cp = strrchr(argv0,'/'); -#endif - if( cp ){ - c = *cp; - *cp = 0; - path = (char *)malloc( lemonStrlen(argv0) + lemonStrlen(name) + 2 ); - if( path ) lemon_sprintf(path,"%s/%s",argv0,name); - *cp = c; - }else{ - pathlist = getenv("PATH"); - if( pathlist==0 ) pathlist = ".:/bin:/usr/bin"; - pathbuf = (char *) malloc( lemonStrlen(pathlist) + 1 ); - path = (char *)malloc( lemonStrlen(pathlist)+lemonStrlen(name)+2 ); - if( (pathbuf != 0) && (path!=0) ){ - pathbufptr = pathbuf; - lemon_strcpy(pathbuf, pathlist); - while( *pathbuf ){ - cp = strchr(pathbuf,':'); - if( cp==0 ) cp = &pathbuf[lemonStrlen(pathbuf)]; - c = *cp; - *cp = 0; - lemon_sprintf(path,"%s/%s",pathbuf,name); - *cp = c; - if( c==0 ) pathbuf[0] = 0; - else pathbuf = &cp[1]; - if( access(path,modemask)==0 ) break; - } - free(pathbufptr); - } - } - return path; -} - -/* Given an action, compute the integer value for that action -** which is to be put in the action table of the generated machine. -** Return negative if no action should be generated. -*/ -PRIVATE int compute_action(struct lemon *lemp, struct action *ap) -{ - int act; - switch( ap->type ){ - case SHIFT: act = ap->x.stp->statenum; break; - case REDUCE: act = ap->x.rp->index + lemp->nstate; break; - case ERROR: act = lemp->nstate + lemp->nrule; break; - case ACCEPT: act = lemp->nstate + lemp->nrule + 1; break; - default: act = -1; break; - } - return act; -} - -#define LINESIZE 1000 -/* The next cluster of routines are for reading the template file -** and writing the results to the generated parser */ -/* The first function transfers data from "in" to "out" until -** a line is seen which begins with "%%". The line number is -** tracked. -** -** if name!=0, then any word that begin with "Parse" is changed to -** begin with *name instead. -*/ -PRIVATE void tplt_xfer(char *name, FILE *in, FILE *out, int *lineno) -{ - int i, iStart; - char line[LINESIZE]; - while( fgets(line,LINESIZE,in) && (line[0]!='%' || line[1]!='%') ){ - (*lineno)++; - iStart = 0; - if( name ){ - for(i=0; line[i]; i++){ - if( line[i]=='P' && strncmp(&line[i],"Parse",5)==0 - && (i==0 || !isalpha(line[i-1])) - ){ - if( i>iStart ) fprintf(out,"%.*s",i-iStart,&line[iStart]); - fprintf(out,"%s",name); - i += 4; - iStart = i+1; - } - } - } - fprintf(out,"%s",&line[iStart]); - } -} - -/* The next function finds the template file and opens it, returning -** a pointer to the opened file. */ -PRIVATE FILE *tplt_open(struct lemon *lemp) -{ - static char templatename[] = "lempar.c"; - char buf[1000]; - FILE *in; - char *tpltname; - char *cp; - - /* first, see if user specified a template filename on the command line. */ - if (user_templatename != 0) { - if( access(user_templatename,004)==-1 ){ - fprintf(stderr,"Can't find the parser driver template file \"%s\".\n", - user_templatename); - lemp->errorcnt++; - return 0; - } - in = fopen(user_templatename,"rb"); - if( in==0 ){ - fprintf(stderr,"Can't open the template file \"%s\".\n",user_templatename); - lemp->errorcnt++; - return 0; - } - return in; - } - - cp = strrchr(lemp->filename,'.'); - if( cp ){ - lemon_sprintf(buf,"%.*s.lt",(int)(cp-lemp->filename),lemp->filename); - }else{ - lemon_sprintf(buf,"%s.lt",lemp->filename); - } - if( access(buf,004)==0 ){ - tpltname = buf; - }else if( access(templatename,004)==0 ){ - tpltname = templatename; - }else{ - tpltname = pathsearch(lemp->argv0,templatename,0); - } - if( tpltname==0 ){ - fprintf(stderr,"Can't find the parser driver template file \"%s\".\n", - templatename); - lemp->errorcnt++; - return 0; - } - in = fopen(tpltname,"rb"); - if( in==0 ){ - fprintf(stderr,"Can't open the template file \"%s\".\n",templatename); - lemp->errorcnt++; - return 0; - } - return in; -} - -/* Print a #line directive line to the output file. */ -PRIVATE void tplt_linedir(FILE *out, int lineno, char *filename) -{ - fprintf(out,"#line %d \"",lineno); - while( *filename ){ - if( *filename == '\\' ) putc('\\',out); - putc(*filename,out); - filename++; - } - fprintf(out,"\"\n"); -} - -/* Print a string to the file and keep the linenumber up to date */ -PRIVATE void tplt_print(FILE *out, struct lemon *lemp, char *str, int *lineno) -{ - if( str==0 ) return; - while( *str ){ - putc(*str,out); - if( *str=='\n' ) (*lineno)++; - str++; - } - if( str[-1]!='\n' ){ - putc('\n',out); - (*lineno)++; - } - if (!lemp->nolinenosflag) { - (*lineno)++; tplt_linedir(out,*lineno,lemp->outname); - } - return; -} - -/* -** The following routine emits code for the destructor for the -** symbol sp -*/ -void emit_destructor_code( - FILE *out, - struct symbol *sp, - struct lemon *lemp, - int *lineno -){ - char *cp = 0; - - if( sp->type==TERMINAL ){ - cp = lemp->tokendest; - if( cp==0 ) return; - fprintf(out,"{\n"); (*lineno)++; - }else if( sp->destructor ){ - cp = sp->destructor; - fprintf(out,"{\n"); (*lineno)++; - if (!lemp->nolinenosflag) { (*lineno)++; tplt_linedir(out,sp->destLineno,lemp->filename); } - }else if( lemp->vardest ){ - cp = lemp->vardest; - if( cp==0 ) return; - fprintf(out,"{\n"); (*lineno)++; - }else{ - assert( 0 ); /* Cannot happen */ - } - for(; *cp; cp++){ - if( *cp=='$' && cp[1]=='$' ){ - fprintf(out,"(yypminor->yy%d)",sp->dtnum); - cp++; - continue; - } - if( *cp=='\n' ) (*lineno)++; - fputc(*cp,out); - } - fprintf(out,"\n"); (*lineno)++; - if (!lemp->nolinenosflag) { - (*lineno)++; tplt_linedir(out,*lineno,lemp->outname); - } - fprintf(out,"}\n"); (*lineno)++; - return; -} - -/* -** Return TRUE (non-zero) if the given symbol has a destructor. -*/ -int has_destructor(struct symbol *sp, struct lemon *lemp) -{ - int ret; - if( sp->type==TERMINAL ){ - ret = lemp->tokendest!=0; - }else{ - ret = lemp->vardest!=0 || sp->destructor!=0; - } - return ret; -} - -/* -** Append text to a dynamically allocated string. If zText is 0 then -** reset the string to be empty again. Always return the complete text -** of the string (which is overwritten with each call). -** -** n bytes of zText are stored. If n==0 then all of zText up to the first -** \000 terminator is stored. zText can contain up to two instances of -** %d. The values of p1 and p2 are written into the first and second -** %d. -** -** If n==-1, then the previous character is overwritten. -*/ -PRIVATE char *append_str(const char *zText, int n, int p1, int p2){ - static char empty[1] = { 0 }; - static char *z = 0; - static int alloced = 0; - static int used = 0; - int c; - char zInt[40]; - if( zText==0 ){ - used = 0; - return z; - } - if( n<=0 ){ - if( n<0 ){ - used += n; - assert( used>=0 ); - } - n = lemonStrlen(zText); - } - if( (int) (n+sizeof(zInt)*2+used) >= alloced ){ - alloced = n + sizeof(zInt)*2 + used + 200; - z = (char *) realloc(z, alloced); - } - if( z==0 ) return empty; - while( n-- > 0 ){ - c = *(zText++); - if( c=='%' && n>0 && zText[0]=='d' ){ - lemon_sprintf(zInt, "%d", p1); - p1 = p2; - lemon_strcpy(&z[used], zInt); - used += lemonStrlen(&z[used]); - zText++; - n--; - }else{ - z[used++] = c; - } - } - z[used] = 0; - return z; -} - -/* -** zCode is a string that is the action associated with a rule. Expand -** the symbols in this string so that the refer to elements of the parser -** stack. -*/ -PRIVATE void translate_code(struct lemon *lemp, struct rule *rp){ - char *cp, *xp; - int i; - char lhsused = 0; /* True if the LHS element has been used */ - char used[MAXRHS]; /* True for each RHS element which is used */ - - for(i=0; inrhs; i++) used[i] = 0; - lhsused = 0; - - if( rp->code==0 ){ - static char newlinestr[2] = { '\n', '\0' }; - rp->code = newlinestr; - rp->line = rp->ruleline; - } - - append_str(0,0,0,0); - - /* This const cast is wrong but harmless, if we're careful. */ - for(cp=(char *)rp->code; *cp; cp++){ - if( isalpha(*cp) && (cp==rp->code || (!isalnum(cp[-1]) && cp[-1]!='_')) ){ - char saved; - for(xp= &cp[1]; isalnum(*xp) || *xp=='_'; xp++); - saved = *xp; - *xp = 0; - if( rp->lhsalias && strcmp(cp,rp->lhsalias)==0 ){ - append_str("yygotominor.yy%d",0,rp->lhs->dtnum,0); - cp = xp; - lhsused = 1; - }else{ - for(i=0; inrhs; i++){ - if( rp->rhsalias[i] && strcmp(cp,rp->rhsalias[i])==0 ){ - if( cp!=rp->code && cp[-1]=='@' ){ - /* If the argument is of the form @X then substituted - ** the token number of X, not the value of X */ - append_str("yymsp[%d].major",-1,i-rp->nrhs+1,0); - }else{ - struct symbol *sp = rp->rhs[i]; - int dtnum; - if( sp->type==MULTITERMINAL ){ - dtnum = sp->subsym[0]->dtnum; - }else{ - dtnum = sp->dtnum; - } - append_str("yymsp[%d].minor.yy%d",0,i-rp->nrhs+1, dtnum); - } - cp = xp; - used[i] = 1; - break; - } - } - } - *xp = saved; - } - append_str(cp, 1, 0, 0); - } /* End loop */ - - /* Check to make sure the LHS has been used */ - if( rp->lhsalias && !lhsused ){ - ErrorMsg(lemp->filename,rp->ruleline, - "Label \"%s\" for \"%s(%s)\" is never used.", - rp->lhsalias,rp->lhs->name,rp->lhsalias); - lemp->errorcnt++; - } - - /* Generate destructor code for RHS symbols which are not used in the - ** reduce code */ - for(i=0; inrhs; i++){ - if( rp->rhsalias[i] && !used[i] ){ - ErrorMsg(lemp->filename,rp->ruleline, - "Label %s for \"%s(%s)\" is never used.", - rp->rhsalias[i],rp->rhs[i]->name,rp->rhsalias[i]); - lemp->errorcnt++; - }else if( rp->rhsalias[i]==0 ){ - if( has_destructor(rp->rhs[i],lemp) ){ - append_str(" yy_destructor(yypParser,%d,&yymsp[%d].minor);\n", 0, - rp->rhs[i]->index,i-rp->nrhs+1); - }else{ - /* No destructor defined for this term */ - } - } - } - if( rp->code ){ - cp = append_str(0,0,0,0); - rp->code = Strsafe(cp?cp:""); - } -} - -/* -** Generate code which executes when the rule "rp" is reduced. Write -** the code to "out". Make sure lineno stays up-to-date. -*/ -PRIVATE void emit_code( - FILE *out, - struct rule *rp, - struct lemon *lemp, - int *lineno -){ - const char *cp; - - /* Generate code to do the reduce action */ - if( rp->code ){ - if (!lemp->nolinenosflag) { (*lineno)++; tplt_linedir(out,rp->line,lemp->filename); } - fprintf(out,"{%s",rp->code); - for(cp=rp->code; *cp; cp++){ - if( *cp=='\n' ) (*lineno)++; - } /* End loop */ - fprintf(out,"}\n"); (*lineno)++; - if (!lemp->nolinenosflag) { (*lineno)++; tplt_linedir(out,*lineno,lemp->outname); } - } /* End if( rp->code ) */ - - return; -} - -/* -** Print the definition of the union used for the parser's data stack. -** This union contains fields for every possible data type for tokens -** and nonterminals. In the process of computing and printing this -** union, also set the ".dtnum" field of every terminal and nonterminal -** symbol. -*/ -void print_stack_union( - FILE *out, /* The output stream */ - struct lemon *lemp, /* The main info structure for this parser */ - int *plineno, /* Pointer to the line number */ - int mhflag /* True if generating makeheaders output */ -){ - int lineno = *plineno; /* The line number of the output */ - char **types; /* A hash table of datatypes */ - int arraysize; /* Size of the "types" array */ - int maxdtlength; /* Maximum length of any ".datatype" field. */ - char *stddt; /* Standardized name for a datatype */ - int i,j; /* Loop counters */ - unsigned hash; /* For hashing the name of a type */ - const char *name; /* Name of the parser */ - - /* Allocate and initialize types[] and allocate stddt[] */ - arraysize = lemp->nsymbol * 2; - types = (char**)calloc( arraysize, sizeof(char*) ); - if( types==0 ){ - fprintf(stderr,"Out of memory.\n"); - exit(1); - } - for(i=0; ivartype ){ - maxdtlength = lemonStrlen(lemp->vartype); - } - for(i=0; insymbol; i++){ - int len; - struct symbol *sp = lemp->symbols[i]; - if( sp->datatype==0 ) continue; - len = lemonStrlen(sp->datatype); - if( len>maxdtlength ) maxdtlength = len; - } - stddt = (char*)malloc( maxdtlength*2 + 1 ); - if( stddt==0 ){ - fprintf(stderr,"Out of memory.\n"); - exit(1); - } - - /* Build a hash table of datatypes. The ".dtnum" field of each symbol - ** is filled in with the hash index plus 1. A ".dtnum" value of 0 is - ** used for terminal symbols. If there is no %default_type defined then - ** 0 is also used as the .dtnum value for nonterminals which do not specify - ** a datatype using the %type directive. - */ - for(i=0; insymbol; i++){ - struct symbol *sp = lemp->symbols[i]; - char *cp; - if( sp==lemp->errsym ){ - sp->dtnum = arraysize+1; - continue; - } - if( sp->type!=NONTERMINAL || (sp->datatype==0 && lemp->vartype==0) ){ - sp->dtnum = 0; - continue; - } - cp = sp->datatype; - if( cp==0 ) cp = lemp->vartype; - j = 0; - while( isspace(*cp) ) cp++; - while( *cp ) stddt[j++] = *cp++; - while( j>0 && isspace(stddt[j-1]) ) j--; - stddt[j] = 0; - if( lemp->tokentype && strcmp(stddt, lemp->tokentype)==0 ){ - sp->dtnum = 0; - continue; - } - hash = 0; - for(j=0; stddt[j]; j++){ - hash = hash*53 + stddt[j]; - } - hash = (hash & 0x7fffffff)%arraysize; - while( types[hash] ){ - if( strcmp(types[hash],stddt)==0 ){ - sp->dtnum = hash + 1; - break; - } - hash++; - if( hash>=(unsigned)arraysize ) hash = 0; - } - if( types[hash]==0 ){ - sp->dtnum = hash + 1; - types[hash] = (char*)malloc( lemonStrlen(stddt)+1 ); - if( types[hash]==0 ){ - fprintf(stderr,"Out of memory.\n"); - exit(1); - } - lemon_strcpy(types[hash],stddt); - } - } - - /* Print out the definition of YYTOKENTYPE and YYMINORTYPE */ - name = lemp->name ? lemp->name : "Parse"; - lineno = *plineno; - if( mhflag ){ fprintf(out,"#if INTERFACE\n"); lineno++; } - fprintf(out,"#define %sTOKENTYPE %s\n",name, - lemp->tokentype?lemp->tokentype:"void*"); lineno++; - if( mhflag ){ fprintf(out,"#endif\n"); lineno++; } - fprintf(out,"typedef union {\n"); lineno++; - fprintf(out," int yyinit;\n"); lineno++; - fprintf(out," %sTOKENTYPE yy0;\n",name); lineno++; - for(i=0; ierrsym->useCnt ){ - fprintf(out," int yy%d;\n",lemp->errsym->dtnum); lineno++; - } - free(stddt); - free(types); - fprintf(out,"} YYMINORTYPE;\n"); lineno++; - *plineno = lineno; -} - -/* -** Return the name of a C datatype able to represent values between -** lwr and upr, inclusive. -*/ -static const char *minimum_size_type(int lwr, int upr){ - if( lwr>=0 ){ - if( upr<=255 ){ - return "unsigned char"; - }else if( upr<65535 ){ - return "unsigned short int"; - }else{ - return "unsigned int"; - } - }else if( lwr>=-127 && upr<=127 ){ - return "signed char"; - }else if( lwr>=-32767 && upr<32767 ){ - return "short"; - }else{ - return "int"; - } -} - -/* -** Each state contains a set of token transaction and a set of -** nonterminal transactions. Each of these sets makes an instance -** of the following structure. An array of these structures is used -** to order the creation of entries in the yy_action[] table. -*/ -struct axset { - struct state *stp; /* A pointer to a state */ - int isTkn; /* True to use tokens. False for non-terminals */ - int nAction; /* Number of actions */ - int iOrder; /* Original order of action sets */ -}; - -/* -** Compare to axset structures for sorting purposes -*/ -static int axset_compare(const void *a, const void *b){ - struct axset *p1 = (struct axset*)a; - struct axset *p2 = (struct axset*)b; - int c; - c = p2->nAction - p1->nAction; - if( c==0 ){ - c = p2->iOrder - p1->iOrder; - } - assert( c!=0 || p1==p2 ); - return c; -} - -/* -** Write text on "out" that describes the rule "rp". -*/ -static void writeRuleText(FILE *out, struct rule *rp){ - int j; - fprintf(out,"%s ::=", rp->lhs->name); - for(j=0; jnrhs; j++){ - struct symbol *sp = rp->rhs[j]; - if( sp->type!=MULTITERMINAL ){ - fprintf(out," %s", sp->name); - }else{ - int k; - fprintf(out," %s", sp->subsym[0]->name); - for(k=1; knsubsym; k++){ - fprintf(out,"|%s",sp->subsym[k]->name); - } - } - } -} - - -/* Generate C source code for the parser */ -void ReportTable( - struct lemon *lemp, - int mhflag /* Output in makeheaders format if true */ -){ - FILE *out, *in; - char line[LINESIZE]; - int lineno; - struct state *stp; - struct action *ap; - struct rule *rp; - struct acttab *pActtab; - int i, j, n; - const char *name; - int mnTknOfst, mxTknOfst; - int mnNtOfst, mxNtOfst; - struct axset *ax; - - in = tplt_open(lemp); - if( in==0 ) return; - out = file_open(lemp,".c","wb"); - if( out==0 ){ - fclose(in); - return; - } - lineno = 1; - tplt_xfer(lemp->name,in,out,&lineno); - - /* Generate the include code, if any */ - tplt_print(out,lemp,lemp->include,&lineno); - if( mhflag ){ - char *name = file_makename(lemp, ".h"); - fprintf(out,"#include \"%s\"\n", name); lineno++; - free(name); - } - tplt_xfer(lemp->name,in,out,&lineno); - - /* Generate #defines for all tokens */ - if( mhflag ){ - const char *prefix; - fprintf(out,"#if INTERFACE\n"); lineno++; - if( lemp->tokenprefix ) prefix = lemp->tokenprefix; - else prefix = ""; - for(i=1; interminal; i++){ - fprintf(out,"#define %s%-30s %2d\n",prefix,lemp->symbols[i]->name,i); - lineno++; - } - fprintf(out,"#endif\n"); lineno++; - } - tplt_xfer(lemp->name,in,out,&lineno); - - /* Generate the defines */ - fprintf(out,"#define YYCODETYPE %s\n", - minimum_size_type(0, lemp->nsymbol+1)); lineno++; - fprintf(out,"#define YYNOCODE %d\n",lemp->nsymbol+1); lineno++; - fprintf(out,"#define YYACTIONTYPE %s\n", - minimum_size_type(0, lemp->nstate+lemp->nrule+5)); lineno++; - if( lemp->wildcard ){ - fprintf(out,"#define YYWILDCARD %d\n", - lemp->wildcard->index); lineno++; - } - print_stack_union(out,lemp,&lineno,mhflag); - fprintf(out, "#ifndef YYSTACKDEPTH\n"); lineno++; - if( lemp->stacksize ){ - fprintf(out,"#define YYSTACKDEPTH %s\n",lemp->stacksize); lineno++; - }else{ - fprintf(out,"#define YYSTACKDEPTH 100\n"); lineno++; - } - fprintf(out, "#endif\n"); lineno++; - if( mhflag ){ - fprintf(out,"#if INTERFACE\n"); lineno++; - } - name = lemp->name ? lemp->name : "Parse"; - if( lemp->arg && lemp->arg[0] ){ - int i; - i = lemonStrlen(lemp->arg); - while( i>=1 && isspace(lemp->arg[i-1]) ) i--; - while( i>=1 && (isalnum(lemp->arg[i-1]) || lemp->arg[i-1]=='_') ) i--; - fprintf(out,"#define %sARG_SDECL %s;\n",name,lemp->arg); lineno++; - fprintf(out,"#define %sARG_PDECL ,%s\n",name,lemp->arg); lineno++; - fprintf(out,"#define %sARG_FETCH %s = yypParser->%s\n", - name,lemp->arg,&lemp->arg[i]); lineno++; - fprintf(out,"#define %sARG_STORE yypParser->%s = %s\n", - name,&lemp->arg[i],&lemp->arg[i]); lineno++; - }else{ - fprintf(out,"#define %sARG_SDECL\n",name); lineno++; - fprintf(out,"#define %sARG_PDECL\n",name); lineno++; - fprintf(out,"#define %sARG_FETCH\n",name); lineno++; - fprintf(out,"#define %sARG_STORE\n",name); lineno++; - } - if( mhflag ){ - fprintf(out,"#endif\n"); lineno++; - } - fprintf(out,"#define YYNSTATE %d\n",lemp->nstate); lineno++; - fprintf(out,"#define YYNRULE %d\n",lemp->nrule); lineno++; - if( lemp->errsym->useCnt ){ - fprintf(out,"#define YYERRORSYMBOL %d\n",lemp->errsym->index); lineno++; - fprintf(out,"#define YYERRSYMDT yy%d\n",lemp->errsym->dtnum); lineno++; - } - if( lemp->has_fallback ){ - fprintf(out,"#define YYFALLBACK 1\n"); lineno++; - } - tplt_xfer(lemp->name,in,out,&lineno); - - /* Generate the action table and its associates: - ** - ** yy_action[] A single table containing all actions. - ** yy_lookahead[] A table containing the lookahead for each entry in - ** yy_action. Used to detect hash collisions. - ** yy_shift_ofst[] For each state, the offset into yy_action for - ** shifting terminals. - ** yy_reduce_ofst[] For each state, the offset into yy_action for - ** shifting non-terminals after a reduce. - ** yy_default[] Default action for each state. - */ - - /* Compute the actions on all states and count them up */ - ax = (struct axset *) calloc(lemp->nstate*2, sizeof(ax[0])); - if( ax==0 ){ - fprintf(stderr,"malloc failed\n"); - exit(1); - } - for(i=0; instate; i++){ - stp = lemp->sorted[i]; - ax[i*2].stp = stp; - ax[i*2].isTkn = 1; - ax[i*2].nAction = stp->nTknAct; - ax[i*2+1].stp = stp; - ax[i*2+1].isTkn = 0; - ax[i*2+1].nAction = stp->nNtAct; - } - mxTknOfst = mnTknOfst = 0; - mxNtOfst = mnNtOfst = 0; - - /* Compute the action table. In order to try to keep the size of the - ** action table to a minimum, the heuristic of placing the largest action - ** sets first is used. - */ - for(i=0; instate*2; i++) ax[i].iOrder = i; - qsort(ax, lemp->nstate*2, sizeof(ax[0]), axset_compare); - pActtab = acttab_alloc(); - for(i=0; instate*2 && ax[i].nAction>0; i++){ - stp = ax[i].stp; - if( ax[i].isTkn ){ - for(ap=stp->ap; ap; ap=ap->next){ - int action; - if( ap->sp->index>=lemp->nterminal ) continue; - action = compute_action(lemp, ap); - if( action<0 ) continue; - acttab_action(pActtab, ap->sp->index, action); - } - stp->iTknOfst = acttab_insert(pActtab); - if( stp->iTknOfstiTknOfst; - if( stp->iTknOfst>mxTknOfst ) mxTknOfst = stp->iTknOfst; - }else{ - for(ap=stp->ap; ap; ap=ap->next){ - int action; - if( ap->sp->indexnterminal ) continue; - if( ap->sp->index==lemp->nsymbol ) continue; - action = compute_action(lemp, ap); - if( action<0 ) continue; - acttab_action(pActtab, ap->sp->index, action); - } - stp->iNtOfst = acttab_insert(pActtab); - if( stp->iNtOfstiNtOfst; - if( stp->iNtOfst>mxNtOfst ) mxNtOfst = stp->iNtOfst; - } - } - free(ax); - - /* Output the yy_action table */ - n = acttab_size(pActtab); - fprintf(out,"#define YY_ACTTAB_COUNT (%d)\n", n); lineno++; - fprintf(out,"static const YYACTIONTYPE yy_action[] = {\n"); lineno++; - for(i=j=0; instate + lemp->nrule + 2; - if( j==0 ) fprintf(out," /* %5d */ ", i); - fprintf(out, " %4d,", action); - if( j==9 || i==n-1 ){ - fprintf(out, "\n"); lineno++; - j = 0; - }else{ - j++; - } - } - fprintf(out, "};\n"); lineno++; - - /* Output the yy_lookahead table */ - fprintf(out,"static const YYCODETYPE yy_lookahead[] = {\n"); lineno++; - for(i=j=0; insymbol; - if( j==0 ) fprintf(out," /* %5d */ ", i); - fprintf(out, " %4d,", la); - if( j==9 || i==n-1 ){ - fprintf(out, "\n"); lineno++; - j = 0; - }else{ - j++; - } - } - fprintf(out, "};\n"); lineno++; - - /* Output the yy_shift_ofst[] table */ - fprintf(out, "#define YY_SHIFT_USE_DFLT (%d)\n", mnTknOfst-1); lineno++; - n = lemp->nstate; - while( n>0 && lemp->sorted[n-1]->iTknOfst==NO_OFFSET ) n--; - fprintf(out, "#define YY_SHIFT_COUNT (%d)\n", n-1); lineno++; - fprintf(out, "#define YY_SHIFT_MIN (%d)\n", mnTknOfst); lineno++; - fprintf(out, "#define YY_SHIFT_MAX (%d)\n", mxTknOfst); lineno++; - fprintf(out, "static const %s yy_shift_ofst[] = {\n", - minimum_size_type(mnTknOfst-1, mxTknOfst)); lineno++; - for(i=j=0; isorted[i]; - ofst = stp->iTknOfst; - if( ofst==NO_OFFSET ) ofst = mnTknOfst - 1; - if( j==0 ) fprintf(out," /* %5d */ ", i); - fprintf(out, " %4d,", ofst); - if( j==9 || i==n-1 ){ - fprintf(out, "\n"); lineno++; - j = 0; - }else{ - j++; - } - } - fprintf(out, "};\n"); lineno++; - - /* Output the yy_reduce_ofst[] table */ - fprintf(out, "#define YY_REDUCE_USE_DFLT (%d)\n", mnNtOfst-1); lineno++; - n = lemp->nstate; - while( n>0 && lemp->sorted[n-1]->iNtOfst==NO_OFFSET ) n--; - fprintf(out, "#define YY_REDUCE_COUNT (%d)\n", n-1); lineno++; - fprintf(out, "#define YY_REDUCE_MIN (%d)\n", mnNtOfst); lineno++; - fprintf(out, "#define YY_REDUCE_MAX (%d)\n", mxNtOfst); lineno++; - fprintf(out, "static const %s yy_reduce_ofst[] = {\n", - minimum_size_type(mnNtOfst-1, mxNtOfst)); lineno++; - for(i=j=0; isorted[i]; - ofst = stp->iNtOfst; - if( ofst==NO_OFFSET ) ofst = mnNtOfst - 1; - if( j==0 ) fprintf(out," /* %5d */ ", i); - fprintf(out, " %4d,", ofst); - if( j==9 || i==n-1 ){ - fprintf(out, "\n"); lineno++; - j = 0; - }else{ - j++; - } - } - fprintf(out, "};\n"); lineno++; - - /* Output the default action table */ - fprintf(out, "static const YYACTIONTYPE yy_default[] = {\n"); lineno++; - n = lemp->nstate; - for(i=j=0; isorted[i]; - if( j==0 ) fprintf(out," /* %5d */ ", i); - fprintf(out, " %4d,", stp->iDflt); - if( j==9 || i==n-1 ){ - fprintf(out, "\n"); lineno++; - j = 0; - }else{ - j++; - } - } - fprintf(out, "};\n"); lineno++; - tplt_xfer(lemp->name,in,out,&lineno); - - /* Generate the table of fallback tokens. - */ - if( lemp->has_fallback ){ - int mx = lemp->nterminal - 1; - while( mx>0 && lemp->symbols[mx]->fallback==0 ){ mx--; } - for(i=0; i<=mx; i++){ - struct symbol *p = lemp->symbols[i]; - if( p->fallback==0 ){ - fprintf(out, " 0, /* %10s => nothing */\n", p->name); - }else{ - fprintf(out, " %3d, /* %10s => %s */\n", p->fallback->index, - p->name, p->fallback->name); - } - lineno++; - } - } - tplt_xfer(lemp->name, in, out, &lineno); - - /* Generate a table containing the symbolic name of every symbol - */ - for(i=0; insymbol; i++){ - lemon_sprintf(line,"\"%s\",",lemp->symbols[i]->name); - fprintf(out," %-15s",line); - if( (i&3)==3 ){ fprintf(out,"\n"); lineno++; } - } - if( (i&3)!=0 ){ fprintf(out,"\n"); lineno++; } - tplt_xfer(lemp->name,in,out,&lineno); - - /* Generate a table containing a text string that describes every - ** rule in the rule set of the grammar. This information is used - ** when tracing REDUCE actions. - */ - for(i=0, rp=lemp->rule; rp; rp=rp->next, i++){ - assert( rp->index==i ); - fprintf(out," /* %3d */ \"", i); - writeRuleText(out, rp); - fprintf(out,"\",\n"); lineno++; - } - tplt_xfer(lemp->name,in,out,&lineno); - - /* Generate code which executes every time a symbol is popped from - ** the stack while processing errors or while destroying the parser. - ** (In other words, generate the %destructor actions) - */ - if( lemp->tokendest ){ - int once = 1; - for(i=0; insymbol; i++){ - struct symbol *sp = lemp->symbols[i]; - if( sp==0 || sp->type!=TERMINAL ) continue; - if( once ){ - fprintf(out, " /* TERMINAL Destructor */\n"); lineno++; - once = 0; - } - fprintf(out," case %d: /* %s */\n", sp->index, sp->name); lineno++; - } - for(i=0; insymbol && lemp->symbols[i]->type!=TERMINAL; i++); - if( insymbol ){ - emit_destructor_code(out,lemp->symbols[i],lemp,&lineno); - fprintf(out," break;\n"); lineno++; - } - } - if( lemp->vardest ){ - struct symbol *dflt_sp = 0; - int once = 1; - for(i=0; insymbol; i++){ - struct symbol *sp = lemp->symbols[i]; - if( sp==0 || sp->type==TERMINAL || - sp->index<=0 || sp->destructor!=0 ) continue; - if( once ){ - fprintf(out, " /* Default NON-TERMINAL Destructor */\n"); lineno++; - once = 0; - } - fprintf(out," case %d: /* %s */\n", sp->index, sp->name); lineno++; - dflt_sp = sp; - } - if( dflt_sp!=0 ){ - emit_destructor_code(out,dflt_sp,lemp,&lineno); - } - fprintf(out," break;\n"); lineno++; - } - for(i=0; insymbol; i++){ - struct symbol *sp = lemp->symbols[i]; - if( sp==0 || sp->type==TERMINAL || sp->destructor==0 ) continue; - fprintf(out," case %d: /* %s */\n", sp->index, sp->name); lineno++; - - /* Combine duplicate destructors into a single case */ - for(j=i+1; jnsymbol; j++){ - struct symbol *sp2 = lemp->symbols[j]; - if( sp2 && sp2->type!=TERMINAL && sp2->destructor - && sp2->dtnum==sp->dtnum - && strcmp(sp->destructor,sp2->destructor)==0 ){ - fprintf(out," case %d: /* %s */\n", - sp2->index, sp2->name); lineno++; - sp2->destructor = 0; - } - } - - emit_destructor_code(out,lemp->symbols[i],lemp,&lineno); - fprintf(out," break;\n"); lineno++; - } - tplt_xfer(lemp->name,in,out,&lineno); - - /* Generate code which executes whenever the parser stack overflows */ - tplt_print(out,lemp,lemp->overflow,&lineno); - tplt_xfer(lemp->name,in,out,&lineno); - - /* Generate the table of rule information - ** - ** Note: This code depends on the fact that rules are number - ** sequentually beginning with 0. - */ - for(rp=lemp->rule; rp; rp=rp->next){ - fprintf(out," { %d, %d },\n",rp->lhs->index,rp->nrhs); lineno++; - } - tplt_xfer(lemp->name,in,out,&lineno); - - /* Generate code which execution during each REDUCE action */ - for(rp=lemp->rule; rp; rp=rp->next){ - translate_code(lemp, rp); - } - /* First output rules other than the default: rule */ - for(rp=lemp->rule; rp; rp=rp->next){ - struct rule *rp2; /* Other rules with the same action */ - if( rp->code==0 ) continue; - if( rp->code[0]=='\n' && rp->code[1]==0 ) continue; /* Will be default: */ - fprintf(out," case %d: /* ", rp->index); - writeRuleText(out, rp); - fprintf(out, " */\n"); lineno++; - for(rp2=rp->next; rp2; rp2=rp2->next){ - if( rp2->code==rp->code ){ - fprintf(out," case %d: /* ", rp2->index); - writeRuleText(out, rp2); - fprintf(out," */ yytestcase(yyruleno==%d);\n", rp2->index); lineno++; - rp2->code = 0; - } - } - emit_code(out,rp,lemp,&lineno); - fprintf(out," break;\n"); lineno++; - rp->code = 0; - } - /* Finally, output the default: rule. We choose as the default: all - ** empty actions. */ - fprintf(out," default:\n"); lineno++; - for(rp=lemp->rule; rp; rp=rp->next){ - if( rp->code==0 ) continue; - assert( rp->code[0]=='\n' && rp->code[1]==0 ); - fprintf(out," /* (%d) ", rp->index); - writeRuleText(out, rp); - fprintf(out, " */ yytestcase(yyruleno==%d);\n", rp->index); lineno++; - } - fprintf(out," break;\n"); lineno++; - tplt_xfer(lemp->name,in,out,&lineno); - - /* Generate code which executes if a parse fails */ - tplt_print(out,lemp,lemp->failure,&lineno); - tplt_xfer(lemp->name,in,out,&lineno); - - /* Generate code which executes when a syntax error occurs */ - tplt_print(out,lemp,lemp->error,&lineno); - tplt_xfer(lemp->name,in,out,&lineno); - - /* Generate code which executes when the parser accepts its input */ - tplt_print(out,lemp,lemp->accept,&lineno); - tplt_xfer(lemp->name,in,out,&lineno); - - /* Append any addition code the user desires */ - tplt_print(out,lemp,lemp->extracode,&lineno); - - fclose(in); - fclose(out); - return; -} - -/* Generate a header file for the parser */ -void ReportHeader(struct lemon *lemp) -{ - FILE *out, *in; - const char *prefix; - char line[LINESIZE]; - char pattern[LINESIZE]; - int i; - - if( lemp->tokenprefix ) prefix = lemp->tokenprefix; - else prefix = ""; - in = file_open(lemp,".h","rb"); - if( in ){ - int nextChar; - for(i=1; interminal && fgets(line,LINESIZE,in); i++){ - lemon_sprintf(pattern,"#define %s%-30s %3d\n", - prefix,lemp->symbols[i]->name,i); - if( strcmp(line,pattern) ) break; - } - nextChar = fgetc(in); - fclose(in); - if( i==lemp->nterminal && nextChar==EOF ){ - /* No change in the file. Don't rewrite it. */ - return; - } - } - out = file_open(lemp,".h","wb"); - if( out ){ - for(i=1; interminal; i++){ - fprintf(out,"#define %s%-30s %3d\n",prefix,lemp->symbols[i]->name,i); - } - fclose(out); - } - return; -} - -/* Reduce the size of the action tables, if possible, by making use -** of defaults. -** -** In this version, we take the most frequent REDUCE action and make -** it the default. Except, there is no default if the wildcard token -** is a possible look-ahead. -*/ -void CompressTables(struct lemon *lemp) -{ - struct state *stp; - struct action *ap, *ap2; - struct rule *rp, *rp2, *rbest; - int nbest, n; - int i; - int usesWildcard; - - for(i=0; instate; i++){ - stp = lemp->sorted[i]; - nbest = 0; - rbest = 0; - usesWildcard = 0; - - for(ap=stp->ap; ap; ap=ap->next){ - if( ap->type==SHIFT && ap->sp==lemp->wildcard ){ - usesWildcard = 1; - } - if( ap->type!=REDUCE ) continue; - rp = ap->x.rp; - if( rp->lhsStart ) continue; - if( rp==rbest ) continue; - n = 1; - for(ap2=ap->next; ap2; ap2=ap2->next){ - if( ap2->type!=REDUCE ) continue; - rp2 = ap2->x.rp; - if( rp2==rbest ) continue; - if( rp2==rp ) n++; - } - if( n>nbest ){ - nbest = n; - rbest = rp; - } - } - - /* Do not make a default if the number of rules to default - ** is not at least 1 or if the wildcard token is a possible - ** lookahead. - */ - if( nbest<1 || usesWildcard ) continue; - - - /* Combine matching REDUCE actions into a single default */ - for(ap=stp->ap; ap; ap=ap->next){ - if( ap->type==REDUCE && ap->x.rp==rbest ) break; - } - assert( ap ); - ap->sp = Symbol_new("{default}"); - for(ap=ap->next; ap; ap=ap->next){ - if( ap->type==REDUCE && ap->x.rp==rbest ) ap->type = NOT_USED; - } - stp->ap = Action_sort(stp->ap); - } -} - - -/* -** Compare two states for sorting purposes. The smaller state is the -** one with the most non-terminal actions. If they have the same number -** of non-terminal actions, then the smaller is the one with the most -** token actions. -*/ -static int stateResortCompare(const void *a, const void *b){ - const struct state *pA = *(const struct state**)a; - const struct state *pB = *(const struct state**)b; - int n; - - n = pB->nNtAct - pA->nNtAct; - if( n==0 ){ - n = pB->nTknAct - pA->nTknAct; - if( n==0 ){ - n = pB->statenum - pA->statenum; - } - } - assert( n!=0 ); - return n; -} - - -/* -** Renumber and resort states so that states with fewer choices -** occur at the end. Except, keep state 0 as the first state. -*/ -void ResortStates(struct lemon *lemp) -{ - int i; - struct state *stp; - struct action *ap; - - for(i=0; instate; i++){ - stp = lemp->sorted[i]; - stp->nTknAct = stp->nNtAct = 0; - stp->iDflt = lemp->nstate + lemp->nrule; - stp->iTknOfst = NO_OFFSET; - stp->iNtOfst = NO_OFFSET; - for(ap=stp->ap; ap; ap=ap->next){ - if( compute_action(lemp,ap)>=0 ){ - if( ap->sp->indexnterminal ){ - stp->nTknAct++; - }else if( ap->sp->indexnsymbol ){ - stp->nNtAct++; - }else{ - stp->iDflt = compute_action(lemp, ap); - } - } - } - } - qsort(&lemp->sorted[1], lemp->nstate-1, sizeof(lemp->sorted[0]), - stateResortCompare); - for(i=0; instate; i++){ - lemp->sorted[i]->statenum = i; - } -} - - -/***************** From the file "set.c" ************************************/ -/* -** Set manipulation routines for the LEMON parser generator. -*/ - -static int size = 0; - -/* Set the set size */ -void SetSize(int n) -{ - size = n+1; -} - -/* Allocate a new set */ -char *SetNew(){ - char *s; - s = (char*)calloc( size, 1); - if( s==0 ){ - extern void memory_error(); - memory_error(); - } - return s; -} - -/* Deallocate a set */ -void SetFree(char *s) -{ - free(s); -} - -/* Add a new element to the set. Return TRUE if the element was added -** and FALSE if it was already there. */ -int SetAdd(char *s, int e) -{ - int rv; - assert( e>=0 && esize = 1024; - x1a->count = 0; - x1a->tbl = (x1node*)calloc(1024, sizeof(x1node) + sizeof(x1node*)); - if( x1a->tbl==0 ){ - free(x1a); - x1a = 0; - }else{ - int i; - x1a->ht = (x1node**)&(x1a->tbl[1024]); - for(i=0; i<1024; i++) x1a->ht[i] = 0; - } - } -} -/* Insert a new record into the array. Return TRUE if successful. -** Prior data with the same key is NOT overwritten */ -int Strsafe_insert(const char *data) -{ - x1node *np; - unsigned h; - unsigned ph; - - if( x1a==0 ) return 0; - ph = strhash(data); - h = ph & (x1a->size-1); - np = x1a->ht[h]; - while( np ){ - if( strcmp(np->data,data)==0 ){ - /* An existing entry with the same key is found. */ - /* Fail because overwrite is not allows. */ - return 0; - } - np = np->next; - } - if( x1a->count>=x1a->size ){ - /* Need to make the hash table bigger */ - int i,size; - struct s_x1 array; - array.size = size = x1a->size*2; - array.count = x1a->count; - array.tbl = (x1node*)calloc(size, sizeof(x1node) + sizeof(x1node*)); - if( array.tbl==0 ) return 0; /* Fail due to malloc failure */ - array.ht = (x1node**)&(array.tbl[size]); - for(i=0; icount; i++){ - x1node *oldnp, *newnp; - oldnp = &(x1a->tbl[i]); - h = strhash(oldnp->data) & (size-1); - newnp = &(array.tbl[i]); - if( array.ht[h] ) array.ht[h]->from = &(newnp->next); - newnp->next = array.ht[h]; - newnp->data = oldnp->data; - newnp->from = &(array.ht[h]); - array.ht[h] = newnp; - } - free(x1a->tbl); - *x1a = array; - } - /* Insert the new data */ - h = ph & (x1a->size-1); - np = &(x1a->tbl[x1a->count++]); - np->data = data; - if( x1a->ht[h] ) x1a->ht[h]->from = &(np->next); - np->next = x1a->ht[h]; - x1a->ht[h] = np; - np->from = &(x1a->ht[h]); - return 1; -} - -/* Return a pointer to data assigned to the given key. Return NULL -** if no such key. */ -const char *Strsafe_find(const char *key) -{ - unsigned h; - x1node *np; - - if( x1a==0 ) return 0; - h = strhash(key) & (x1a->size-1); - np = x1a->ht[h]; - while( np ){ - if( strcmp(np->data,key)==0 ) break; - np = np->next; - } - return np ? np->data : 0; -} - -/* Return a pointer to the (terminal or nonterminal) symbol "x". -** Create a new symbol if this is the first time "x" has been seen. -*/ -struct symbol *Symbol_new(const char *x) -{ - struct symbol *sp; - - sp = Symbol_find(x); - if( sp==0 ){ - sp = (struct symbol *)calloc(1, sizeof(struct symbol) ); - MemoryCheck(sp); - sp->name = Strsafe(x); - sp->type = isupper(*x) ? TERMINAL : NONTERMINAL; - sp->rule = 0; - sp->fallback = 0; - sp->prec = -1; - sp->assoc = UNK; - sp->firstset = 0; - sp->lambda = LEMON_FALSE; - sp->destructor = 0; - sp->destLineno = 0; - sp->datatype = 0; - sp->useCnt = 0; - Symbol_insert(sp,sp->name); - } - sp->useCnt++; - return sp; -} - -/* Compare two symbols for sorting purposes. Return negative, -** zero, or positive if a is less then, equal to, or greater -** than b. -** -** Symbols that begin with upper case letters (terminals or tokens) -** must sort before symbols that begin with lower case letters -** (non-terminals). And MULTITERMINAL symbols (created using the -** %token_class directive) must sort at the very end. Other than -** that, the order does not matter. -** -** We find experimentally that leaving the symbols in their original -** order (the order they appeared in the grammar file) gives the -** smallest parser tables in SQLite. -*/ -int Symbolcmpp(const void *_a, const void *_b) -{ - const struct symbol *a = *(const struct symbol **) _a; - const struct symbol *b = *(const struct symbol **) _b; - int i1 = a->type==MULTITERMINAL ? 3 : a->name[0]>'Z' ? 2 : 1; - int i2 = b->type==MULTITERMINAL ? 3 : b->name[0]>'Z' ? 2 : 1; - return i1==i2 ? a->index - b->index : i1 - i2; -} - -/* There is one instance of the following structure for each -** associative array of type "x2". -*/ -struct s_x2 { - int size; /* The number of available slots. */ - /* Must be a power of 2 greater than or */ - /* equal to 1 */ - int count; /* Number of currently slots filled */ - struct s_x2node *tbl; /* The data stored here */ - struct s_x2node **ht; /* Hash table for lookups */ -}; - -/* There is one instance of this structure for every data element -** in an associative array of type "x2". -*/ -typedef struct s_x2node { - struct symbol *data; /* The data */ - const char *key; /* The key */ - struct s_x2node *next; /* Next entry with the same hash */ - struct s_x2node **from; /* Previous link */ -} x2node; - -/* There is only one instance of the array, which is the following */ -static struct s_x2 *x2a; - -/* Allocate a new associative array */ -void Symbol_init(){ - if( x2a ) return; - x2a = (struct s_x2*)malloc( sizeof(struct s_x2) ); - if( x2a ){ - x2a->size = 128; - x2a->count = 0; - x2a->tbl = (x2node*)calloc(128, sizeof(x2node) + sizeof(x2node*)); - if( x2a->tbl==0 ){ - free(x2a); - x2a = 0; - }else{ - int i; - x2a->ht = (x2node**)&(x2a->tbl[128]); - for(i=0; i<128; i++) x2a->ht[i] = 0; - } - } -} -/* Insert a new record into the array. Return TRUE if successful. -** Prior data with the same key is NOT overwritten */ -int Symbol_insert(struct symbol *data, const char *key) -{ - x2node *np; - unsigned h; - unsigned ph; - - if( x2a==0 ) return 0; - ph = strhash(key); - h = ph & (x2a->size-1); - np = x2a->ht[h]; - while( np ){ - if( strcmp(np->key,key)==0 ){ - /* An existing entry with the same key is found. */ - /* Fail because overwrite is not allows. */ - return 0; - } - np = np->next; - } - if( x2a->count>=x2a->size ){ - /* Need to make the hash table bigger */ - int i,size; - struct s_x2 array; - array.size = size = x2a->size*2; - array.count = x2a->count; - array.tbl = (x2node*)calloc(size, sizeof(x2node) + sizeof(x2node*)); - if( array.tbl==0 ) return 0; /* Fail due to malloc failure */ - array.ht = (x2node**)&(array.tbl[size]); - for(i=0; icount; i++){ - x2node *oldnp, *newnp; - oldnp = &(x2a->tbl[i]); - h = strhash(oldnp->key) & (size-1); - newnp = &(array.tbl[i]); - if( array.ht[h] ) array.ht[h]->from = &(newnp->next); - newnp->next = array.ht[h]; - newnp->key = oldnp->key; - newnp->data = oldnp->data; - newnp->from = &(array.ht[h]); - array.ht[h] = newnp; - } - free(x2a->tbl); - *x2a = array; - } - /* Insert the new data */ - h = ph & (x2a->size-1); - np = &(x2a->tbl[x2a->count++]); - np->key = key; - np->data = data; - if( x2a->ht[h] ) x2a->ht[h]->from = &(np->next); - np->next = x2a->ht[h]; - x2a->ht[h] = np; - np->from = &(x2a->ht[h]); - return 1; -} - -/* Return a pointer to data assigned to the given key. Return NULL -** if no such key. */ -struct symbol *Symbol_find(const char *key) -{ - unsigned h; - x2node *np; - - if( x2a==0 ) return 0; - h = strhash(key) & (x2a->size-1); - np = x2a->ht[h]; - while( np ){ - if( strcmp(np->key,key)==0 ) break; - np = np->next; - } - return np ? np->data : 0; -} - -/* Return the n-th data. Return NULL if n is out of range. */ -struct symbol *Symbol_Nth(int n) -{ - struct symbol *data; - if( x2a && n>0 && n<=x2a->count ){ - data = x2a->tbl[n-1].data; - }else{ - data = 0; - } - return data; -} - -/* Return the size of the array */ -int Symbol_count() -{ - return x2a ? x2a->count : 0; -} - -/* Return an array of pointers to all data in the table. -** The array is obtained from malloc. Return NULL if memory allocation -** problems, or if the array is empty. */ -struct symbol **Symbol_arrayof() -{ - struct symbol **array; - int i,size; - if( x2a==0 ) return 0; - size = x2a->count; - array = (struct symbol **)calloc(size, sizeof(struct symbol *)); - if( array ){ - for(i=0; itbl[i].data; - } - return array; -} - -/* Compare two configurations */ -int Configcmp(const char *_a,const char *_b) -{ - const struct config *a = (struct config *) _a; - const struct config *b = (struct config *) _b; - int x; - x = a->rp->index - b->rp->index; - if( x==0 ) x = a->dot - b->dot; - return x; -} - -/* Compare two states */ -PRIVATE int statecmp(struct config *a, struct config *b) -{ - int rc; - for(rc=0; rc==0 && a && b; a=a->bp, b=b->bp){ - rc = a->rp->index - b->rp->index; - if( rc==0 ) rc = a->dot - b->dot; - } - if( rc==0 ){ - if( a ) rc = 1; - if( b ) rc = -1; - } - return rc; -} - -/* Hash a state */ -PRIVATE unsigned statehash(struct config *a) -{ - unsigned h=0; - while( a ){ - h = h*571 + a->rp->index*37 + a->dot; - a = a->bp; - } - return h; -} - -/* Allocate a new state structure */ -struct state *State_new() -{ - struct state *newstate; - newstate = (struct state *)calloc(1, sizeof(struct state) ); - MemoryCheck(newstate); - return newstate; -} - -/* There is one instance of the following structure for each -** associative array of type "x3". -*/ -struct s_x3 { - int size; /* The number of available slots. */ - /* Must be a power of 2 greater than or */ - /* equal to 1 */ - int count; /* Number of currently slots filled */ - struct s_x3node *tbl; /* The data stored here */ - struct s_x3node **ht; /* Hash table for lookups */ -}; - -/* There is one instance of this structure for every data element -** in an associative array of type "x3". -*/ -typedef struct s_x3node { - struct state *data; /* The data */ - struct config *key; /* The key */ - struct s_x3node *next; /* Next entry with the same hash */ - struct s_x3node **from; /* Previous link */ -} x3node; - -/* There is only one instance of the array, which is the following */ -static struct s_x3 *x3a; - -/* Allocate a new associative array */ -void State_init(){ - if( x3a ) return; - x3a = (struct s_x3*)malloc( sizeof(struct s_x3) ); - if( x3a ){ - x3a->size = 128; - x3a->count = 0; - x3a->tbl = (x3node*)calloc(128, sizeof(x3node) + sizeof(x3node*)); - if( x3a->tbl==0 ){ - free(x3a); - x3a = 0; - }else{ - int i; - x3a->ht = (x3node**)&(x3a->tbl[128]); - for(i=0; i<128; i++) x3a->ht[i] = 0; - } - } -} -/* Insert a new record into the array. Return TRUE if successful. -** Prior data with the same key is NOT overwritten */ -int State_insert(struct state *data, struct config *key) -{ - x3node *np; - unsigned h; - unsigned ph; - - if( x3a==0 ) return 0; - ph = statehash(key); - h = ph & (x3a->size-1); - np = x3a->ht[h]; - while( np ){ - if( statecmp(np->key,key)==0 ){ - /* An existing entry with the same key is found. */ - /* Fail because overwrite is not allows. */ - return 0; - } - np = np->next; - } - if( x3a->count>=x3a->size ){ - /* Need to make the hash table bigger */ - int i,size; - struct s_x3 array; - array.size = size = x3a->size*2; - array.count = x3a->count; - array.tbl = (x3node*)calloc(size, sizeof(x3node) + sizeof(x3node*)); - if( array.tbl==0 ) return 0; /* Fail due to malloc failure */ - array.ht = (x3node**)&(array.tbl[size]); - for(i=0; icount; i++){ - x3node *oldnp, *newnp; - oldnp = &(x3a->tbl[i]); - h = statehash(oldnp->key) & (size-1); - newnp = &(array.tbl[i]); - if( array.ht[h] ) array.ht[h]->from = &(newnp->next); - newnp->next = array.ht[h]; - newnp->key = oldnp->key; - newnp->data = oldnp->data; - newnp->from = &(array.ht[h]); - array.ht[h] = newnp; - } - free(x3a->tbl); - *x3a = array; - } - /* Insert the new data */ - h = ph & (x3a->size-1); - np = &(x3a->tbl[x3a->count++]); - np->key = key; - np->data = data; - if( x3a->ht[h] ) x3a->ht[h]->from = &(np->next); - np->next = x3a->ht[h]; - x3a->ht[h] = np; - np->from = &(x3a->ht[h]); - return 1; -} - -/* Return a pointer to data assigned to the given key. Return NULL -** if no such key. */ -struct state *State_find(struct config *key) -{ - unsigned h; - x3node *np; - - if( x3a==0 ) return 0; - h = statehash(key) & (x3a->size-1); - np = x3a->ht[h]; - while( np ){ - if( statecmp(np->key,key)==0 ) break; - np = np->next; - } - return np ? np->data : 0; -} - -/* Return an array of pointers to all data in the table. -** The array is obtained from malloc. Return NULL if memory allocation -** problems, or if the array is empty. */ -struct state **State_arrayof() -{ - struct state **array; - int i,size; - if( x3a==0 ) return 0; - size = x3a->count; - array = (struct state **)calloc(size, sizeof(struct state *)); - if( array ){ - for(i=0; itbl[i].data; - } - return array; -} - -/* Hash a configuration */ -PRIVATE unsigned confighash(struct config *a) -{ - unsigned h=0; - h = h*571 + a->rp->index*37 + a->dot; - return h; -} - -/* There is one instance of the following structure for each -** associative array of type "x4". -*/ -struct s_x4 { - int size; /* The number of available slots. */ - /* Must be a power of 2 greater than or */ - /* equal to 1 */ - int count; /* Number of currently slots filled */ - struct s_x4node *tbl; /* The data stored here */ - struct s_x4node **ht; /* Hash table for lookups */ -}; - -/* There is one instance of this structure for every data element -** in an associative array of type "x4". -*/ -typedef struct s_x4node { - struct config *data; /* The data */ - struct s_x4node *next; /* Next entry with the same hash */ - struct s_x4node **from; /* Previous link */ -} x4node; - -/* There is only one instance of the array, which is the following */ -static struct s_x4 *x4a; - -/* Allocate a new associative array */ -void Configtable_init(){ - if( x4a ) return; - x4a = (struct s_x4*)malloc( sizeof(struct s_x4) ); - if( x4a ){ - x4a->size = 64; - x4a->count = 0; - x4a->tbl = (x4node*)calloc(64, sizeof(x4node) + sizeof(x4node*)); - if( x4a->tbl==0 ){ - free(x4a); - x4a = 0; - }else{ - int i; - x4a->ht = (x4node**)&(x4a->tbl[64]); - for(i=0; i<64; i++) x4a->ht[i] = 0; - } - } -} -/* Insert a new record into the array. Return TRUE if successful. -** Prior data with the same key is NOT overwritten */ -int Configtable_insert(struct config *data) -{ - x4node *np; - unsigned h; - unsigned ph; - - if( x4a==0 ) return 0; - ph = confighash(data); - h = ph & (x4a->size-1); - np = x4a->ht[h]; - while( np ){ - if( Configcmp((const char *) np->data,(const char *) data)==0 ){ - /* An existing entry with the same key is found. */ - /* Fail because overwrite is not allows. */ - return 0; - } - np = np->next; - } - if( x4a->count>=x4a->size ){ - /* Need to make the hash table bigger */ - int i,size; - struct s_x4 array; - array.size = size = x4a->size*2; - array.count = x4a->count; - array.tbl = (x4node*)calloc(size, sizeof(x4node) + sizeof(x4node*)); - if( array.tbl==0 ) return 0; /* Fail due to malloc failure */ - array.ht = (x4node**)&(array.tbl[size]); - for(i=0; icount; i++){ - x4node *oldnp, *newnp; - oldnp = &(x4a->tbl[i]); - h = confighash(oldnp->data) & (size-1); - newnp = &(array.tbl[i]); - if( array.ht[h] ) array.ht[h]->from = &(newnp->next); - newnp->next = array.ht[h]; - newnp->data = oldnp->data; - newnp->from = &(array.ht[h]); - array.ht[h] = newnp; - } - free(x4a->tbl); - *x4a = array; - } - /* Insert the new data */ - h = ph & (x4a->size-1); - np = &(x4a->tbl[x4a->count++]); - np->data = data; - if( x4a->ht[h] ) x4a->ht[h]->from = &(np->next); - np->next = x4a->ht[h]; - x4a->ht[h] = np; - np->from = &(x4a->ht[h]); - return 1; -} - -/* Return a pointer to data assigned to the given key. Return NULL -** if no such key. */ -struct config *Configtable_find(struct config *key) -{ - int h; - x4node *np; - - if( x4a==0 ) return 0; - h = confighash(key) & (x4a->size-1); - np = x4a->ht[h]; - while( np ){ - if( Configcmp((const char *) np->data,(const char *) key)==0 ) break; - np = np->next; - } - return np ? np->data : 0; -} - -/* Remove all data from the table. Pass each data to the function "f" -** as it is removed. ("f" may be null to avoid this step.) */ -void Configtable_clear(int(*f)(struct config *)) -{ - int i; - if( x4a==0 || x4a->count==0 ) return; - if( f ) for(i=0; icount; i++) (*f)(x4a->tbl[i].data); - for(i=0; isize; i++) x4a->ht[i] = 0; - x4a->count = 0; - return; -} diff --git a/libraries/lemon/lempar.c b/libraries/lemon/lempar.c deleted file mode 100644 index fe56d2d..0000000 --- a/libraries/lemon/lempar.c +++ /dev/null @@ -1,850 +0,0 @@ -/* Driver template for the LEMON parser generator. -** The author disclaims copyright to this source code. -*/ -/* First off, code is included that follows the "include" declaration -** in the input grammar file. */ -#include -%% -/* Next is all token values, in a form suitable for use by makeheaders. -** This section will be null unless lemon is run with the -m switch. -*/ -/* -** These constants (all generated automatically by the parser generator) -** specify the various kinds of tokens (terminals) that the parser -** understands. -** -** Each symbol here is a terminal symbol in the grammar. -*/ -%% -/* Make sure the INTERFACE macro is defined. -*/ -#ifndef INTERFACE -# define INTERFACE 1 -#endif -/* The next thing included is series of defines which control -** various aspects of the generated parser. -** YYCODETYPE is the data type used for storing terminal -** and nonterminal numbers. "unsigned char" is -** used if there are fewer than 250 terminals -** and nonterminals. "int" is used otherwise. -** YYNOCODE is a number of type YYCODETYPE which corresponds -** to no legal terminal or nonterminal number. This -** number is used to fill in empty slots of the hash -** table. -** YYFALLBACK If defined, this indicates that one or more tokens -** have fall-back values which should be used if the -** original value of the token will not parse. -** YYACTIONTYPE is the data type used for storing terminal -** and nonterminal numbers. "unsigned char" is -** used if there are fewer than 250 rules and -** states combined. "int" is used otherwise. -** ParseTOKENTYPE is the data type used for minor tokens given -** directly to the parser from the tokenizer. -** YYMINORTYPE is the data type used for all minor tokens. -** This is typically a union of many types, one of -** which is ParseTOKENTYPE. The entry in the union -** for base tokens is called "yy0". -** YYSTACKDEPTH is the maximum depth of the parser's stack. If -** zero the stack is dynamically sized using realloc() -** ParseARG_SDECL A static variable declaration for the %extra_argument -** ParseARG_PDECL A parameter declaration for the %extra_argument -** ParseARG_STORE Code to store %extra_argument into yypParser -** ParseARG_FETCH Code to extract %extra_argument from yypParser -** YYNSTATE the combined number of states. -** YYNRULE the number of rules in the grammar -** YYERRORSYMBOL is the code number of the error symbol. If not -** defined, then do no error processing. -*/ -%% -#define YY_NO_ACTION (YYNSTATE+YYNRULE+2) -#define YY_ACCEPT_ACTION (YYNSTATE+YYNRULE+1) -#define YY_ERROR_ACTION (YYNSTATE+YYNRULE) - -/* The yyzerominor constant is used to initialize instances of -** YYMINORTYPE objects to zero. */ -static const YYMINORTYPE yyzerominor = { 0 }; - -/* Define the yytestcase() macro to be a no-op if is not already defined -** otherwise. -** -** Applications can choose to define yytestcase() in the %include section -** to a macro that can assist in verifying code coverage. For production -** code the yytestcase() macro should be turned off. But it is useful -** for testing. -*/ -#ifndef yytestcase -# define yytestcase(X) -#endif - - -/* Next are the tables used to determine what action to take based on the -** current state and lookahead token. These tables are used to implement -** functions that take a state number and lookahead value and return an -** action integer. -** -** Suppose the action integer is N. Then the action is determined as -** follows -** -** 0 <= N < YYNSTATE Shift N. That is, push the lookahead -** token onto the stack and goto state N. -** -** YYNSTATE <= N < YYNSTATE+YYNRULE Reduce by rule N-YYNSTATE. -** -** N == YYNSTATE+YYNRULE A syntax error has occurred. -** -** N == YYNSTATE+YYNRULE+1 The parser accepts its input. -** -** N == YYNSTATE+YYNRULE+2 No such action. Denotes unused -** slots in the yy_action[] table. -** -** The action table is constructed as a single large table named yy_action[]. -** Given state S and lookahead X, the action is computed as -** -** yy_action[ yy_shift_ofst[S] + X ] -** -** If the index value yy_shift_ofst[S]+X is out of range or if the value -** yy_lookahead[yy_shift_ofst[S]+X] is not equal to X or if yy_shift_ofst[S] -** is equal to YY_SHIFT_USE_DFLT, it means that the action is not in the table -** and that yy_default[S] should be used instead. -** -** The formula above is for computing the action when the lookahead is -** a terminal symbol. If the lookahead is a non-terminal (as occurs after -** a reduce action) then the yy_reduce_ofst[] array is used in place of -** the yy_shift_ofst[] array and YY_REDUCE_USE_DFLT is used in place of -** YY_SHIFT_USE_DFLT. -** -** The following are the tables generated in this section: -** -** yy_action[] A single table containing all actions. -** yy_lookahead[] A table containing the lookahead for each entry in -** yy_action. Used to detect hash collisions. -** yy_shift_ofst[] For each state, the offset into yy_action for -** shifting terminals. -** yy_reduce_ofst[] For each state, the offset into yy_action for -** shifting non-terminals after a reduce. -** yy_default[] Default action for each state. -*/ -%% - -/* The next table maps tokens into fallback tokens. If a construct -** like the following: -** -** %fallback ID X Y Z. -** -** appears in the grammar, then ID becomes a fallback token for X, Y, -** and Z. Whenever one of the tokens X, Y, or Z is input to the parser -** but it does not parse, the type of the token is changed to ID and -** the parse is retried before an error is thrown. -*/ -#ifdef YYFALLBACK -static const YYCODETYPE yyFallback[] = { -%% -}; -#endif /* YYFALLBACK */ - -/* The following structure represents a single element of the -** parser's stack. Information stored includes: -** -** + The state number for the parser at this level of the stack. -** -** + The value of the token stored at this level of the stack. -** (In other words, the "major" token.) -** -** + The semantic value stored at this level of the stack. This is -** the information used by the action routines in the grammar. -** It is sometimes called the "minor" token. -*/ -struct yyStackEntry { - YYACTIONTYPE stateno; /* The state-number */ - YYCODETYPE major; /* The major token value. This is the code - ** number for the token at this stack level */ - YYMINORTYPE minor; /* The user-supplied minor token value. This - ** is the value of the token */ -}; -typedef struct yyStackEntry yyStackEntry; - -/* The state of the parser is completely contained in an instance of -** the following structure */ -struct yyParser { - int yyidx; /* Index of top element in stack */ -#ifdef YYTRACKMAXSTACKDEPTH - int yyidxMax; /* Maximum value of yyidx */ -#endif - int yyerrcnt; /* Shifts left before out of the error */ - ParseARG_SDECL /* A place to hold %extra_argument */ -#if YYSTACKDEPTH<=0 - int yystksz; /* Current side of the stack */ - yyStackEntry *yystack; /* The parser's stack */ -#else - yyStackEntry yystack[YYSTACKDEPTH]; /* The parser's stack */ -#endif -}; -typedef struct yyParser yyParser; - -#ifndef NDEBUG -#include -static FILE *yyTraceFILE = 0; -static char *yyTracePrompt = 0; -#endif /* NDEBUG */ - -#ifndef NDEBUG -/* -** Turn parser tracing on by giving a stream to which to write the trace -** and a prompt to preface each trace message. Tracing is turned off -** by making either argument NULL -** -** Inputs: -**
    -**
  • A FILE* to which trace output should be written. -** If NULL, then tracing is turned off. -**
  • A prefix string written at the beginning of every -** line of trace output. If NULL, then tracing is -** turned off. -**
-** -** Outputs: -** None. -*/ -void ParseTrace(FILE *TraceFILE, char *zTracePrompt){ - yyTraceFILE = TraceFILE; - yyTracePrompt = zTracePrompt; - if( yyTraceFILE==0 ) yyTracePrompt = 0; - else if( yyTracePrompt==0 ) yyTraceFILE = 0; -} -#endif /* NDEBUG */ - -#ifndef NDEBUG -/* For tracing shifts, the names of all terminals and nonterminals -** are required. The following table supplies these names */ -static const char *const yyTokenName[] = { -%% -}; -#endif /* NDEBUG */ - -#ifndef NDEBUG -/* For tracing reduce actions, the names of all rules are required. -*/ -static const char *const yyRuleName[] = { -%% -}; -#endif /* NDEBUG */ - - -#if YYSTACKDEPTH<=0 -/* -** Try to increase the size of the parser stack. -*/ -static void yyGrowStack(yyParser *p){ - int newSize; - yyStackEntry *pNew; - - newSize = p->yystksz*2 + 100; - pNew = realloc(p->yystack, newSize*sizeof(pNew[0])); - if( pNew ){ - p->yystack = pNew; - p->yystksz = newSize; -#ifndef NDEBUG - if( yyTraceFILE ){ - fprintf(yyTraceFILE,"%sStack grows to %d entries!\n", - yyTracePrompt, p->yystksz); - } -#endif - } -} -#endif - -/* -** This function allocates a new parser. -** The only argument is a pointer to a function which works like -** malloc. -** -** Inputs: -** A pointer to the function used to allocate memory. -** -** Outputs: -** A pointer to a parser. This pointer is used in subsequent calls -** to Parse and ParseFree. -*/ -void *ParseAlloc(void *(*mallocProc)(size_t)){ - yyParser *pParser; - pParser = (yyParser*)(*mallocProc)( (size_t)sizeof(yyParser) ); - if( pParser ){ - pParser->yyidx = -1; -#ifdef YYTRACKMAXSTACKDEPTH - pParser->yyidxMax = 0; -#endif -#if YYSTACKDEPTH<=0 - pParser->yystack = NULL; - pParser->yystksz = 0; - yyGrowStack(pParser); -#endif - } - return pParser; -} - -/* The following function deletes the value associated with a -** symbol. The symbol can be either a terminal or nonterminal. -** "yymajor" is the symbol code, and "yypminor" is a pointer to -** the value. -*/ -static void yy_destructor( - yyParser *yypParser, /* The parser */ - YYCODETYPE yymajor, /* Type code for object to destroy */ - YYMINORTYPE *yypminor /* The object to be destroyed */ -){ - ParseARG_FETCH; - switch( yymajor ){ - /* Here is inserted the actions which take place when a - ** terminal or non-terminal is destroyed. This can happen - ** when the symbol is popped from the stack during a - ** reduce or during error processing or when a parser is - ** being destroyed before it is finished parsing. - ** - ** Note: during a reduce, the only symbols destroyed are those - ** which appear on the RHS of the rule, but which are not used - ** inside the C code. - */ -%% - default: break; /* If no destructor action specified: do nothing */ - } -} - -/* -** Pop the parser's stack once. -** -** If there is a destructor routine associated with the token which -** is popped from the stack, then call it. -** -** Return the major token number for the symbol popped. -*/ -static int yy_pop_parser_stack(yyParser *pParser){ - YYCODETYPE yymajor; - yyStackEntry *yytos = &pParser->yystack[pParser->yyidx]; - - if( pParser->yyidx<0 ) return 0; -#ifndef NDEBUG - if( yyTraceFILE && pParser->yyidx>=0 ){ - fprintf(yyTraceFILE,"%sPopping %s\n", - yyTracePrompt, - yyTokenName[yytos->major]); - } -#endif - yymajor = yytos->major; - yy_destructor(pParser, yymajor, &yytos->minor); - pParser->yyidx--; - return yymajor; -} - -/* -** Deallocate and destroy a parser. Destructors are all called for -** all stack elements before shutting the parser down. -** -** Inputs: -**
    -**
  • A pointer to the parser. This should be a pointer -** obtained from ParseAlloc. -**
  • A pointer to a function used to reclaim memory obtained -** from malloc. -**
-*/ -void ParseFree( - void *p, /* The parser to be deleted */ - void (*freeProc)(void*) /* Function used to reclaim memory */ -){ - yyParser *pParser = (yyParser*)p; - if( pParser==0 ) return; - while( pParser->yyidx>=0 ) yy_pop_parser_stack(pParser); -#if YYSTACKDEPTH<=0 - free(pParser->yystack); -#endif - (*freeProc)((void*)pParser); -} - -/* -** Return the peak depth of the stack for a parser. -*/ -#ifdef YYTRACKMAXSTACKDEPTH -int ParseStackPeak(void *p){ - yyParser *pParser = (yyParser*)p; - return pParser->yyidxMax; -} -#endif - -/* -** Find the appropriate action for a parser given the terminal -** look-ahead token iLookAhead. -** -** If the look-ahead token is YYNOCODE, then check to see if the action is -** independent of the look-ahead. If it is, return the action, otherwise -** return YY_NO_ACTION. -*/ -static int yy_find_shift_action( - yyParser *pParser, /* The parser */ - YYCODETYPE iLookAhead /* The look-ahead token */ -){ - int i; - int stateno = pParser->yystack[pParser->yyidx].stateno; - - if( stateno>YY_SHIFT_COUNT - || (i = yy_shift_ofst[stateno])==YY_SHIFT_USE_DFLT ){ - return yy_default[stateno]; - } - assert( iLookAhead!=YYNOCODE ); - i += iLookAhead; - if( i<0 || i>=YY_ACTTAB_COUNT || yy_lookahead[i]!=iLookAhead ){ - if( iLookAhead>0 ){ -#ifdef YYFALLBACK - YYCODETYPE iFallback; /* Fallback token */ - if( iLookAhead %s\n", - yyTracePrompt, yyTokenName[iLookAhead], yyTokenName[iFallback]); - } -#endif - return yy_find_shift_action(pParser, iFallback); - } -#endif -#ifdef YYWILDCARD - { - int j = i - iLookAhead + YYWILDCARD; - if( -#if YY_SHIFT_MIN+YYWILDCARD<0 - j>=0 && -#endif -#if YY_SHIFT_MAX+YYWILDCARD>=YY_ACTTAB_COUNT - j %s\n", - yyTracePrompt, yyTokenName[iLookAhead], yyTokenName[YYWILDCARD]); - } -#endif /* NDEBUG */ - return yy_action[j]; - } - } -#endif /* YYWILDCARD */ - } - return yy_default[stateno]; - }else{ - return yy_action[i]; - } -} - -/* -** Find the appropriate action for a parser given the non-terminal -** look-ahead token iLookAhead. -** -** If the look-ahead token is YYNOCODE, then check to see if the action is -** independent of the look-ahead. If it is, return the action, otherwise -** return YY_NO_ACTION. -*/ -static int yy_find_reduce_action( - int stateno, /* Current state number */ - YYCODETYPE iLookAhead /* The look-ahead token */ -){ - int i; -#ifdef YYERRORSYMBOL - if( stateno>YY_REDUCE_COUNT ){ - return yy_default[stateno]; - } -#else - assert( stateno<=YY_REDUCE_COUNT ); -#endif - i = yy_reduce_ofst[stateno]; - assert( i!=YY_REDUCE_USE_DFLT ); - assert( iLookAhead!=YYNOCODE ); - i += iLookAhead; -#ifdef YYERRORSYMBOL - if( i<0 || i>=YY_ACTTAB_COUNT || yy_lookahead[i]!=iLookAhead ){ - return yy_default[stateno]; - } -#else - assert( i>=0 && iyyidx--; -#ifndef NDEBUG - if( yyTraceFILE ){ - fprintf(yyTraceFILE,"%sStack Overflow!\n",yyTracePrompt); - } -#endif - while( yypParser->yyidx>=0 ) yy_pop_parser_stack(yypParser); - /* Here code is inserted which will execute if the parser - ** stack every overflows */ -%% - ParseARG_STORE; /* Suppress warning about unused %extra_argument var */ -} - -/* -** Perform a shift action. -*/ -static void yy_shift( - yyParser *yypParser, /* The parser to be shifted */ - int yyNewState, /* The new state to shift in */ - int yyMajor, /* The major token to shift in */ - YYMINORTYPE *yypMinor /* Pointer to the minor token to shift in */ -){ - yyStackEntry *yytos; - yypParser->yyidx++; -#ifdef YYTRACKMAXSTACKDEPTH - if( yypParser->yyidx>yypParser->yyidxMax ){ - yypParser->yyidxMax = yypParser->yyidx; - } -#endif -#if YYSTACKDEPTH>0 - if( yypParser->yyidx>=YYSTACKDEPTH ){ - yyStackOverflow(yypParser, yypMinor); - return; - } -#else - if( yypParser->yyidx>=yypParser->yystksz ){ - yyGrowStack(yypParser); - if( yypParser->yyidx>=yypParser->yystksz ){ - yyStackOverflow(yypParser, yypMinor); - return; - } - } -#endif - yytos = &yypParser->yystack[yypParser->yyidx]; - yytos->stateno = (YYACTIONTYPE)yyNewState; - yytos->major = (YYCODETYPE)yyMajor; - yytos->minor = *yypMinor; -#ifndef NDEBUG - if( yyTraceFILE && yypParser->yyidx>0 ){ - int i; - fprintf(yyTraceFILE,"%sShift %d\n",yyTracePrompt,yyNewState); - fprintf(yyTraceFILE,"%sStack:",yyTracePrompt); - for(i=1; i<=yypParser->yyidx; i++) - fprintf(yyTraceFILE," %s",yyTokenName[yypParser->yystack[i].major]); - fprintf(yyTraceFILE,"\n"); - } -#endif -} - -/* The following table contains information about every rule that -** is used during the reduce. -*/ -static const struct { - YYCODETYPE lhs; /* Symbol on the left-hand side of the rule */ - unsigned char nrhs; /* Number of right-hand side symbols in the rule */ -} yyRuleInfo[] = { -%% -}; - -static void yy_accept(yyParser*); /* Forward Declaration */ - -/* -** Perform a reduce action and the shift that must immediately -** follow the reduce. -*/ -static void yy_reduce( - yyParser *yypParser, /* The parser */ - int yyruleno /* Number of the rule by which to reduce */ -){ - int yygoto; /* The next state */ - int yyact; /* The next action */ - YYMINORTYPE yygotominor; /* The LHS of the rule reduced */ - yyStackEntry *yymsp; /* The top of the parser's stack */ - int yysize; /* Amount to pop the stack */ - ParseARG_FETCH; - yymsp = &yypParser->yystack[yypParser->yyidx]; -#ifndef NDEBUG - if( yyTraceFILE && yyruleno>=0 - && yyruleno<(int)(sizeof(yyRuleName)/sizeof(yyRuleName[0])) ){ - fprintf(yyTraceFILE, "%sReduce [%s].\n", yyTracePrompt, - yyRuleName[yyruleno]); - } -#endif /* NDEBUG */ - - /* Silence complaints from purify about yygotominor being uninitialized - ** in some cases when it is copied into the stack after the following - ** switch. yygotominor is uninitialized when a rule reduces that does - ** not set the value of its left-hand side nonterminal. Leaving the - ** value of the nonterminal uninitialized is utterly harmless as long - ** as the value is never used. So really the only thing this code - ** accomplishes is to quieten purify. - ** - ** 2007-01-16: The wireshark project (www.wireshark.org) reports that - ** without this code, their parser segfaults. I'm not sure what there - ** parser is doing to make this happen. This is the second bug report - ** from wireshark this week. Clearly they are stressing Lemon in ways - ** that it has not been previously stressed... (SQLite ticket #2172) - */ - /*memset(&yygotominor, 0, sizeof(yygotominor));*/ - yygotominor = yyzerominor; - - - switch( yyruleno ){ - /* Beginning here are the reduction cases. A typical example - ** follows: - ** case 0: - ** #line - ** { ... } // User supplied code - ** #line - ** break; - */ -%% - }; - yygoto = yyRuleInfo[yyruleno].lhs; - yysize = yyRuleInfo[yyruleno].nrhs; - yypParser->yyidx -= yysize; - yyact = yy_find_reduce_action(yymsp[-yysize].stateno,(YYCODETYPE)yygoto); - if( yyact < YYNSTATE ){ -#ifdef NDEBUG - /* If we are not debugging and the reduce action popped at least - ** one element off the stack, then we can push the new element back - ** onto the stack here, and skip the stack overflow test in yy_shift(). - ** That gives a significant speed improvement. */ - if( yysize ){ - yypParser->yyidx++; - yymsp -= yysize-1; - yymsp->stateno = (YYACTIONTYPE)yyact; - yymsp->major = (YYCODETYPE)yygoto; - yymsp->minor = yygotominor; - }else -#endif - { - yy_shift(yypParser,yyact,yygoto,&yygotominor); - } - }else{ - assert( yyact == YYNSTATE + YYNRULE + 1 ); - yy_accept(yypParser); - } -} - -/* -** The following code executes when the parse fails -*/ -#ifndef YYNOERRORRECOVERY -static void yy_parse_failed( - yyParser *yypParser /* The parser */ -){ - ParseARG_FETCH; -#ifndef NDEBUG - if( yyTraceFILE ){ - fprintf(yyTraceFILE,"%sFail!\n",yyTracePrompt); - } -#endif - while( yypParser->yyidx>=0 ) yy_pop_parser_stack(yypParser); - /* Here code is inserted which will be executed whenever the - ** parser fails */ -%% - ParseARG_STORE; /* Suppress warning about unused %extra_argument variable */ -} -#endif /* YYNOERRORRECOVERY */ - -/* -** The following code executes when a syntax error first occurs. -*/ -static void yy_syntax_error( - yyParser *yypParser, /* The parser */ - int yymajor, /* The major type of the error token */ - YYMINORTYPE yyminor /* The minor type of the error token */ -){ - ParseARG_FETCH; -#define TOKEN (yyminor.yy0) -%% - ParseARG_STORE; /* Suppress warning about unused %extra_argument variable */ -} - -/* -** The following is executed when the parser accepts -*/ -static void yy_accept( - yyParser *yypParser /* The parser */ -){ - ParseARG_FETCH; -#ifndef NDEBUG - if( yyTraceFILE ){ - fprintf(yyTraceFILE,"%sAccept!\n",yyTracePrompt); - } -#endif - while( yypParser->yyidx>=0 ) yy_pop_parser_stack(yypParser); - /* Here code is inserted which will be executed whenever the - ** parser accepts */ -%% - ParseARG_STORE; /* Suppress warning about unused %extra_argument variable */ -} - -/* The main parser program. -** The first argument is a pointer to a structure obtained from -** "ParseAlloc" which describes the current state of the parser. -** The second argument is the major token number. The third is -** the minor token. The fourth optional argument is whatever the -** user wants (and specified in the grammar) and is available for -** use by the action routines. -** -** Inputs: -**
    -**
  • A pointer to the parser (an opaque structure.) -**
  • The major token number. -**
  • The minor token number. -**
  • An option argument of a grammar-specified type. -**
-** -** Outputs: -** None. -*/ -void Parse( - void *yyp, /* The parser */ - int yymajor, /* The major token code number */ - ParseTOKENTYPE yyminor /* The value for the token */ - ParseARG_PDECL /* Optional %extra_argument parameter */ -){ - YYMINORTYPE yyminorunion; - int yyact; /* The parser action. */ - int yyendofinput; /* True if we are at the end of input */ -#ifdef YYERRORSYMBOL - int yyerrorhit = 0; /* True if yymajor has invoked an error */ -#endif - yyParser *yypParser; /* The parser */ - - /* (re)initialize the parser, if necessary */ - yypParser = (yyParser*)yyp; - if( yypParser->yyidx<0 ){ -#if YYSTACKDEPTH<=0 - if( yypParser->yystksz <=0 ){ - /*memset(&yyminorunion, 0, sizeof(yyminorunion));*/ - yyminorunion = yyzerominor; - yyStackOverflow(yypParser, &yyminorunion); - return; - } -#endif - yypParser->yyidx = 0; - yypParser->yyerrcnt = -1; - yypParser->yystack[0].stateno = 0; - yypParser->yystack[0].major = 0; - } - yyminorunion.yy0 = yyminor; - yyendofinput = (yymajor==0); - ParseARG_STORE; - -#ifndef NDEBUG - if( yyTraceFILE ){ - fprintf(yyTraceFILE,"%sInput %s\n",yyTracePrompt,yyTokenName[yymajor]); - } -#endif - - do{ - yyact = yy_find_shift_action(yypParser,(YYCODETYPE)yymajor); - if( yyactyyerrcnt--; - yymajor = YYNOCODE; - }else if( yyact < YYNSTATE + YYNRULE ){ - yy_reduce(yypParser,yyact-YYNSTATE); - }else{ - assert( yyact == YY_ERROR_ACTION ); -#ifdef YYERRORSYMBOL - int yymx; -#endif -#ifndef NDEBUG - if( yyTraceFILE ){ - fprintf(yyTraceFILE,"%sSyntax Error!\n",yyTracePrompt); - } -#endif -#ifdef YYERRORSYMBOL - /* A syntax error has occurred. - ** The response to an error depends upon whether or not the - ** grammar defines an error token "ERROR". - ** - ** This is what we do if the grammar does define ERROR: - ** - ** * Call the %syntax_error function. - ** - ** * Begin popping the stack until we enter a state where - ** it is legal to shift the error symbol, then shift - ** the error symbol. - ** - ** * Set the error count to three. - ** - ** * Begin accepting and shifting new tokens. No new error - ** processing will occur until three tokens have been - ** shifted successfully. - ** - */ - if( yypParser->yyerrcnt<0 ){ - yy_syntax_error(yypParser,yymajor,yyminorunion); - } - yymx = yypParser->yystack[yypParser->yyidx].major; - if( yymx==YYERRORSYMBOL || yyerrorhit ){ -#ifndef NDEBUG - if( yyTraceFILE ){ - fprintf(yyTraceFILE,"%sDiscard input token %s\n", - yyTracePrompt,yyTokenName[yymajor]); - } -#endif - yy_destructor(yypParser, (YYCODETYPE)yymajor,&yyminorunion); - yymajor = YYNOCODE; - }else{ - while( - yypParser->yyidx >= 0 && - yymx != YYERRORSYMBOL && - (yyact = yy_find_reduce_action( - yypParser->yystack[yypParser->yyidx].stateno, - YYERRORSYMBOL)) >= YYNSTATE - ){ - yy_pop_parser_stack(yypParser); - } - if( yypParser->yyidx < 0 || yymajor==0 ){ - yy_destructor(yypParser,(YYCODETYPE)yymajor,&yyminorunion); - yy_parse_failed(yypParser); - yymajor = YYNOCODE; - }else if( yymx!=YYERRORSYMBOL ){ - YYMINORTYPE u2; - u2.YYERRSYMDT = 0; - yy_shift(yypParser,yyact,YYERRORSYMBOL,&u2); - } - } - yypParser->yyerrcnt = 3; - yyerrorhit = 1; -#elif defined(YYNOERRORRECOVERY) - /* If the YYNOERRORRECOVERY macro is defined, then do not attempt to - ** do any kind of error recovery. Instead, simply invoke the syntax - ** error routine and continue going as if nothing had happened. - ** - ** Applications can set this macro (for example inside %include) if - ** they intend to abandon the parse upon the first syntax error seen. - */ - yy_syntax_error(yypParser,yymajor,yyminorunion); - yy_destructor(yypParser,(YYCODETYPE)yymajor,&yyminorunion); - yymajor = YYNOCODE; - -#else /* YYERRORSYMBOL is not defined */ - /* This is what we do if the grammar does not define ERROR: - ** - ** * Report an error message, and throw away the input token. - ** - ** * If the input token is $, then fail the parse. - ** - ** As before, subsequent error messages are suppressed until - ** three input tokens have been successfully shifted. - */ - if( yypParser->yyerrcnt<=0 ){ - yy_syntax_error(yypParser,yymajor,yyminorunion); - } - yypParser->yyerrcnt = 3; - yy_destructor(yypParser,(YYCODETYPE)yymajor,&yyminorunion); - if( yyendofinput ){ - yy_parse_failed(yypParser); - } - yymajor = YYNOCODE; -#endif - } - }while( yymajor!=YYNOCODE && yypParser->yyidx>=0 ); - return; -} diff --git a/src/LuaSL/build.lua b/src/LuaSL/build.lua index dafcf5e..3a45e9b 100755 --- a/src/LuaSL/build.lua +++ b/src/LuaSL/build.lua @@ -16,7 +16,7 @@ end removeFiles(dir, {'*.output', '*.backup', 'LuaSL_lexer.h', 'LuaSL_lexer.c', 'LuaSL_lemon_yaccer.h', 'LuaSL_lemon_yaccer.c', 'LuaSL_lemon_yaccer.out'}) -- Build and run lemon first, flex depends on it to define the symbol values. -compileFiles('lemon', dir .. '/../../libraries/lemon', {'lemon'}, '') -runCommand('lemon', dir, '../../libraries/lemon/lemon -qs -T../../libraries/lemon/lempar.c LuaSL_lemon_yaccer.y') +compileFiles('lemon', dir .. '/../others/lemon', {'lemon'}, '') +runCommand('lemon', dir, '../others/lemon/lemon -qs -T../others/lemon/lempar.c LuaSL_lemon_yaccer.y') runCommand('flex', dir, 'flex -C --outfile=LuaSL_lexer.c --header-file=LuaSL_lexer.h LuaSL_lexer.l') compileFiles('../../LuaSL', dir, {'LuaSL_main', 'LuaSL_compile', 'LuaSL_lexer', 'LuaSL_lemon_yaccer'}, '') diff --git a/src/others/lemon/README b/src/others/lemon/README new file mode 100644 index 0000000..aa84547 --- /dev/null +++ b/src/others/lemon/README @@ -0,0 +1,4 @@ +The lemon parser is maintained at http://www.hwaci.com/sw/lemon/ in +particular the documentation is at - + +http://www.hwaci.com/sw/lemon/lemon.html diff --git a/src/others/lemon/lemon.c b/src/others/lemon/lemon.c new file mode 100644 index 0000000..85e94f7 --- /dev/null +++ b/src/others/lemon/lemon.c @@ -0,0 +1,5040 @@ +/* +** This file contains all sources (including headers) to the LEMON +** LALR(1) parser generator. The sources have been combined into a +** single file to make it easy to include LEMON in the source tree +** and Makefile of another program. +** +** The author of this program disclaims copyright. +*/ +#include +#include +#include +#include +#include +#include + +#ifndef __WIN32__ +# if defined(_WIN32) || defined(WIN32) +# define __WIN32__ +# endif +#endif + +#ifdef __WIN32__ +#ifdef __cplusplus +extern "C" { +#endif +extern int access(const char *path, int mode); +#ifdef __cplusplus +} +#endif +#else +#include +#endif + +/* #define PRIVATE static */ +#define PRIVATE + +#ifdef TEST +#define MAXRHS 5 /* Set low to exercise exception code */ +#else +#define MAXRHS 1000 +#endif + +static int showPrecedenceConflict = 0; +static char *msort(char*,char**,int(*)(const char*,const char*)); + +/* +** Compilers are getting increasingly pedantic about type conversions +** as C evolves ever closer to Ada.... To work around the latest problems +** we have to define the following variant of strlen(). +*/ +#define lemonStrlen(X) ((int)strlen(X)) + +/* +** Compilers are starting to complain about the use of sprintf() and strcpy(), +** saying they are unsafe. So we define our own versions of those routines too. +** +** There are three routines here: lemon_sprintf(), lemon_vsprintf(), and +** lemon_addtext(). The first two are replacements for sprintf() and vsprintf(). +** The third is a helper routine for vsnprintf() that adds texts to the end of a +** buffer, making sure the buffer is always zero-terminated. +** +** The string formatter is a minimal subset of stdlib sprintf() supporting only +** a few simply conversions: +** +** %d +** %s +** %.*s +** +*/ +static void lemon_addtext( + char *zBuf, /* The buffer to which text is added */ + int *pnUsed, /* Slots of the buffer used so far */ + const char *zIn, /* Text to add */ + int nIn, /* Bytes of text to add. -1 to use strlen() */ + int iWidth /* Field width. Negative to left justify */ +){ + if( nIn<0 ) for(nIn=0; zIn[nIn]; nIn++){} + while( iWidth>nIn ){ zBuf[(*pnUsed)++] = ' '; iWidth--; } + if( nIn==0 ) return; + memcpy(&zBuf[*pnUsed], zIn, nIn); + *pnUsed += nIn; + while( (-iWidth)>nIn ){ zBuf[(*pnUsed)++] = ' '; iWidth++; } + zBuf[*pnUsed] = 0; +} +static int lemon_vsprintf(char *str, const char *zFormat, va_list ap){ + int i, j, k, c; + int nUsed = 0; + const char *z; + char zTemp[50]; + str[0] = 0; + for(i=j=0; (c = zFormat[i])!=0; i++){ + if( c=='%' ){ + int iWidth = 0; + lemon_addtext(str, &nUsed, &zFormat[j], i-j, 0); + c = zFormat[++i]; + if( isdigit(c) || (c=='-' && isdigit(zFormat[i+1])) ){ + if( c=='-' ) i++; + while( isdigit(zFormat[i]) ) iWidth = iWidth*10 + zFormat[i++] - '0'; + if( c=='-' ) iWidth = -iWidth; + c = zFormat[i]; + } + if( c=='d' ){ + int v = va_arg(ap, int); + if( v<0 ){ + lemon_addtext(str, &nUsed, "-", 1, iWidth); + v = -v; + }else if( v==0 ){ + lemon_addtext(str, &nUsed, "0", 1, iWidth); + } + k = 0; + while( v>0 ){ + k++; + zTemp[sizeof(zTemp)-k] = (v%10) + '0'; + v /= 10; + } + lemon_addtext(str, &nUsed, &zTemp[sizeof(zTemp)-k], k, iWidth); + }else if( c=='s' ){ + z = va_arg(ap, const char*); + lemon_addtext(str, &nUsed, z, -1, iWidth); + }else if( c=='.' && memcmp(&zFormat[i], ".*s", 3)==0 ){ + i += 2; + k = va_arg(ap, int); + z = va_arg(ap, const char*); + lemon_addtext(str, &nUsed, z, k, iWidth); + }else if( c=='%' ){ + lemon_addtext(str, &nUsed, "%", 1, 0); + }else{ + fprintf(stderr, "illegal format\n"); + exit(1); + } + j = i+1; + } + } + lemon_addtext(str, &nUsed, &zFormat[j], i-j, 0); + return nUsed; +} +static int lemon_sprintf(char *str, const char *format, ...){ + va_list ap; + int rc; + va_start(ap, format); + rc = lemon_vsprintf(str, format, ap); + va_end(ap); + return rc; +} +static void lemon_strcpy(char *dest, const char *src){ + while( (*(dest++) = *(src++))!=0 ){} +} +static void lemon_strcat(char *dest, const char *src){ + while( *dest ) dest++; + lemon_strcpy(dest, src); +} + + +/* a few forward declarations... */ +struct rule; +struct lemon; +struct action; + +static struct action *Action_new(void); +static struct action *Action_sort(struct action *); + +/********** From the file "build.h" ************************************/ +void FindRulePrecedences(); +void FindFirstSets(); +void FindStates(); +void FindLinks(); +void FindFollowSets(); +void FindActions(); + +/********* From the file "configlist.h" *********************************/ +void Configlist_init(void); +struct config *Configlist_add(struct rule *, int); +struct config *Configlist_addbasis(struct rule *, int); +void Configlist_closure(struct lemon *); +void Configlist_sort(void); +void Configlist_sortbasis(void); +struct config *Configlist_return(void); +struct config *Configlist_basis(void); +void Configlist_eat(struct config *); +void Configlist_reset(void); + +/********* From the file "error.h" ***************************************/ +void ErrorMsg(const char *, int,const char *, ...); + +/****** From the file "option.h" ******************************************/ +enum option_type { OPT_FLAG=1, OPT_INT, OPT_DBL, OPT_STR, + OPT_FFLAG, OPT_FINT, OPT_FDBL, OPT_FSTR}; +struct s_options { + enum option_type type; + const char *label; + char *arg; + const char *message; +}; +int OptInit(char**,struct s_options*,FILE*); +int OptNArgs(void); +char *OptArg(int); +void OptErr(int); +void OptPrint(void); + +/******** From the file "parse.h" *****************************************/ +void Parse(struct lemon *lemp); + +/********* From the file "plink.h" ***************************************/ +struct plink *Plink_new(void); +void Plink_add(struct plink **, struct config *); +void Plink_copy(struct plink **, struct plink *); +void Plink_delete(struct plink *); + +/********** From the file "report.h" *************************************/ +void Reprint(struct lemon *); +void ReportOutput(struct lemon *); +void ReportTable(struct lemon *, int); +void ReportHeader(struct lemon *); +void CompressTables(struct lemon *); +void ResortStates(struct lemon *); + +/********** From the file "set.h" ****************************************/ +void SetSize(int); /* All sets will be of size N */ +char *SetNew(void); /* A new set for element 0..N */ +void SetFree(char*); /* Deallocate a set */ +int SetAdd(char*,int); /* Add element to a set */ +int SetUnion(char *,char *); /* A <- A U B, thru element N */ +#define SetFind(X,Y) (X[Y]) /* True if Y is in set X */ + +/********** From the file "struct.h" *************************************/ +/* +** Principal data structures for the LEMON parser generator. +*/ + +typedef enum {LEMON_FALSE=0, LEMON_TRUE} Boolean; + +/* Symbols (terminals and nonterminals) of the grammar are stored +** in the following: */ +enum symbol_type { + TERMINAL, + NONTERMINAL, + MULTITERMINAL +}; +enum e_assoc { + LEFT, + RIGHT, + NONE, + UNK +}; +struct symbol { + const char *name; /* Name of the symbol */ + int index; /* Index number for this symbol */ + enum symbol_type type; /* Symbols are all either TERMINALS or NTs */ + struct rule *rule; /* Linked list of rules of this (if an NT) */ + struct symbol *fallback; /* fallback token in case this token doesn't parse */ + int prec; /* Precedence if defined (-1 otherwise) */ + enum e_assoc assoc; /* Associativity if precedence is defined */ + char *firstset; /* First-set for all rules of this symbol */ + Boolean lambda; /* True if NT and can generate an empty string */ + int useCnt; /* Number of times used */ + char *destructor; /* Code which executes whenever this symbol is + ** popped from the stack during error processing */ + int destLineno; /* Line number for start of destructor */ + char *datatype; /* The data type of information held by this + ** object. Only used if type==NONTERMINAL */ + int dtnum; /* The data type number. In the parser, the value + ** stack is a union. The .yy%d element of this + ** union is the correct data type for this object */ + /* The following fields are used by MULTITERMINALs only */ + int nsubsym; /* Number of constituent symbols in the MULTI */ + struct symbol **subsym; /* Array of constituent symbols */ +}; + +/* Each production rule in the grammar is stored in the following +** structure. */ +struct rule { + struct symbol *lhs; /* Left-hand side of the rule */ + const char *lhsalias; /* Alias for the LHS (NULL if none) */ + int lhsStart; /* True if left-hand side is the start symbol */ + int ruleline; /* Line number for the rule */ + int nrhs; /* Number of RHS symbols */ + struct symbol **rhs; /* The RHS symbols */ + const char **rhsalias; /* An alias for each RHS symbol (NULL if none) */ + int line; /* Line number at which code begins */ + const char *code; /* The code executed when this rule is reduced */ + struct symbol *precsym; /* Precedence symbol for this rule */ + int index; /* An index number for this rule */ + Boolean canReduce; /* True if this rule is ever reduced */ + struct rule *nextlhs; /* Next rule with the same LHS */ + struct rule *next; /* Next rule in the global list */ +}; + +/* A configuration is a production rule of the grammar together with +** a mark (dot) showing how much of that rule has been processed so far. +** Configurations also contain a follow-set which is a list of terminal +** symbols which are allowed to immediately follow the end of the rule. +** Every configuration is recorded as an instance of the following: */ +enum cfgstatus { + COMPLETE, + INCOMPLETE +}; +struct config { + struct rule *rp; /* The rule upon which the configuration is based */ + int dot; /* The parse point */ + char *fws; /* Follow-set for this configuration only */ + struct plink *fplp; /* Follow-set forward propagation links */ + struct plink *bplp; /* Follow-set backwards propagation links */ + struct state *stp; /* Pointer to state which contains this */ + enum cfgstatus status; /* used during followset and shift computations */ + struct config *next; /* Next configuration in the state */ + struct config *bp; /* The next basis configuration */ +}; + +enum e_action { + SHIFT, + ACCEPT, + REDUCE, + ERROR, + SSCONFLICT, /* A shift/shift conflict */ + SRCONFLICT, /* Was a reduce, but part of a conflict */ + RRCONFLICT, /* Was a reduce, but part of a conflict */ + SH_RESOLVED, /* Was a shift. Precedence resolved conflict */ + RD_RESOLVED, /* Was reduce. Precedence resolved conflict */ + NOT_USED /* Deleted by compression */ +}; + +/* Every shift or reduce operation is stored as one of the following */ +struct action { + struct symbol *sp; /* The look-ahead symbol */ + enum e_action type; + union { + struct state *stp; /* The new state, if a shift */ + struct rule *rp; /* The rule, if a reduce */ + } x; + struct action *next; /* Next action for this state */ + struct action *collide; /* Next action with the same hash */ +}; + +/* Each state of the generated parser's finite state machine +** is encoded as an instance of the following structure. */ +struct state { + struct config *bp; /* The basis configurations for this state */ + struct config *cfp; /* All configurations in this set */ + int statenum; /* Sequential number for this state */ + struct action *ap; /* Array of actions for this state */ + int nTknAct, nNtAct; /* Number of actions on terminals and nonterminals */ + int iTknOfst, iNtOfst; /* yy_action[] offset for terminals and nonterms */ + int iDflt; /* Default action */ +}; +#define NO_OFFSET (-2147483647) + +/* A followset propagation link indicates that the contents of one +** configuration followset should be propagated to another whenever +** the first changes. */ +struct plink { + struct config *cfp; /* The configuration to which linked */ + struct plink *next; /* The next propagate link */ +}; + +/* The state vector for the entire parser generator is recorded as +** follows. (LEMON uses no global variables and makes little use of +** static variables. Fields in the following structure can be thought +** of as begin global variables in the program.) */ +struct lemon { + struct state **sorted; /* Table of states sorted by state number */ + struct rule *rule; /* List of all rules */ + int nstate; /* Number of states */ + int nrule; /* Number of rules */ + int nsymbol; /* Number of terminal and nonterminal symbols */ + int nterminal; /* Number of terminal symbols */ + struct symbol **symbols; /* Sorted array of pointers to symbols */ + int errorcnt; /* Number of errors */ + struct symbol *errsym; /* The error symbol */ + struct symbol *wildcard; /* Token that matches anything */ + char *name; /* Name of the generated parser */ + char *arg; /* Declaration of the 3th argument to parser */ + char *tokentype; /* Type of terminal symbols in the parser stack */ + char *vartype; /* The default type of non-terminal symbols */ + char *start; /* Name of the start symbol for the grammar */ + char *stacksize; /* Size of the parser stack */ + char *include; /* Code to put at the start of the C file */ + char *error; /* Code to execute when an error is seen */ + char *overflow; /* Code to execute on a stack overflow */ + char *failure; /* Code to execute on parser failure */ + char *accept; /* Code to execute when the parser excepts */ + char *extracode; /* Code appended to the generated file */ + char *tokendest; /* Code to execute to destroy token data */ + char *vardest; /* Code for the default non-terminal destructor */ + char *filename; /* Name of the input file */ + char *outname; /* Name of the current output file */ + char *tokenprefix; /* A prefix added to token names in the .h file */ + int nconflict; /* Number of parsing conflicts */ + int tablesize; /* Size of the parse tables */ + int basisflag; /* Print only basis configurations */ + int has_fallback; /* True if any %fallback is seen in the grammar */ + int nolinenosflag; /* True if #line statements should not be printed */ + char *argv0; /* Name of the program */ +}; + +#define MemoryCheck(X) if((X)==0){ \ + extern void memory_error(); \ + memory_error(); \ +} + +/**************** From the file "table.h" *********************************/ +/* +** All code in this file has been automatically generated +** from a specification in the file +** "table.q" +** by the associative array code building program "aagen". +** Do not edit this file! Instead, edit the specification +** file, then rerun aagen. +*/ +/* +** Code for processing tables in the LEMON parser generator. +*/ +/* Routines for handling a strings */ + +const char *Strsafe(const char *); + +void Strsafe_init(void); +int Strsafe_insert(const char *); +const char *Strsafe_find(const char *); + +/* Routines for handling symbols of the grammar */ + +struct symbol *Symbol_new(const char *); +int Symbolcmpp(const void *, const void *); +void Symbol_init(void); +int Symbol_insert(struct symbol *, const char *); +struct symbol *Symbol_find(const char *); +struct symbol *Symbol_Nth(int); +int Symbol_count(void); +struct symbol **Symbol_arrayof(void); + +/* Routines to manage the state table */ + +int Configcmp(const char *, const char *); +struct state *State_new(void); +void State_init(void); +int State_insert(struct state *, struct config *); +struct state *State_find(struct config *); +struct state **State_arrayof(/* */); + +/* Routines used for efficiency in Configlist_add */ + +void Configtable_init(void); +int Configtable_insert(struct config *); +struct config *Configtable_find(struct config *); +void Configtable_clear(int(*)(struct config *)); + +/****************** From the file "action.c" *******************************/ +/* +** Routines processing parser actions in the LEMON parser generator. +*/ + +/* Allocate a new parser action */ +static struct action *Action_new(void){ + static struct action *freelist = 0; + struct action *newaction; + + if( freelist==0 ){ + int i; + int amt = 100; + freelist = (struct action *)calloc(amt, sizeof(struct action)); + if( freelist==0 ){ + fprintf(stderr,"Unable to allocate memory for a new parser action."); + exit(1); + } + for(i=0; inext; + return newaction; +} + +/* Compare two actions for sorting purposes. Return negative, zero, or +** positive if the first action is less than, equal to, or greater than +** the first +*/ +static int actioncmp( + struct action *ap1, + struct action *ap2 +){ + int rc; + rc = ap1->sp->index - ap2->sp->index; + if( rc==0 ){ + rc = (int)ap1->type - (int)ap2->type; + } + if( rc==0 && ap1->type==REDUCE ){ + rc = ap1->x.rp->index - ap2->x.rp->index; + } + if( rc==0 ){ + rc = (int) (ap2 - ap1); + } + return rc; +} + +/* Sort parser actions */ +static struct action *Action_sort( + struct action *ap +){ + ap = (struct action *)msort((char *)ap,(char **)&ap->next, + (int(*)(const char*,const char*))actioncmp); + return ap; +} + +void Action_add( + struct action **app, + enum e_action type, + struct symbol *sp, + char *arg +){ + struct action *newaction; + newaction = Action_new(); + newaction->next = *app; + *app = newaction; + newaction->type = type; + newaction->sp = sp; + if( type==SHIFT ){ + newaction->x.stp = (struct state *)arg; + }else{ + newaction->x.rp = (struct rule *)arg; + } +} +/********************** New code to implement the "acttab" module ***********/ +/* +** This module implements routines use to construct the yy_action[] table. +*/ + +/* +** The state of the yy_action table under construction is an instance of +** the following structure. +** +** The yy_action table maps the pair (state_number, lookahead) into an +** action_number. The table is an array of integers pairs. The state_number +** determines an initial offset into the yy_action array. The lookahead +** value is then added to this initial offset to get an index X into the +** yy_action array. If the aAction[X].lookahead equals the value of the +** of the lookahead input, then the value of the action_number output is +** aAction[X].action. If the lookaheads do not match then the +** default action for the state_number is returned. +** +** All actions associated with a single state_number are first entered +** into aLookahead[] using multiple calls to acttab_action(). Then the +** actions for that single state_number are placed into the aAction[] +** array with a single call to acttab_insert(). The acttab_insert() call +** also resets the aLookahead[] array in preparation for the next +** state number. +*/ +struct lookahead_action { + int lookahead; /* Value of the lookahead token */ + int action; /* Action to take on the given lookahead */ +}; +typedef struct acttab acttab; +struct acttab { + int nAction; /* Number of used slots in aAction[] */ + int nActionAlloc; /* Slots allocated for aAction[] */ + struct lookahead_action + *aAction, /* The yy_action[] table under construction */ + *aLookahead; /* A single new transaction set */ + int mnLookahead; /* Minimum aLookahead[].lookahead */ + int mnAction; /* Action associated with mnLookahead */ + int mxLookahead; /* Maximum aLookahead[].lookahead */ + int nLookahead; /* Used slots in aLookahead[] */ + int nLookaheadAlloc; /* Slots allocated in aLookahead[] */ +}; + +/* Return the number of entries in the yy_action table */ +#define acttab_size(X) ((X)->nAction) + +/* The value for the N-th entry in yy_action */ +#define acttab_yyaction(X,N) ((X)->aAction[N].action) + +/* The value for the N-th entry in yy_lookahead */ +#define acttab_yylookahead(X,N) ((X)->aAction[N].lookahead) + +/* Free all memory associated with the given acttab */ +void acttab_free(acttab *p){ + free( p->aAction ); + free( p->aLookahead ); + free( p ); +} + +/* Allocate a new acttab structure */ +acttab *acttab_alloc(void){ + acttab *p = (acttab *) calloc( 1, sizeof(*p) ); + if( p==0 ){ + fprintf(stderr,"Unable to allocate memory for a new acttab."); + exit(1); + } + memset(p, 0, sizeof(*p)); + return p; +} + +/* Add a new action to the current transaction set. +** +** This routine is called once for each lookahead for a particular +** state. +*/ +void acttab_action(acttab *p, int lookahead, int action){ + if( p->nLookahead>=p->nLookaheadAlloc ){ + p->nLookaheadAlloc += 25; + p->aLookahead = (struct lookahead_action *) realloc( p->aLookahead, + sizeof(p->aLookahead[0])*p->nLookaheadAlloc ); + if( p->aLookahead==0 ){ + fprintf(stderr,"malloc failed\n"); + exit(1); + } + } + if( p->nLookahead==0 ){ + p->mxLookahead = lookahead; + p->mnLookahead = lookahead; + p->mnAction = action; + }else{ + if( p->mxLookaheadmxLookahead = lookahead; + if( p->mnLookahead>lookahead ){ + p->mnLookahead = lookahead; + p->mnAction = action; + } + } + p->aLookahead[p->nLookahead].lookahead = lookahead; + p->aLookahead[p->nLookahead].action = action; + p->nLookahead++; +} + +/* +** Add the transaction set built up with prior calls to acttab_action() +** into the current action table. Then reset the transaction set back +** to an empty set in preparation for a new round of acttab_action() calls. +** +** Return the offset into the action table of the new transaction. +*/ +int acttab_insert(acttab *p){ + int i, j, k, n; + assert( p->nLookahead>0 ); + + /* Make sure we have enough space to hold the expanded action table + ** in the worst case. The worst case occurs if the transaction set + ** must be appended to the current action table + */ + n = p->mxLookahead + 1; + if( p->nAction + n >= p->nActionAlloc ){ + int oldAlloc = p->nActionAlloc; + p->nActionAlloc = p->nAction + n + p->nActionAlloc + 20; + p->aAction = (struct lookahead_action *) realloc( p->aAction, + sizeof(p->aAction[0])*p->nActionAlloc); + if( p->aAction==0 ){ + fprintf(stderr,"malloc failed\n"); + exit(1); + } + for(i=oldAlloc; inActionAlloc; i++){ + p->aAction[i].lookahead = -1; + p->aAction[i].action = -1; + } + } + + /* Scan the existing action table looking for an offset that is a + ** duplicate of the current transaction set. Fall out of the loop + ** if and when the duplicate is found. + ** + ** i is the index in p->aAction[] where p->mnLookahead is inserted. + */ + for(i=p->nAction-1; i>=0; i--){ + if( p->aAction[i].lookahead==p->mnLookahead ){ + /* All lookaheads and actions in the aLookahead[] transaction + ** must match against the candidate aAction[i] entry. */ + if( p->aAction[i].action!=p->mnAction ) continue; + for(j=0; jnLookahead; j++){ + k = p->aLookahead[j].lookahead - p->mnLookahead + i; + if( k<0 || k>=p->nAction ) break; + if( p->aLookahead[j].lookahead!=p->aAction[k].lookahead ) break; + if( p->aLookahead[j].action!=p->aAction[k].action ) break; + } + if( jnLookahead ) continue; + + /* No possible lookahead value that is not in the aLookahead[] + ** transaction is allowed to match aAction[i] */ + n = 0; + for(j=0; jnAction; j++){ + if( p->aAction[j].lookahead<0 ) continue; + if( p->aAction[j].lookahead==j+p->mnLookahead-i ) n++; + } + if( n==p->nLookahead ){ + break; /* An exact match is found at offset i */ + } + } + } + + /* If no existing offsets exactly match the current transaction, find an + ** an empty offset in the aAction[] table in which we can add the + ** aLookahead[] transaction. + */ + if( i<0 ){ + /* Look for holes in the aAction[] table that fit the current + ** aLookahead[] transaction. Leave i set to the offset of the hole. + ** If no holes are found, i is left at p->nAction, which means the + ** transaction will be appended. */ + for(i=0; inActionAlloc - p->mxLookahead; i++){ + if( p->aAction[i].lookahead<0 ){ + for(j=0; jnLookahead; j++){ + k = p->aLookahead[j].lookahead - p->mnLookahead + i; + if( k<0 ) break; + if( p->aAction[k].lookahead>=0 ) break; + } + if( jnLookahead ) continue; + for(j=0; jnAction; j++){ + if( p->aAction[j].lookahead==j+p->mnLookahead-i ) break; + } + if( j==p->nAction ){ + break; /* Fits in empty slots */ + } + } + } + } + /* Insert transaction set at index i. */ + for(j=0; jnLookahead; j++){ + k = p->aLookahead[j].lookahead - p->mnLookahead + i; + p->aAction[k] = p->aLookahead[j]; + if( k>=p->nAction ) p->nAction = k+1; + } + p->nLookahead = 0; + + /* Return the offset that is added to the lookahead in order to get the + ** index into yy_action of the action */ + return i - p->mnLookahead; +} + +/********************** From the file "build.c" *****************************/ +/* +** Routines to construction the finite state machine for the LEMON +** parser generator. +*/ + +/* Find a precedence symbol of every rule in the grammar. +** +** Those rules which have a precedence symbol coded in the input +** grammar using the "[symbol]" construct will already have the +** rp->precsym field filled. Other rules take as their precedence +** symbol the first RHS symbol with a defined precedence. If there +** are not RHS symbols with a defined precedence, the precedence +** symbol field is left blank. +*/ +void FindRulePrecedences(struct lemon *xp) +{ + struct rule *rp; + for(rp=xp->rule; rp; rp=rp->next){ + if( rp->precsym==0 ){ + int i, j; + for(i=0; inrhs && rp->precsym==0; i++){ + struct symbol *sp = rp->rhs[i]; + if( sp->type==MULTITERMINAL ){ + for(j=0; jnsubsym; j++){ + if( sp->subsym[j]->prec>=0 ){ + rp->precsym = sp->subsym[j]; + break; + } + } + }else if( sp->prec>=0 ){ + rp->precsym = rp->rhs[i]; + } + } + } + } + return; +} + +/* Find all nonterminals which will generate the empty string. +** Then go back and compute the first sets of every nonterminal. +** The first set is the set of all terminal symbols which can begin +** a string generated by that nonterminal. +*/ +void FindFirstSets(struct lemon *lemp) +{ + int i, j; + struct rule *rp; + int progress; + + for(i=0; insymbol; i++){ + lemp->symbols[i]->lambda = LEMON_FALSE; + } + for(i=lemp->nterminal; insymbol; i++){ + lemp->symbols[i]->firstset = SetNew(); + } + + /* First compute all lambdas */ + do{ + progress = 0; + for(rp=lemp->rule; rp; rp=rp->next){ + if( rp->lhs->lambda ) continue; + for(i=0; inrhs; i++){ + struct symbol *sp = rp->rhs[i]; + assert( sp->type==NONTERMINAL || sp->lambda==LEMON_FALSE ); + if( sp->lambda==LEMON_FALSE ) break; + } + if( i==rp->nrhs ){ + rp->lhs->lambda = LEMON_TRUE; + progress = 1; + } + } + }while( progress ); + + /* Now compute all first sets */ + do{ + struct symbol *s1, *s2; + progress = 0; + for(rp=lemp->rule; rp; rp=rp->next){ + s1 = rp->lhs; + for(i=0; inrhs; i++){ + s2 = rp->rhs[i]; + if( s2->type==TERMINAL ){ + progress += SetAdd(s1->firstset,s2->index); + break; + }else if( s2->type==MULTITERMINAL ){ + for(j=0; jnsubsym; j++){ + progress += SetAdd(s1->firstset,s2->subsym[j]->index); + } + break; + }else if( s1==s2 ){ + if( s1->lambda==LEMON_FALSE ) break; + }else{ + progress += SetUnion(s1->firstset,s2->firstset); + if( s2->lambda==LEMON_FALSE ) break; + } + } + } + }while( progress ); + return; +} + +/* Compute all LR(0) states for the grammar. Links +** are added to between some states so that the LR(1) follow sets +** can be computed later. +*/ +PRIVATE struct state *getstate(struct lemon *); /* forward reference */ +void FindStates(struct lemon *lemp) +{ + struct symbol *sp; + struct rule *rp; + + Configlist_init(); + + /* Find the start symbol */ + if( lemp->start ){ + sp = Symbol_find(lemp->start); + if( sp==0 ){ + ErrorMsg(lemp->filename,0, +"The specified start symbol \"%s\" is not \ +in a nonterminal of the grammar. \"%s\" will be used as the start \ +symbol instead.",lemp->start,lemp->rule->lhs->name); + lemp->errorcnt++; + sp = lemp->rule->lhs; + } + }else{ + sp = lemp->rule->lhs; + } + + /* Make sure the start symbol doesn't occur on the right-hand side of + ** any rule. Report an error if it does. (YACC would generate a new + ** start symbol in this case.) */ + for(rp=lemp->rule; rp; rp=rp->next){ + int i; + for(i=0; inrhs; i++){ + if( rp->rhs[i]==sp ){ /* FIX ME: Deal with multiterminals */ + ErrorMsg(lemp->filename,0, +"The start symbol \"%s\" occurs on the \ +right-hand side of a rule. This will result in a parser which \ +does not work properly.",sp->name); + lemp->errorcnt++; + } + } + } + + /* The basis configuration set for the first state + ** is all rules which have the start symbol as their + ** left-hand side */ + for(rp=sp->rule; rp; rp=rp->nextlhs){ + struct config *newcfp; + rp->lhsStart = 1; + newcfp = Configlist_addbasis(rp,0); + SetAdd(newcfp->fws,0); + } + + /* Compute the first state. All other states will be + ** computed automatically during the computation of the first one. + ** The returned pointer to the first state is not used. */ + (void)getstate(lemp); + return; +} + +/* Return a pointer to a state which is described by the configuration +** list which has been built from calls to Configlist_add. +*/ +PRIVATE void buildshifts(struct lemon *, struct state *); /* Forwd ref */ +PRIVATE struct state *getstate(struct lemon *lemp) +{ + struct config *cfp, *bp; + struct state *stp; + + /* Extract the sorted basis of the new state. The basis was constructed + ** by prior calls to "Configlist_addbasis()". */ + Configlist_sortbasis(); + bp = Configlist_basis(); + + /* Get a state with the same basis */ + stp = State_find(bp); + if( stp ){ + /* A state with the same basis already exists! Copy all the follow-set + ** propagation links from the state under construction into the + ** preexisting state, then return a pointer to the preexisting state */ + struct config *x, *y; + for(x=bp, y=stp->bp; x && y; x=x->bp, y=y->bp){ + Plink_copy(&y->bplp,x->bplp); + Plink_delete(x->fplp); + x->fplp = x->bplp = 0; + } + cfp = Configlist_return(); + Configlist_eat(cfp); + }else{ + /* This really is a new state. Construct all the details */ + Configlist_closure(lemp); /* Compute the configuration closure */ + Configlist_sort(); /* Sort the configuration closure */ + cfp = Configlist_return(); /* Get a pointer to the config list */ + stp = State_new(); /* A new state structure */ + MemoryCheck(stp); + stp->bp = bp; /* Remember the configuration basis */ + stp->cfp = cfp; /* Remember the configuration closure */ + stp->statenum = lemp->nstate++; /* Every state gets a sequence number */ + stp->ap = 0; /* No actions, yet. */ + State_insert(stp,stp->bp); /* Add to the state table */ + buildshifts(lemp,stp); /* Recursively compute successor states */ + } + return stp; +} + +/* +** Return true if two symbols are the same. +*/ +int same_symbol(struct symbol *a, struct symbol *b) +{ + int i; + if( a==b ) return 1; + if( a->type!=MULTITERMINAL ) return 0; + if( b->type!=MULTITERMINAL ) return 0; + if( a->nsubsym!=b->nsubsym ) return 0; + for(i=0; insubsym; i++){ + if( a->subsym[i]!=b->subsym[i] ) return 0; + } + return 1; +} + +/* Construct all successor states to the given state. A "successor" +** state is any state which can be reached by a shift action. +*/ +PRIVATE void buildshifts(struct lemon *lemp, struct state *stp) +{ + struct config *cfp; /* For looping thru the config closure of "stp" */ + struct config *bcfp; /* For the inner loop on config closure of "stp" */ + struct config *newcfg; /* */ + struct symbol *sp; /* Symbol following the dot in configuration "cfp" */ + struct symbol *bsp; /* Symbol following the dot in configuration "bcfp" */ + struct state *newstp; /* A pointer to a successor state */ + + /* Each configuration becomes complete after it contibutes to a successor + ** state. Initially, all configurations are incomplete */ + for(cfp=stp->cfp; cfp; cfp=cfp->next) cfp->status = INCOMPLETE; + + /* Loop through all configurations of the state "stp" */ + for(cfp=stp->cfp; cfp; cfp=cfp->next){ + if( cfp->status==COMPLETE ) continue; /* Already used by inner loop */ + if( cfp->dot>=cfp->rp->nrhs ) continue; /* Can't shift this config */ + Configlist_reset(); /* Reset the new config set */ + sp = cfp->rp->rhs[cfp->dot]; /* Symbol after the dot */ + + /* For every configuration in the state "stp" which has the symbol "sp" + ** following its dot, add the same configuration to the basis set under + ** construction but with the dot shifted one symbol to the right. */ + for(bcfp=cfp; bcfp; bcfp=bcfp->next){ + if( bcfp->status==COMPLETE ) continue; /* Already used */ + if( bcfp->dot>=bcfp->rp->nrhs ) continue; /* Can't shift this one */ + bsp = bcfp->rp->rhs[bcfp->dot]; /* Get symbol after dot */ + if( !same_symbol(bsp,sp) ) continue; /* Must be same as for "cfp" */ + bcfp->status = COMPLETE; /* Mark this config as used */ + newcfg = Configlist_addbasis(bcfp->rp,bcfp->dot+1); + Plink_add(&newcfg->bplp,bcfp); + } + + /* Get a pointer to the state described by the basis configuration set + ** constructed in the preceding loop */ + newstp = getstate(lemp); + + /* The state "newstp" is reached from the state "stp" by a shift action + ** on the symbol "sp" */ + if( sp->type==MULTITERMINAL ){ + int i; + for(i=0; insubsym; i++){ + Action_add(&stp->ap,SHIFT,sp->subsym[i],(char*)newstp); + } + }else{ + Action_add(&stp->ap,SHIFT,sp,(char *)newstp); + } + } +} + +/* +** Construct the propagation links +*/ +void FindLinks(struct lemon *lemp) +{ + int i; + struct config *cfp, *other; + struct state *stp; + struct plink *plp; + + /* Housekeeping detail: + ** Add to every propagate link a pointer back to the state to + ** which the link is attached. */ + for(i=0; instate; i++){ + stp = lemp->sorted[i]; + for(cfp=stp->cfp; cfp; cfp=cfp->next){ + cfp->stp = stp; + } + } + + /* Convert all backlinks into forward links. Only the forward + ** links are used in the follow-set computation. */ + for(i=0; instate; i++){ + stp = lemp->sorted[i]; + for(cfp=stp->cfp; cfp; cfp=cfp->next){ + for(plp=cfp->bplp; plp; plp=plp->next){ + other = plp->cfp; + Plink_add(&other->fplp,cfp); + } + } + } +} + +/* Compute all followsets. +** +** A followset is the set of all symbols which can come immediately +** after a configuration. +*/ +void FindFollowSets(struct lemon *lemp) +{ + int i; + struct config *cfp; + struct plink *plp; + int progress; + int change; + + for(i=0; instate; i++){ + for(cfp=lemp->sorted[i]->cfp; cfp; cfp=cfp->next){ + cfp->status = INCOMPLETE; + } + } + + do{ + progress = 0; + for(i=0; instate; i++){ + for(cfp=lemp->sorted[i]->cfp; cfp; cfp=cfp->next){ + if( cfp->status==COMPLETE ) continue; + for(plp=cfp->fplp; plp; plp=plp->next){ + change = SetUnion(plp->cfp->fws,cfp->fws); + if( change ){ + plp->cfp->status = INCOMPLETE; + progress = 1; + } + } + cfp->status = COMPLETE; + } + } + }while( progress ); +} + +static int resolve_conflict(struct action *,struct action *); + +/* Compute the reduce actions, and resolve conflicts. +*/ +void FindActions(struct lemon *lemp) +{ + int i,j; + struct config *cfp; + struct state *stp; + struct symbol *sp; + struct rule *rp; + + /* Add all of the reduce actions + ** A reduce action is added for each element of the followset of + ** a configuration which has its dot at the extreme right. + */ + for(i=0; instate; i++){ /* Loop over all states */ + stp = lemp->sorted[i]; + for(cfp=stp->cfp; cfp; cfp=cfp->next){ /* Loop over all configurations */ + if( cfp->rp->nrhs==cfp->dot ){ /* Is dot at extreme right? */ + for(j=0; jnterminal; j++){ + if( SetFind(cfp->fws,j) ){ + /* Add a reduce action to the state "stp" which will reduce by the + ** rule "cfp->rp" if the lookahead symbol is "lemp->symbols[j]" */ + Action_add(&stp->ap,REDUCE,lemp->symbols[j],(char *)cfp->rp); + } + } + } + } + } + + /* Add the accepting token */ + if( lemp->start ){ + sp = Symbol_find(lemp->start); + if( sp==0 ) sp = lemp->rule->lhs; + }else{ + sp = lemp->rule->lhs; + } + /* Add to the first state (which is always the starting state of the + ** finite state machine) an action to ACCEPT if the lookahead is the + ** start nonterminal. */ + Action_add(&lemp->sorted[0]->ap,ACCEPT,sp,0); + + /* Resolve conflicts */ + for(i=0; instate; i++){ + struct action *ap, *nap; + struct state *stp; + stp = lemp->sorted[i]; + /* assert( stp->ap ); */ + stp->ap = Action_sort(stp->ap); + for(ap=stp->ap; ap && ap->next; ap=ap->next){ + for(nap=ap->next; nap && nap->sp==ap->sp; nap=nap->next){ + /* The two actions "ap" and "nap" have the same lookahead. + ** Figure out which one should be used */ + lemp->nconflict += resolve_conflict(ap,nap); + } + } + } + + /* Report an error for each rule that can never be reduced. */ + for(rp=lemp->rule; rp; rp=rp->next) rp->canReduce = LEMON_FALSE; + for(i=0; instate; i++){ + struct action *ap; + for(ap=lemp->sorted[i]->ap; ap; ap=ap->next){ + if( ap->type==REDUCE ) ap->x.rp->canReduce = LEMON_TRUE; + } + } + for(rp=lemp->rule; rp; rp=rp->next){ + if( rp->canReduce ) continue; + ErrorMsg(lemp->filename,rp->ruleline,"This rule can not be reduced.\n"); + lemp->errorcnt++; + } +} + +/* Resolve a conflict between the two given actions. If the +** conflict can't be resolved, return non-zero. +** +** NO LONGER TRUE: +** To resolve a conflict, first look to see if either action +** is on an error rule. In that case, take the action which +** is not associated with the error rule. If neither or both +** actions are associated with an error rule, then try to +** use precedence to resolve the conflict. +** +** If either action is a SHIFT, then it must be apx. This +** function won't work if apx->type==REDUCE and apy->type==SHIFT. +*/ +static int resolve_conflict( + struct action *apx, + struct action *apy +){ + struct symbol *spx, *spy; + int errcnt = 0; + assert( apx->sp==apy->sp ); /* Otherwise there would be no conflict */ + if( apx->type==SHIFT && apy->type==SHIFT ){ + apy->type = SSCONFLICT; + errcnt++; + } + if( apx->type==SHIFT && apy->type==REDUCE ){ + spx = apx->sp; + spy = apy->x.rp->precsym; + if( spy==0 || spx->prec<0 || spy->prec<0 ){ + /* Not enough precedence information. */ + apy->type = SRCONFLICT; + errcnt++; + }else if( spx->prec>spy->prec ){ /* higher precedence wins */ + apy->type = RD_RESOLVED; + }else if( spx->precprec ){ + apx->type = SH_RESOLVED; + }else if( spx->prec==spy->prec && spx->assoc==RIGHT ){ /* Use operator */ + apy->type = RD_RESOLVED; /* associativity */ + }else if( spx->prec==spy->prec && spx->assoc==LEFT ){ /* to break tie */ + apx->type = SH_RESOLVED; + }else{ + assert( spx->prec==spy->prec && spx->assoc==NONE ); + apx->type = ERROR; + } + }else if( apx->type==REDUCE && apy->type==REDUCE ){ + spx = apx->x.rp->precsym; + spy = apy->x.rp->precsym; + if( spx==0 || spy==0 || spx->prec<0 || + spy->prec<0 || spx->prec==spy->prec ){ + apy->type = RRCONFLICT; + errcnt++; + }else if( spx->prec>spy->prec ){ + apy->type = RD_RESOLVED; + }else if( spx->precprec ){ + apx->type = RD_RESOLVED; + } + }else{ + assert( + apx->type==SH_RESOLVED || + apx->type==RD_RESOLVED || + apx->type==SSCONFLICT || + apx->type==SRCONFLICT || + apx->type==RRCONFLICT || + apy->type==SH_RESOLVED || + apy->type==RD_RESOLVED || + apy->type==SSCONFLICT || + apy->type==SRCONFLICT || + apy->type==RRCONFLICT + ); + /* The REDUCE/SHIFT case cannot happen because SHIFTs come before + ** REDUCEs on the list. If we reach this point it must be because + ** the parser conflict had already been resolved. */ + } + return errcnt; +} +/********************* From the file "configlist.c" *************************/ +/* +** Routines to processing a configuration list and building a state +** in the LEMON parser generator. +*/ + +static struct config *freelist = 0; /* List of free configurations */ +static struct config *current = 0; /* Top of list of configurations */ +static struct config **currentend = 0; /* Last on list of configs */ +static struct config *basis = 0; /* Top of list of basis configs */ +static struct config **basisend = 0; /* End of list of basis configs */ + +/* Return a pointer to a new configuration */ +PRIVATE struct config *newconfig(){ + struct config *newcfg; + if( freelist==0 ){ + int i; + int amt = 3; + freelist = (struct config *)calloc( amt, sizeof(struct config) ); + if( freelist==0 ){ + fprintf(stderr,"Unable to allocate memory for a new configuration."); + exit(1); + } + for(i=0; inext; + return newcfg; +} + +/* The configuration "old" is no longer used */ +PRIVATE void deleteconfig(struct config *old) +{ + old->next = freelist; + freelist = old; +} + +/* Initialized the configuration list builder */ +void Configlist_init(){ + current = 0; + currentend = ¤t; + basis = 0; + basisend = &basis; + Configtable_init(); + return; +} + +/* Initialized the configuration list builder */ +void Configlist_reset(){ + current = 0; + currentend = ¤t; + basis = 0; + basisend = &basis; + Configtable_clear(0); + return; +} + +/* Add another configuration to the configuration list */ +struct config *Configlist_add( + struct rule *rp, /* The rule */ + int dot /* Index into the RHS of the rule where the dot goes */ +){ + struct config *cfp, model; + + assert( currentend!=0 ); + model.rp = rp; + model.dot = dot; + cfp = Configtable_find(&model); + if( cfp==0 ){ + cfp = newconfig(); + cfp->rp = rp; + cfp->dot = dot; + cfp->fws = SetNew(); + cfp->stp = 0; + cfp->fplp = cfp->bplp = 0; + cfp->next = 0; + cfp->bp = 0; + *currentend = cfp; + currentend = &cfp->next; + Configtable_insert(cfp); + } + return cfp; +} + +/* Add a basis configuration to the configuration list */ +struct config *Configlist_addbasis(struct rule *rp, int dot) +{ + struct config *cfp, model; + + assert( basisend!=0 ); + assert( currentend!=0 ); + model.rp = rp; + model.dot = dot; + cfp = Configtable_find(&model); + if( cfp==0 ){ + cfp = newconfig(); + cfp->rp = rp; + cfp->dot = dot; + cfp->fws = SetNew(); + cfp->stp = 0; + cfp->fplp = cfp->bplp = 0; + cfp->next = 0; + cfp->bp = 0; + *currentend = cfp; + currentend = &cfp->next; + *basisend = cfp; + basisend = &cfp->bp; + Configtable_insert(cfp); + } + return cfp; +} + +/* Compute the closure of the configuration list */ +void Configlist_closure(struct lemon *lemp) +{ + struct config *cfp, *newcfp; + struct rule *rp, *newrp; + struct symbol *sp, *xsp; + int i, dot; + + assert( currentend!=0 ); + for(cfp=current; cfp; cfp=cfp->next){ + rp = cfp->rp; + dot = cfp->dot; + if( dot>=rp->nrhs ) continue; + sp = rp->rhs[dot]; + if( sp->type==NONTERMINAL ){ + if( sp->rule==0 && sp!=lemp->errsym ){ + ErrorMsg(lemp->filename,rp->line,"Nonterminal \"%s\" has no rules.", + sp->name); + lemp->errorcnt++; + } + for(newrp=sp->rule; newrp; newrp=newrp->nextlhs){ + newcfp = Configlist_add(newrp,0); + for(i=dot+1; inrhs; i++){ + xsp = rp->rhs[i]; + if( xsp->type==TERMINAL ){ + SetAdd(newcfp->fws,xsp->index); + break; + }else if( xsp->type==MULTITERMINAL ){ + int k; + for(k=0; knsubsym; k++){ + SetAdd(newcfp->fws, xsp->subsym[k]->index); + } + break; + }else{ + SetUnion(newcfp->fws,xsp->firstset); + if( xsp->lambda==LEMON_FALSE ) break; + } + } + if( i==rp->nrhs ) Plink_add(&cfp->fplp,newcfp); + } + } + } + return; +} + +/* Sort the configuration list */ +void Configlist_sort(){ + current = (struct config *)msort((char *)current,(char **)&(current->next),Configcmp); + currentend = 0; + return; +} + +/* Sort the basis configuration list */ +void Configlist_sortbasis(){ + basis = (struct config *)msort((char *)current,(char **)&(current->bp),Configcmp); + basisend = 0; + return; +} + +/* Return a pointer to the head of the configuration list and +** reset the list */ +struct config *Configlist_return(){ + struct config *old; + old = current; + current = 0; + currentend = 0; + return old; +} + +/* Return a pointer to the head of the configuration list and +** reset the list */ +struct config *Configlist_basis(){ + struct config *old; + old = basis; + basis = 0; + basisend = 0; + return old; +} + +/* Free all elements of the given configuration list */ +void Configlist_eat(struct config *cfp) +{ + struct config *nextcfp; + for(; cfp; cfp=nextcfp){ + nextcfp = cfp->next; + assert( cfp->fplp==0 ); + assert( cfp->bplp==0 ); + if( cfp->fws ) SetFree(cfp->fws); + deleteconfig(cfp); + } + return; +} +/***************** From the file "error.c" *********************************/ +/* +** Code for printing error message. +*/ + +void ErrorMsg(const char *filename, int lineno, const char *format, ...){ + va_list ap; + fprintf(stderr, "%s:%d: ", filename, lineno); + va_start(ap, format); + vfprintf(stderr,format,ap); + va_end(ap); + fprintf(stderr, "\n"); +} +/**************** From the file "main.c" ************************************/ +/* +** Main program file for the LEMON parser generator. +*/ + +/* Report an out-of-memory condition and abort. This function +** is used mostly by the "MemoryCheck" macro in struct.h +*/ +void memory_error(){ + fprintf(stderr,"Out of memory. Aborting...\n"); + exit(1); +} + +static int nDefine = 0; /* Number of -D options on the command line */ +static char **azDefine = 0; /* Name of the -D macros */ + +/* This routine is called with the argument to each -D command-line option. +** Add the macro defined to the azDefine array. +*/ +static void handle_D_option(char *z){ + char **paz; + nDefine++; + azDefine = (char **) realloc(azDefine, sizeof(azDefine[0])*nDefine); + if( azDefine==0 ){ + fprintf(stderr,"out of memory\n"); + exit(1); + } + paz = &azDefine[nDefine-1]; + *paz = (char *) malloc( lemonStrlen(z)+1 ); + if( *paz==0 ){ + fprintf(stderr,"out of memory\n"); + exit(1); + } + lemon_strcpy(*paz, z); + for(z=*paz; *z && *z!='='; z++){} + *z = 0; +} + +static char *user_templatename = NULL; +static void handle_T_option(char *z){ + user_templatename = (char *) malloc( lemonStrlen(z)+1 ); + if( user_templatename==0 ){ + memory_error(); + } + lemon_strcpy(user_templatename, z); +} + +/* The main program. Parse the command line and do it... */ +int main(int argc, char **argv) +{ + static int version = 0; + static int rpflag = 0; + static int basisflag = 0; + static int compress = 0; + static int quiet = 0; + static int statistics = 0; + static int mhflag = 0; + static int nolinenosflag = 0; + static int noResort = 0; + static struct s_options options[] = { + {OPT_FLAG, "b", (char*)&basisflag, "Print only the basis in report."}, + {OPT_FLAG, "c", (char*)&compress, "Don't compress the action table."}, + {OPT_FSTR, "D", (char*)handle_D_option, "Define an %ifdef macro."}, + {OPT_FSTR, "T", (char*)handle_T_option, "Specify a template file."}, + {OPT_FLAG, "g", (char*)&rpflag, "Print grammar without actions."}, + {OPT_FLAG, "m", (char*)&mhflag, "Output a makeheaders compatible file."}, + {OPT_FLAG, "l", (char*)&nolinenosflag, "Do not print #line statements."}, + {OPT_FLAG, "p", (char*)&showPrecedenceConflict, + "Show conflicts resolved by precedence rules"}, + {OPT_FLAG, "q", (char*)&quiet, "(Quiet) Don't print the report file."}, + {OPT_FLAG, "r", (char*)&noResort, "Do not sort or renumber states"}, + {OPT_FLAG, "s", (char*)&statistics, + "Print parser stats to standard output."}, + {OPT_FLAG, "x", (char*)&version, "Print the version number."}, + {OPT_FLAG,0,0,0} + }; + int i; + int exitcode; + struct lemon lem; + + OptInit(argv,options,stderr); + if( version ){ + printf("Lemon version 1.0\n"); + exit(0); + } + if( OptNArgs()!=1 ){ + fprintf(stderr,"Exactly one filename argument is required.\n"); + exit(1); + } + memset(&lem, 0, sizeof(lem)); + lem.errorcnt = 0; + + /* Initialize the machine */ + Strsafe_init(); + Symbol_init(); + State_init(); + lem.argv0 = argv[0]; + lem.filename = OptArg(0); + lem.basisflag = basisflag; + lem.nolinenosflag = nolinenosflag; + Symbol_new("$"); + lem.errsym = Symbol_new("error"); + lem.errsym->useCnt = 0; + + /* Parse the input file */ + Parse(&lem); + if( lem.errorcnt ) exit(lem.errorcnt); + if( lem.nrule==0 ){ + fprintf(stderr,"Empty grammar.\n"); + exit(1); + } + + /* Count and index the symbols of the grammar */ + Symbol_new("{default}"); + lem.nsymbol = Symbol_count(); + lem.symbols = Symbol_arrayof(); + for(i=0; iindex = i; + qsort(lem.symbols,lem.nsymbol,sizeof(struct symbol*), Symbolcmpp); + for(i=0; iindex = i; + while( lem.symbols[i-1]->type==MULTITERMINAL ){ i--; } + assert( strcmp(lem.symbols[i-1]->name,"{default}")==0 ); + lem.nsymbol = i - 1; + for(i=1; isupper(lem.symbols[i]->name[0]); i++); + lem.nterminal = i; + + /* Generate a reprint of the grammar, if requested on the command line */ + if( rpflag ){ + Reprint(&lem); + }else{ + /* Initialize the size for all follow and first sets */ + SetSize(lem.nterminal+1); + + /* Find the precedence for every production rule (that has one) */ + FindRulePrecedences(&lem); + + /* Compute the lambda-nonterminals and the first-sets for every + ** nonterminal */ + FindFirstSets(&lem); + + /* Compute all LR(0) states. Also record follow-set propagation + ** links so that the follow-set can be computed later */ + lem.nstate = 0; + FindStates(&lem); + lem.sorted = State_arrayof(); + + /* Tie up loose ends on the propagation links */ + FindLinks(&lem); + + /* Compute the follow set of every reducible configuration */ + FindFollowSets(&lem); + + /* Compute the action tables */ + FindActions(&lem); + + /* Compress the action tables */ + if( compress==0 ) CompressTables(&lem); + + /* Reorder and renumber the states so that states with fewer choices + ** occur at the end. This is an optimization that helps make the + ** generated parser tables smaller. */ + if( noResort==0 ) ResortStates(&lem); + + /* Generate a report of the parser generated. (the "y.output" file) */ + if( !quiet ) ReportOutput(&lem); + + /* Generate the source code for the parser */ + ReportTable(&lem, mhflag); + + /* Produce a header file for use by the scanner. (This step is + ** omitted if the "-m" option is used because makeheaders will + ** generate the file for us.) */ + if( !mhflag ) ReportHeader(&lem); + } + if( statistics ){ + printf("Parser statistics: %d terminals, %d nonterminals, %d rules\n", + lem.nterminal, lem.nsymbol - lem.nterminal, lem.nrule); + printf(" %d states, %d parser table entries, %d conflicts\n", + lem.nstate, lem.tablesize, lem.nconflict); + } + if( lem.nconflict > 0 ){ + fprintf(stderr,"%d parsing conflicts.\n",lem.nconflict); + } + + /* return 0 on success, 1 on failure. */ + exitcode = ((lem.errorcnt > 0) || (lem.nconflict > 0)) ? 1 : 0; + exit(exitcode); + return (exitcode); +} +/******************** From the file "msort.c" *******************************/ +/* +** A generic merge-sort program. +** +** USAGE: +** Let "ptr" be a pointer to some structure which is at the head of +** a null-terminated list. Then to sort the list call: +** +** ptr = msort(ptr,&(ptr->next),cmpfnc); +** +** In the above, "cmpfnc" is a pointer to a function which compares +** two instances of the structure and returns an integer, as in +** strcmp. The second argument is a pointer to the pointer to the +** second element of the linked list. This address is used to compute +** the offset to the "next" field within the structure. The offset to +** the "next" field must be constant for all structures in the list. +** +** The function returns a new pointer which is the head of the list +** after sorting. +** +** ALGORITHM: +** Merge-sort. +*/ + +/* +** Return a pointer to the next structure in the linked list. +*/ +#define NEXT(A) (*(char**)(((char*)A)+offset)) + +/* +** Inputs: +** a: A sorted, null-terminated linked list. (May be null). +** b: A sorted, null-terminated linked list. (May be null). +** cmp: A pointer to the comparison function. +** offset: Offset in the structure to the "next" field. +** +** Return Value: +** A pointer to the head of a sorted list containing the elements +** of both a and b. +** +** Side effects: +** The "next" pointers for elements in the lists a and b are +** changed. +*/ +static char *merge( + char *a, + char *b, + int (*cmp)(const char*,const char*), + int offset +){ + char *ptr, *head; + + if( a==0 ){ + head = b; + }else if( b==0 ){ + head = a; + }else{ + if( (*cmp)(a,b)<=0 ){ + ptr = a; + a = NEXT(a); + }else{ + ptr = b; + b = NEXT(b); + } + head = ptr; + while( a && b ){ + if( (*cmp)(a,b)<=0 ){ + NEXT(ptr) = a; + ptr = a; + a = NEXT(a); + }else{ + NEXT(ptr) = b; + ptr = b; + b = NEXT(b); + } + } + if( a ) NEXT(ptr) = a; + else NEXT(ptr) = b; + } + return head; +} + +/* +** Inputs: +** list: Pointer to a singly-linked list of structures. +** next: Pointer to pointer to the second element of the list. +** cmp: A comparison function. +** +** Return Value: +** A pointer to the head of a sorted list containing the elements +** orginally in list. +** +** Side effects: +** The "next" pointers for elements in list are changed. +*/ +#define LISTSIZE 30 +static char *msort( + char *list, + char **next, + int (*cmp)(const char*,const char*) +){ + unsigned long offset; + char *ep; + char *set[LISTSIZE]; + int i; + offset = (unsigned long)next - (unsigned long)list; + for(i=0; istate = WAITING_FOR_DECL_KEYWORD; + }else if( islower(x[0]) ){ + psp->lhs = Symbol_new(x); + psp->nrhs = 0; + psp->lhsalias = 0; + psp->state = WAITING_FOR_ARROW; + }else if( x[0]=='{' ){ + if( psp->prevrule==0 ){ + ErrorMsg(psp->filename,psp->tokenlineno, +"There is no prior rule upon which to attach the code \ +fragment which begins on this line."); + psp->errorcnt++; + }else if( psp->prevrule->code!=0 ){ + ErrorMsg(psp->filename,psp->tokenlineno, +"Code fragment beginning on this line is not the first \ +to follow the previous rule."); + psp->errorcnt++; + }else{ + psp->prevrule->line = psp->tokenlineno; + psp->prevrule->code = &x[1]; + } + }else if( x[0]=='[' ){ + psp->state = PRECEDENCE_MARK_1; + }else{ + ErrorMsg(psp->filename,psp->tokenlineno, + "Token \"%s\" should be either \"%%\" or a nonterminal name.", + x); + psp->errorcnt++; + } + break; + case PRECEDENCE_MARK_1: + if( !isupper(x[0]) ){ + ErrorMsg(psp->filename,psp->tokenlineno, + "The precedence symbol must be a terminal."); + psp->errorcnt++; + }else if( psp->prevrule==0 ){ + ErrorMsg(psp->filename,psp->tokenlineno, + "There is no prior rule to assign precedence \"[%s]\".",x); + psp->errorcnt++; + }else if( psp->prevrule->precsym!=0 ){ + ErrorMsg(psp->filename,psp->tokenlineno, +"Precedence mark on this line is not the first \ +to follow the previous rule."); + psp->errorcnt++; + }else{ + psp->prevrule->precsym = Symbol_new(x); + } + psp->state = PRECEDENCE_MARK_2; + break; + case PRECEDENCE_MARK_2: + if( x[0]!=']' ){ + ErrorMsg(psp->filename,psp->tokenlineno, + "Missing \"]\" on precedence mark."); + psp->errorcnt++; + } + psp->state = WAITING_FOR_DECL_OR_RULE; + break; + case WAITING_FOR_ARROW: + if( x[0]==':' && x[1]==':' && x[2]=='=' ){ + psp->state = IN_RHS; + }else if( x[0]=='(' ){ + psp->state = LHS_ALIAS_1; + }else{ + ErrorMsg(psp->filename,psp->tokenlineno, + "Expected to see a \":\" following the LHS symbol \"%s\".", + psp->lhs->name); + psp->errorcnt++; + psp->state = RESYNC_AFTER_RULE_ERROR; + } + break; + case LHS_ALIAS_1: + if( isalpha(x[0]) ){ + psp->lhsalias = x; + psp->state = LHS_ALIAS_2; + }else{ + ErrorMsg(psp->filename,psp->tokenlineno, + "\"%s\" is not a valid alias for the LHS \"%s\"\n", + x,psp->lhs->name); + psp->errorcnt++; + psp->state = RESYNC_AFTER_RULE_ERROR; + } + break; + case LHS_ALIAS_2: + if( x[0]==')' ){ + psp->state = LHS_ALIAS_3; + }else{ + ErrorMsg(psp->filename,psp->tokenlineno, + "Missing \")\" following LHS alias name \"%s\".",psp->lhsalias); + psp->errorcnt++; + psp->state = RESYNC_AFTER_RULE_ERROR; + } + break; + case LHS_ALIAS_3: + if( x[0]==':' && x[1]==':' && x[2]=='=' ){ + psp->state = IN_RHS; + }else{ + ErrorMsg(psp->filename,psp->tokenlineno, + "Missing \"->\" following: \"%s(%s)\".", + psp->lhs->name,psp->lhsalias); + psp->errorcnt++; + psp->state = RESYNC_AFTER_RULE_ERROR; + } + break; + case IN_RHS: + if( x[0]=='.' ){ + struct rule *rp; + rp = (struct rule *)calloc( sizeof(struct rule) + + sizeof(struct symbol*)*psp->nrhs + sizeof(char*)*psp->nrhs, 1); + if( rp==0 ){ + ErrorMsg(psp->filename,psp->tokenlineno, + "Can't allocate enough memory for this rule."); + psp->errorcnt++; + psp->prevrule = 0; + }else{ + int i; + rp->ruleline = psp->tokenlineno; + rp->rhs = (struct symbol**)&rp[1]; + rp->rhsalias = (const char**)&(rp->rhs[psp->nrhs]); + for(i=0; inrhs; i++){ + rp->rhs[i] = psp->rhs[i]; + rp->rhsalias[i] = psp->alias[i]; + } + rp->lhs = psp->lhs; + rp->lhsalias = psp->lhsalias; + rp->nrhs = psp->nrhs; + rp->code = 0; + rp->precsym = 0; + rp->index = psp->gp->nrule++; + rp->nextlhs = rp->lhs->rule; + rp->lhs->rule = rp; + rp->next = 0; + if( psp->firstrule==0 ){ + psp->firstrule = psp->lastrule = rp; + }else{ + psp->lastrule->next = rp; + psp->lastrule = rp; + } + psp->prevrule = rp; + } + psp->state = WAITING_FOR_DECL_OR_RULE; + }else if( isalpha(x[0]) ){ + if( psp->nrhs>=MAXRHS ){ + ErrorMsg(psp->filename,psp->tokenlineno, + "Too many symbols on RHS of rule beginning at \"%s\".", + x); + psp->errorcnt++; + psp->state = RESYNC_AFTER_RULE_ERROR; + }else{ + psp->rhs[psp->nrhs] = Symbol_new(x); + psp->alias[psp->nrhs] = 0; + psp->nrhs++; + } + }else if( (x[0]=='|' || x[0]=='/') && psp->nrhs>0 ){ + struct symbol *msp = psp->rhs[psp->nrhs-1]; + if( msp->type!=MULTITERMINAL ){ + struct symbol *origsp = msp; + msp = (struct symbol *) calloc(1,sizeof(*msp)); + memset(msp, 0, sizeof(*msp)); + msp->type = MULTITERMINAL; + msp->nsubsym = 1; + msp->subsym = (struct symbol **) calloc(1,sizeof(struct symbol*)); + msp->subsym[0] = origsp; + msp->name = origsp->name; + psp->rhs[psp->nrhs-1] = msp; + } + msp->nsubsym++; + msp->subsym = (struct symbol **) realloc(msp->subsym, + sizeof(struct symbol*)*msp->nsubsym); + msp->subsym[msp->nsubsym-1] = Symbol_new(&x[1]); + if( islower(x[1]) || islower(msp->subsym[0]->name[0]) ){ + ErrorMsg(psp->filename,psp->tokenlineno, + "Cannot form a compound containing a non-terminal"); + psp->errorcnt++; + } + }else if( x[0]=='(' && psp->nrhs>0 ){ + psp->state = RHS_ALIAS_1; + }else{ + ErrorMsg(psp->filename,psp->tokenlineno, + "Illegal character on RHS of rule: \"%s\".",x); + psp->errorcnt++; + psp->state = RESYNC_AFTER_RULE_ERROR; + } + break; + case RHS_ALIAS_1: + if( isalpha(x[0]) ){ + psp->alias[psp->nrhs-1] = x; + psp->state = RHS_ALIAS_2; + }else{ + ErrorMsg(psp->filename,psp->tokenlineno, + "\"%s\" is not a valid alias for the RHS symbol \"%s\"\n", + x,psp->rhs[psp->nrhs-1]->name); + psp->errorcnt++; + psp->state = RESYNC_AFTER_RULE_ERROR; + } + break; + case RHS_ALIAS_2: + if( x[0]==')' ){ + psp->state = IN_RHS; + }else{ + ErrorMsg(psp->filename,psp->tokenlineno, + "Missing \")\" following LHS alias name \"%s\".",psp->lhsalias); + psp->errorcnt++; + psp->state = RESYNC_AFTER_RULE_ERROR; + } + break; + case WAITING_FOR_DECL_KEYWORD: + if( isalpha(x[0]) ){ + psp->declkeyword = x; + psp->declargslot = 0; + psp->decllinenoslot = 0; + psp->insertLineMacro = 1; + psp->state = WAITING_FOR_DECL_ARG; + if( strcmp(x,"name")==0 ){ + psp->declargslot = &(psp->gp->name); + psp->insertLineMacro = 0; + }else if( strcmp(x,"include")==0 ){ + psp->declargslot = &(psp->gp->include); + }else if( strcmp(x,"code")==0 ){ + psp->declargslot = &(psp->gp->extracode); + }else if( strcmp(x,"token_destructor")==0 ){ + psp->declargslot = &psp->gp->tokendest; + }else if( strcmp(x,"default_destructor")==0 ){ + psp->declargslot = &psp->gp->vardest; + }else if( strcmp(x,"token_prefix")==0 ){ + psp->declargslot = &psp->gp->tokenprefix; + psp->insertLineMacro = 0; + }else if( strcmp(x,"syntax_error")==0 ){ + psp->declargslot = &(psp->gp->error); + }else if( strcmp(x,"parse_accept")==0 ){ + psp->declargslot = &(psp->gp->accept); + }else if( strcmp(x,"parse_failure")==0 ){ + psp->declargslot = &(psp->gp->failure); + }else if( strcmp(x,"stack_overflow")==0 ){ + psp->declargslot = &(psp->gp->overflow); + }else if( strcmp(x,"extra_argument")==0 ){ + psp->declargslot = &(psp->gp->arg); + psp->insertLineMacro = 0; + }else if( strcmp(x,"token_type")==0 ){ + psp->declargslot = &(psp->gp->tokentype); + psp->insertLineMacro = 0; + }else if( strcmp(x,"default_type")==0 ){ + psp->declargslot = &(psp->gp->vartype); + psp->insertLineMacro = 0; + }else if( strcmp(x,"stack_size")==0 ){ + psp->declargslot = &(psp->gp->stacksize); + psp->insertLineMacro = 0; + }else if( strcmp(x,"start_symbol")==0 ){ + psp->declargslot = &(psp->gp->start); + psp->insertLineMacro = 0; + }else if( strcmp(x,"left")==0 ){ + psp->preccounter++; + psp->declassoc = LEFT; + psp->state = WAITING_FOR_PRECEDENCE_SYMBOL; + }else if( strcmp(x,"right")==0 ){ + psp->preccounter++; + psp->declassoc = RIGHT; + psp->state = WAITING_FOR_PRECEDENCE_SYMBOL; + }else if( strcmp(x,"nonassoc")==0 ){ + psp->preccounter++; + psp->declassoc = NONE; + psp->state = WAITING_FOR_PRECEDENCE_SYMBOL; + }else if( strcmp(x,"destructor")==0 ){ + psp->state = WAITING_FOR_DESTRUCTOR_SYMBOL; + }else if( strcmp(x,"type")==0 ){ + psp->state = WAITING_FOR_DATATYPE_SYMBOL; + }else if( strcmp(x,"fallback")==0 ){ + psp->fallback = 0; + psp->state = WAITING_FOR_FALLBACK_ID; + }else if( strcmp(x,"wildcard")==0 ){ + psp->state = WAITING_FOR_WILDCARD_ID; + }else if( strcmp(x,"token_class")==0 ){ + psp->state = WAITING_FOR_CLASS_ID; + }else{ + ErrorMsg(psp->filename,psp->tokenlineno, + "Unknown declaration keyword: \"%%%s\".",x); + psp->errorcnt++; + psp->state = RESYNC_AFTER_DECL_ERROR; + } + }else{ + ErrorMsg(psp->filename,psp->tokenlineno, + "Illegal declaration keyword: \"%s\".",x); + psp->errorcnt++; + psp->state = RESYNC_AFTER_DECL_ERROR; + } + break; + case WAITING_FOR_DESTRUCTOR_SYMBOL: + if( !isalpha(x[0]) ){ + ErrorMsg(psp->filename,psp->tokenlineno, + "Symbol name missing after %%destructor keyword"); + psp->errorcnt++; + psp->state = RESYNC_AFTER_DECL_ERROR; + }else{ + struct symbol *sp = Symbol_new(x); + psp->declargslot = &sp->destructor; + psp->decllinenoslot = &sp->destLineno; + psp->insertLineMacro = 1; + psp->state = WAITING_FOR_DECL_ARG; + } + break; + case WAITING_FOR_DATATYPE_SYMBOL: + if( !isalpha(x[0]) ){ + ErrorMsg(psp->filename,psp->tokenlineno, + "Symbol name missing after %%type keyword"); + psp->errorcnt++; + psp->state = RESYNC_AFTER_DECL_ERROR; + }else{ + struct symbol *sp = Symbol_find(x); + if((sp) && (sp->datatype)){ + ErrorMsg(psp->filename,psp->tokenlineno, + "Symbol %%type \"%s\" already defined", x); + psp->errorcnt++; + psp->state = RESYNC_AFTER_DECL_ERROR; + }else{ + if (!sp){ + sp = Symbol_new(x); + } + psp->declargslot = &sp->datatype; + psp->insertLineMacro = 0; + psp->state = WAITING_FOR_DECL_ARG; + } + } + break; + case WAITING_FOR_PRECEDENCE_SYMBOL: + if( x[0]=='.' ){ + psp->state = WAITING_FOR_DECL_OR_RULE; + }else if( isupper(x[0]) ){ + struct symbol *sp; + sp = Symbol_new(x); + if( sp->prec>=0 ){ + ErrorMsg(psp->filename,psp->tokenlineno, + "Symbol \"%s\" has already be given a precedence.",x); + psp->errorcnt++; + }else{ + sp->prec = psp->preccounter; + sp->assoc = psp->declassoc; + } + }else{ + ErrorMsg(psp->filename,psp->tokenlineno, + "Can't assign a precedence to \"%s\".",x); + psp->errorcnt++; + } + break; + case WAITING_FOR_DECL_ARG: + if( x[0]=='{' || x[0]=='\"' || isalnum(x[0]) ){ + const char *zOld, *zNew; + char *zBuf, *z; + int nOld, n, nLine, nNew, nBack; + int addLineMacro; + char zLine[50]; + zNew = x; + if( zNew[0]=='"' || zNew[0]=='{' ) zNew++; + nNew = lemonStrlen(zNew); + if( *psp->declargslot ){ + zOld = *psp->declargslot; + }else{ + zOld = ""; + } + nOld = lemonStrlen(zOld); + n = nOld + nNew + 20; + addLineMacro = !psp->gp->nolinenosflag && psp->insertLineMacro && + (psp->decllinenoslot==0 || psp->decllinenoslot[0]!=0); + if( addLineMacro ){ + for(z=psp->filename, nBack=0; *z; z++){ + if( *z=='\\' ) nBack++; + } + lemon_sprintf(zLine, "#line %d ", psp->tokenlineno); + nLine = lemonStrlen(zLine); + n += nLine + lemonStrlen(psp->filename) + nBack; + } + *psp->declargslot = (char *) realloc(*psp->declargslot, n); + zBuf = *psp->declargslot + nOld; + if( addLineMacro ){ + if( nOld && zBuf[-1]!='\n' ){ + *(zBuf++) = '\n'; + } + memcpy(zBuf, zLine, nLine); + zBuf += nLine; + *(zBuf++) = '"'; + for(z=psp->filename; *z; z++){ + if( *z=='\\' ){ + *(zBuf++) = '\\'; + } + *(zBuf++) = *z; + } + *(zBuf++) = '"'; + *(zBuf++) = '\n'; + } + if( psp->decllinenoslot && psp->decllinenoslot[0]==0 ){ + psp->decllinenoslot[0] = psp->tokenlineno; + } + memcpy(zBuf, zNew, nNew); + zBuf += nNew; + *zBuf = 0; + psp->state = WAITING_FOR_DECL_OR_RULE; + }else{ + ErrorMsg(psp->filename,psp->tokenlineno, + "Illegal argument to %%%s: %s",psp->declkeyword,x); + psp->errorcnt++; + psp->state = RESYNC_AFTER_DECL_ERROR; + } + break; + case WAITING_FOR_FALLBACK_ID: + if( x[0]=='.' ){ + psp->state = WAITING_FOR_DECL_OR_RULE; + }else if( !isupper(x[0]) ){ + ErrorMsg(psp->filename, psp->tokenlineno, + "%%fallback argument \"%s\" should be a token", x); + psp->errorcnt++; + }else{ + struct symbol *sp = Symbol_new(x); + if( psp->fallback==0 ){ + psp->fallback = sp; + }else if( sp->fallback ){ + ErrorMsg(psp->filename, psp->tokenlineno, + "More than one fallback assigned to token %s", x); + psp->errorcnt++; + }else{ + sp->fallback = psp->fallback; + psp->gp->has_fallback = 1; + } + } + break; + case WAITING_FOR_WILDCARD_ID: + if( x[0]=='.' ){ + psp->state = WAITING_FOR_DECL_OR_RULE; + }else if( !isupper(x[0]) ){ + ErrorMsg(psp->filename, psp->tokenlineno, + "%%wildcard argument \"%s\" should be a token", x); + psp->errorcnt++; + }else{ + struct symbol *sp = Symbol_new(x); + if( psp->gp->wildcard==0 ){ + psp->gp->wildcard = sp; + }else{ + ErrorMsg(psp->filename, psp->tokenlineno, + "Extra wildcard to token: %s", x); + psp->errorcnt++; + } + } + break; + case WAITING_FOR_CLASS_ID: + if( !islower(x[0]) ){ + ErrorMsg(psp->filename, psp->tokenlineno, + "%%token_class must be followed by an identifier: ", x); + psp->errorcnt++; + psp->state = RESYNC_AFTER_DECL_ERROR; + }else if( Symbol_find(x) ){ + ErrorMsg(psp->filename, psp->tokenlineno, + "Symbol \"%s\" already used", x); + psp->errorcnt++; + psp->state = RESYNC_AFTER_DECL_ERROR; + }else{ + psp->tkclass = Symbol_new(x); + psp->tkclass->type = MULTITERMINAL; + psp->state = WAITING_FOR_CLASS_TOKEN; + } + break; + case WAITING_FOR_CLASS_TOKEN: + if( x[0]=='.' ){ + psp->state = WAITING_FOR_DECL_OR_RULE; + }else if( isupper(x[0]) || ((x[0]=='|' || x[0]=='/') && isupper(x[1])) ){ + struct symbol *msp = psp->tkclass; + msp->nsubsym++; + msp->subsym = (struct symbol **) realloc(msp->subsym, + sizeof(struct symbol*)*msp->nsubsym); + if( !isupper(x[0]) ) x++; + msp->subsym[msp->nsubsym-1] = Symbol_new(x); + }else{ + ErrorMsg(psp->filename, psp->tokenlineno, + "%%token_class argument \"%s\" should be a token", x); + psp->errorcnt++; + psp->state = RESYNC_AFTER_DECL_ERROR; + } + break; + case RESYNC_AFTER_RULE_ERROR: +/* if( x[0]=='.' ) psp->state = WAITING_FOR_DECL_OR_RULE; +** break; */ + case RESYNC_AFTER_DECL_ERROR: + if( x[0]=='.' ) psp->state = WAITING_FOR_DECL_OR_RULE; + if( x[0]=='%' ) psp->state = WAITING_FOR_DECL_KEYWORD; + break; + } +} + +/* Run the preprocessor over the input file text. The global variables +** azDefine[0] through azDefine[nDefine-1] contains the names of all defined +** macros. This routine looks for "%ifdef" and "%ifndef" and "%endif" and +** comments them out. Text in between is also commented out as appropriate. +*/ +static void preprocess_input(char *z){ + int i, j, k, n; + int exclude = 0; + int start = 0; + int lineno = 1; + int start_lineno = 1; + for(i=0; z[i]; i++){ + if( z[i]=='\n' ) lineno++; + if( z[i]!='%' || (i>0 && z[i-1]!='\n') ) continue; + if( strncmp(&z[i],"%endif",6)==0 && isspace(z[i+6]) ){ + if( exclude ){ + exclude--; + if( exclude==0 ){ + for(j=start; jfilename; + ps.errorcnt = 0; + ps.state = INITIALIZE; + + /* Begin by reading the input file */ + fp = fopen(ps.filename,"rb"); + if( fp==0 ){ + ErrorMsg(ps.filename,0,"Can't open this file for reading."); + gp->errorcnt++; + return; + } + fseek(fp,0,2); + filesize = ftell(fp); + rewind(fp); + filebuf = (char *)malloc( filesize+1 ); + if( filesize>100000000 || filebuf==0 ){ + ErrorMsg(ps.filename,0,"Input file too large."); + gp->errorcnt++; + fclose(fp); + return; + } + if( fread(filebuf,1,filesize,fp)!=filesize ){ + ErrorMsg(ps.filename,0,"Can't read in all %d bytes of this file.", + filesize); + free(filebuf); + gp->errorcnt++; + fclose(fp); + return; + } + fclose(fp); + filebuf[filesize] = 0; + + /* Make an initial pass through the file to handle %ifdef and %ifndef */ + preprocess_input(filebuf); + + /* Now scan the text of the input file */ + lineno = 1; + for(cp=filebuf; (c= *cp)!=0; ){ + if( c=='\n' ) lineno++; /* Keep track of the line number */ + if( isspace(c) ){ cp++; continue; } /* Skip all white space */ + if( c=='/' && cp[1]=='/' ){ /* Skip C++ style comments */ + cp+=2; + while( (c= *cp)!=0 && c!='\n' ) cp++; + continue; + } + if( c=='/' && cp[1]=='*' ){ /* Skip C style comments */ + cp+=2; + while( (c= *cp)!=0 && (c!='/' || cp[-1]!='*') ){ + if( c=='\n' ) lineno++; + cp++; + } + if( c ) cp++; + continue; + } + ps.tokenstart = cp; /* Mark the beginning of the token */ + ps.tokenlineno = lineno; /* Linenumber on which token begins */ + if( c=='\"' ){ /* String literals */ + cp++; + while( (c= *cp)!=0 && c!='\"' ){ + if( c=='\n' ) lineno++; + cp++; + } + if( c==0 ){ + ErrorMsg(ps.filename,startline, +"String starting on this line is not terminated before the end of the file."); + ps.errorcnt++; + nextcp = cp; + }else{ + nextcp = cp+1; + } + }else if( c=='{' ){ /* A block of C code */ + int level; + cp++; + for(level=1; (c= *cp)!=0 && (level>1 || c!='}'); cp++){ + if( c=='\n' ) lineno++; + else if( c=='{' ) level++; + else if( c=='}' ) level--; + else if( c=='/' && cp[1]=='*' ){ /* Skip comments */ + int prevc; + cp = &cp[2]; + prevc = 0; + while( (c= *cp)!=0 && (c!='/' || prevc!='*') ){ + if( c=='\n' ) lineno++; + prevc = c; + cp++; + } + }else if( c=='/' && cp[1]=='/' ){ /* Skip C++ style comments too */ + cp = &cp[2]; + while( (c= *cp)!=0 && c!='\n' ) cp++; + if( c ) lineno++; + }else if( c=='\'' || c=='\"' ){ /* String a character literals */ + int startchar, prevc; + startchar = c; + prevc = 0; + for(cp++; (c= *cp)!=0 && (c!=startchar || prevc=='\\'); cp++){ + if( c=='\n' ) lineno++; + if( prevc=='\\' ) prevc = 0; + else prevc = c; + } + } + } + if( c==0 ){ + ErrorMsg(ps.filename,ps.tokenlineno, +"C code starting on this line is not terminated before the end of the file."); + ps.errorcnt++; + nextcp = cp; + }else{ + nextcp = cp+1; + } + }else if( isalnum(c) ){ /* Identifiers */ + while( (c= *cp)!=0 && (isalnum(c) || c=='_') ) cp++; + nextcp = cp; + }else if( c==':' && cp[1]==':' && cp[2]=='=' ){ /* The operator "::=" */ + cp += 3; + nextcp = cp; + }else if( (c=='/' || c=='|') && isalpha(cp[1]) ){ + cp += 2; + while( (c = *cp)!=0 && (isalnum(c) || c=='_') ) cp++; + nextcp = cp; + }else{ /* All other (one character) operators */ + cp++; + nextcp = cp; + } + c = *cp; + *cp = 0; /* Null terminate the token */ + parseonetoken(&ps); /* Parse the token */ + *cp = c; /* Restore the buffer */ + cp = nextcp; + } + free(filebuf); /* Release the buffer after parsing */ + gp->rule = ps.firstrule; + gp->errorcnt = ps.errorcnt; +} +/*************************** From the file "plink.c" *********************/ +/* +** Routines processing configuration follow-set propagation links +** in the LEMON parser generator. +*/ +static struct plink *plink_freelist = 0; + +/* Allocate a new plink */ +struct plink *Plink_new(){ + struct plink *newlink; + + if( plink_freelist==0 ){ + int i; + int amt = 100; + plink_freelist = (struct plink *)calloc( amt, sizeof(struct plink) ); + if( plink_freelist==0 ){ + fprintf(stderr, + "Unable to allocate memory for a new follow-set propagation link.\n"); + exit(1); + } + for(i=0; inext; + return newlink; +} + +/* Add a plink to a plink list */ +void Plink_add(struct plink **plpp, struct config *cfp) +{ + struct plink *newlink; + newlink = Plink_new(); + newlink->next = *plpp; + *plpp = newlink; + newlink->cfp = cfp; +} + +/* Transfer every plink on the list "from" to the list "to" */ +void Plink_copy(struct plink **to, struct plink *from) +{ + struct plink *nextpl; + while( from ){ + nextpl = from->next; + from->next = *to; + *to = from; + from = nextpl; + } +} + +/* Delete every plink on the list */ +void Plink_delete(struct plink *plp) +{ + struct plink *nextpl; + + while( plp ){ + nextpl = plp->next; + plp->next = plink_freelist; + plink_freelist = plp; + plp = nextpl; + } +} +/*********************** From the file "report.c" **************************/ +/* +** Procedures for generating reports and tables in the LEMON parser generator. +*/ + +/* Generate a filename with the given suffix. Space to hold the +** name comes from malloc() and must be freed by the calling +** function. +*/ +PRIVATE char *file_makename(struct lemon *lemp, const char *suffix) +{ + char *name; + char *cp; + + name = (char*)malloc( lemonStrlen(lemp->filename) + lemonStrlen(suffix) + 5 ); + if( name==0 ){ + fprintf(stderr,"Can't allocate space for a filename.\n"); + exit(1); + } + lemon_strcpy(name,lemp->filename); + cp = strrchr(name,'.'); + if( cp ) *cp = 0; + lemon_strcat(name,suffix); + return name; +} + +/* Open a file with a name based on the name of the input file, +** but with a different (specified) suffix, and return a pointer +** to the stream */ +PRIVATE FILE *file_open( + struct lemon *lemp, + const char *suffix, + const char *mode +){ + FILE *fp; + + if( lemp->outname ) free(lemp->outname); + lemp->outname = file_makename(lemp, suffix); + fp = fopen(lemp->outname,mode); + if( fp==0 && *mode=='w' ){ + fprintf(stderr,"Can't open file \"%s\".\n",lemp->outname); + lemp->errorcnt++; + return 0; + } + return fp; +} + +/* Duplicate the input file without comments and without actions +** on rules */ +void Reprint(struct lemon *lemp) +{ + struct rule *rp; + struct symbol *sp; + int i, j, maxlen, len, ncolumns, skip; + printf("// Reprint of input file \"%s\".\n// Symbols:\n",lemp->filename); + maxlen = 10; + for(i=0; insymbol; i++){ + sp = lemp->symbols[i]; + len = lemonStrlen(sp->name); + if( len>maxlen ) maxlen = len; + } + ncolumns = 76/(maxlen+5); + if( ncolumns<1 ) ncolumns = 1; + skip = (lemp->nsymbol + ncolumns - 1)/ncolumns; + for(i=0; insymbol; j+=skip){ + sp = lemp->symbols[j]; + assert( sp->index==j ); + printf(" %3d %-*.*s",j,maxlen,maxlen,sp->name); + } + printf("\n"); + } + for(rp=lemp->rule; rp; rp=rp->next){ + printf("%s",rp->lhs->name); + /* if( rp->lhsalias ) printf("(%s)",rp->lhsalias); */ + printf(" ::="); + for(i=0; inrhs; i++){ + sp = rp->rhs[i]; + if( sp->type==MULTITERMINAL ){ + printf(" %s", sp->subsym[0]->name); + for(j=1; jnsubsym; j++){ + printf("|%s", sp->subsym[j]->name); + } + }else{ + printf(" %s", sp->name); + } + /* if( rp->rhsalias[i] ) printf("(%s)",rp->rhsalias[i]); */ + } + printf("."); + if( rp->precsym ) printf(" [%s]",rp->precsym->name); + /* if( rp->code ) printf("\n %s",rp->code); */ + printf("\n"); + } +} + +void ConfigPrint(FILE *fp, struct config *cfp) +{ + struct rule *rp; + struct symbol *sp; + int i, j; + rp = cfp->rp; + fprintf(fp,"%s ::=",rp->lhs->name); + for(i=0; i<=rp->nrhs; i++){ + if( i==cfp->dot ) fprintf(fp," *"); + if( i==rp->nrhs ) break; + sp = rp->rhs[i]; + if( sp->type==MULTITERMINAL ){ + fprintf(fp," %s", sp->subsym[0]->name); + for(j=1; jnsubsym; j++){ + fprintf(fp,"|%s",sp->subsym[j]->name); + } + }else{ + fprintf(fp," %s", sp->name); + } + } +} + +/* #define TEST */ +#if 0 +/* Print a set */ +PRIVATE void SetPrint(out,set,lemp) +FILE *out; +char *set; +struct lemon *lemp; +{ + int i; + char *spacer; + spacer = ""; + fprintf(out,"%12s[",""); + for(i=0; interminal; i++){ + if( SetFind(set,i) ){ + fprintf(out,"%s%s",spacer,lemp->symbols[i]->name); + spacer = " "; + } + } + fprintf(out,"]\n"); +} + +/* Print a plink chain */ +PRIVATE void PlinkPrint(out,plp,tag) +FILE *out; +struct plink *plp; +char *tag; +{ + while( plp ){ + fprintf(out,"%12s%s (state %2d) ","",tag,plp->cfp->stp->statenum); + ConfigPrint(out,plp->cfp); + fprintf(out,"\n"); + plp = plp->next; + } +} +#endif + +/* Print an action to the given file descriptor. Return FALSE if +** nothing was actually printed. +*/ +int PrintAction(struct action *ap, FILE *fp, int indent){ + int result = 1; + switch( ap->type ){ + case SHIFT: + fprintf(fp,"%*s shift %d",indent,ap->sp->name,ap->x.stp->statenum); + break; + case REDUCE: + fprintf(fp,"%*s reduce %d",indent,ap->sp->name,ap->x.rp->index); + break; + case ACCEPT: + fprintf(fp,"%*s accept",indent,ap->sp->name); + break; + case ERROR: + fprintf(fp,"%*s error",indent,ap->sp->name); + break; + case SRCONFLICT: + case RRCONFLICT: + fprintf(fp,"%*s reduce %-3d ** Parsing conflict **", + indent,ap->sp->name,ap->x.rp->index); + break; + case SSCONFLICT: + fprintf(fp,"%*s shift %-3d ** Parsing conflict **", + indent,ap->sp->name,ap->x.stp->statenum); + break; + case SH_RESOLVED: + if( showPrecedenceConflict ){ + fprintf(fp,"%*s shift %-3d -- dropped by precedence", + indent,ap->sp->name,ap->x.stp->statenum); + }else{ + result = 0; + } + break; + case RD_RESOLVED: + if( showPrecedenceConflict ){ + fprintf(fp,"%*s reduce %-3d -- dropped by precedence", + indent,ap->sp->name,ap->x.rp->index); + }else{ + result = 0; + } + break; + case NOT_USED: + result = 0; + break; + } + return result; +} + +/* Generate the "y.output" log file */ +void ReportOutput(struct lemon *lemp) +{ + int i; + struct state *stp; + struct config *cfp; + struct action *ap; + FILE *fp; + + fp = file_open(lemp,".out","wb"); + if( fp==0 ) return; + for(i=0; instate; i++){ + stp = lemp->sorted[i]; + fprintf(fp,"State %d:\n",stp->statenum); + if( lemp->basisflag ) cfp=stp->bp; + else cfp=stp->cfp; + while( cfp ){ + char buf[20]; + if( cfp->dot==cfp->rp->nrhs ){ + lemon_sprintf(buf,"(%d)",cfp->rp->index); + fprintf(fp," %5s ",buf); + }else{ + fprintf(fp," "); + } + ConfigPrint(fp,cfp); + fprintf(fp,"\n"); +#if 0 + SetPrint(fp,cfp->fws,lemp); + PlinkPrint(fp,cfp->fplp,"To "); + PlinkPrint(fp,cfp->bplp,"From"); +#endif + if( lemp->basisflag ) cfp=cfp->bp; + else cfp=cfp->next; + } + fprintf(fp,"\n"); + for(ap=stp->ap; ap; ap=ap->next){ + if( PrintAction(ap,fp,30) ) fprintf(fp,"\n"); + } + fprintf(fp,"\n"); + } + fprintf(fp, "----------------------------------------------------\n"); + fprintf(fp, "Symbols:\n"); + for(i=0; insymbol; i++){ + int j; + struct symbol *sp; + + sp = lemp->symbols[i]; + fprintf(fp, " %3d: %s", i, sp->name); + if( sp->type==NONTERMINAL ){ + fprintf(fp, ":"); + if( sp->lambda ){ + fprintf(fp, " "); + } + for(j=0; jnterminal; j++){ + if( sp->firstset && SetFind(sp->firstset, j) ){ + fprintf(fp, " %s", lemp->symbols[j]->name); + } + } + } + fprintf(fp, "\n"); + } + fclose(fp); + return; +} + +/* Search for the file "name" which is in the same directory as +** the exacutable */ +PRIVATE char *pathsearch(char *argv0, char *name, int modemask) +{ + const char *pathlist; + char *pathbufptr; + char *pathbuf; + char *path,*cp; + char c; + +#ifdef __WIN32__ + cp = strrchr(argv0,'\\'); +#else + cp = strrchr(argv0,'/'); +#endif + if( cp ){ + c = *cp; + *cp = 0; + path = (char *)malloc( lemonStrlen(argv0) + lemonStrlen(name) + 2 ); + if( path ) lemon_sprintf(path,"%s/%s",argv0,name); + *cp = c; + }else{ + pathlist = getenv("PATH"); + if( pathlist==0 ) pathlist = ".:/bin:/usr/bin"; + pathbuf = (char *) malloc( lemonStrlen(pathlist) + 1 ); + path = (char *)malloc( lemonStrlen(pathlist)+lemonStrlen(name)+2 ); + if( (pathbuf != 0) && (path!=0) ){ + pathbufptr = pathbuf; + lemon_strcpy(pathbuf, pathlist); + while( *pathbuf ){ + cp = strchr(pathbuf,':'); + if( cp==0 ) cp = &pathbuf[lemonStrlen(pathbuf)]; + c = *cp; + *cp = 0; + lemon_sprintf(path,"%s/%s",pathbuf,name); + *cp = c; + if( c==0 ) pathbuf[0] = 0; + else pathbuf = &cp[1]; + if( access(path,modemask)==0 ) break; + } + free(pathbufptr); + } + } + return path; +} + +/* Given an action, compute the integer value for that action +** which is to be put in the action table of the generated machine. +** Return negative if no action should be generated. +*/ +PRIVATE int compute_action(struct lemon *lemp, struct action *ap) +{ + int act; + switch( ap->type ){ + case SHIFT: act = ap->x.stp->statenum; break; + case REDUCE: act = ap->x.rp->index + lemp->nstate; break; + case ERROR: act = lemp->nstate + lemp->nrule; break; + case ACCEPT: act = lemp->nstate + lemp->nrule + 1; break; + default: act = -1; break; + } + return act; +} + +#define LINESIZE 1000 +/* The next cluster of routines are for reading the template file +** and writing the results to the generated parser */ +/* The first function transfers data from "in" to "out" until +** a line is seen which begins with "%%". The line number is +** tracked. +** +** if name!=0, then any word that begin with "Parse" is changed to +** begin with *name instead. +*/ +PRIVATE void tplt_xfer(char *name, FILE *in, FILE *out, int *lineno) +{ + int i, iStart; + char line[LINESIZE]; + while( fgets(line,LINESIZE,in) && (line[0]!='%' || line[1]!='%') ){ + (*lineno)++; + iStart = 0; + if( name ){ + for(i=0; line[i]; i++){ + if( line[i]=='P' && strncmp(&line[i],"Parse",5)==0 + && (i==0 || !isalpha(line[i-1])) + ){ + if( i>iStart ) fprintf(out,"%.*s",i-iStart,&line[iStart]); + fprintf(out,"%s",name); + i += 4; + iStart = i+1; + } + } + } + fprintf(out,"%s",&line[iStart]); + } +} + +/* The next function finds the template file and opens it, returning +** a pointer to the opened file. */ +PRIVATE FILE *tplt_open(struct lemon *lemp) +{ + static char templatename[] = "lempar.c"; + char buf[1000]; + FILE *in; + char *tpltname; + char *cp; + + /* first, see if user specified a template filename on the command line. */ + if (user_templatename != 0) { + if( access(user_templatename,004)==-1 ){ + fprintf(stderr,"Can't find the parser driver template file \"%s\".\n", + user_templatename); + lemp->errorcnt++; + return 0; + } + in = fopen(user_templatename,"rb"); + if( in==0 ){ + fprintf(stderr,"Can't open the template file \"%s\".\n",user_templatename); + lemp->errorcnt++; + return 0; + } + return in; + } + + cp = strrchr(lemp->filename,'.'); + if( cp ){ + lemon_sprintf(buf,"%.*s.lt",(int)(cp-lemp->filename),lemp->filename); + }else{ + lemon_sprintf(buf,"%s.lt",lemp->filename); + } + if( access(buf,004)==0 ){ + tpltname = buf; + }else if( access(templatename,004)==0 ){ + tpltname = templatename; + }else{ + tpltname = pathsearch(lemp->argv0,templatename,0); + } + if( tpltname==0 ){ + fprintf(stderr,"Can't find the parser driver template file \"%s\".\n", + templatename); + lemp->errorcnt++; + return 0; + } + in = fopen(tpltname,"rb"); + if( in==0 ){ + fprintf(stderr,"Can't open the template file \"%s\".\n",templatename); + lemp->errorcnt++; + return 0; + } + return in; +} + +/* Print a #line directive line to the output file. */ +PRIVATE void tplt_linedir(FILE *out, int lineno, char *filename) +{ + fprintf(out,"#line %d \"",lineno); + while( *filename ){ + if( *filename == '\\' ) putc('\\',out); + putc(*filename,out); + filename++; + } + fprintf(out,"\"\n"); +} + +/* Print a string to the file and keep the linenumber up to date */ +PRIVATE void tplt_print(FILE *out, struct lemon *lemp, char *str, int *lineno) +{ + if( str==0 ) return; + while( *str ){ + putc(*str,out); + if( *str=='\n' ) (*lineno)++; + str++; + } + if( str[-1]!='\n' ){ + putc('\n',out); + (*lineno)++; + } + if (!lemp->nolinenosflag) { + (*lineno)++; tplt_linedir(out,*lineno,lemp->outname); + } + return; +} + +/* +** The following routine emits code for the destructor for the +** symbol sp +*/ +void emit_destructor_code( + FILE *out, + struct symbol *sp, + struct lemon *lemp, + int *lineno +){ + char *cp = 0; + + if( sp->type==TERMINAL ){ + cp = lemp->tokendest; + if( cp==0 ) return; + fprintf(out,"{\n"); (*lineno)++; + }else if( sp->destructor ){ + cp = sp->destructor; + fprintf(out,"{\n"); (*lineno)++; + if (!lemp->nolinenosflag) { (*lineno)++; tplt_linedir(out,sp->destLineno,lemp->filename); } + }else if( lemp->vardest ){ + cp = lemp->vardest; + if( cp==0 ) return; + fprintf(out,"{\n"); (*lineno)++; + }else{ + assert( 0 ); /* Cannot happen */ + } + for(; *cp; cp++){ + if( *cp=='$' && cp[1]=='$' ){ + fprintf(out,"(yypminor->yy%d)",sp->dtnum); + cp++; + continue; + } + if( *cp=='\n' ) (*lineno)++; + fputc(*cp,out); + } + fprintf(out,"\n"); (*lineno)++; + if (!lemp->nolinenosflag) { + (*lineno)++; tplt_linedir(out,*lineno,lemp->outname); + } + fprintf(out,"}\n"); (*lineno)++; + return; +} + +/* +** Return TRUE (non-zero) if the given symbol has a destructor. +*/ +int has_destructor(struct symbol *sp, struct lemon *lemp) +{ + int ret; + if( sp->type==TERMINAL ){ + ret = lemp->tokendest!=0; + }else{ + ret = lemp->vardest!=0 || sp->destructor!=0; + } + return ret; +} + +/* +** Append text to a dynamically allocated string. If zText is 0 then +** reset the string to be empty again. Always return the complete text +** of the string (which is overwritten with each call). +** +** n bytes of zText are stored. If n==0 then all of zText up to the first +** \000 terminator is stored. zText can contain up to two instances of +** %d. The values of p1 and p2 are written into the first and second +** %d. +** +** If n==-1, then the previous character is overwritten. +*/ +PRIVATE char *append_str(const char *zText, int n, int p1, int p2){ + static char empty[1] = { 0 }; + static char *z = 0; + static int alloced = 0; + static int used = 0; + int c; + char zInt[40]; + if( zText==0 ){ + used = 0; + return z; + } + if( n<=0 ){ + if( n<0 ){ + used += n; + assert( used>=0 ); + } + n = lemonStrlen(zText); + } + if( (int) (n+sizeof(zInt)*2+used) >= alloced ){ + alloced = n + sizeof(zInt)*2 + used + 200; + z = (char *) realloc(z, alloced); + } + if( z==0 ) return empty; + while( n-- > 0 ){ + c = *(zText++); + if( c=='%' && n>0 && zText[0]=='d' ){ + lemon_sprintf(zInt, "%d", p1); + p1 = p2; + lemon_strcpy(&z[used], zInt); + used += lemonStrlen(&z[used]); + zText++; + n--; + }else{ + z[used++] = c; + } + } + z[used] = 0; + return z; +} + +/* +** zCode is a string that is the action associated with a rule. Expand +** the symbols in this string so that the refer to elements of the parser +** stack. +*/ +PRIVATE void translate_code(struct lemon *lemp, struct rule *rp){ + char *cp, *xp; + int i; + char lhsused = 0; /* True if the LHS element has been used */ + char used[MAXRHS]; /* True for each RHS element which is used */ + + for(i=0; inrhs; i++) used[i] = 0; + lhsused = 0; + + if( rp->code==0 ){ + static char newlinestr[2] = { '\n', '\0' }; + rp->code = newlinestr; + rp->line = rp->ruleline; + } + + append_str(0,0,0,0); + + /* This const cast is wrong but harmless, if we're careful. */ + for(cp=(char *)rp->code; *cp; cp++){ + if( isalpha(*cp) && (cp==rp->code || (!isalnum(cp[-1]) && cp[-1]!='_')) ){ + char saved; + for(xp= &cp[1]; isalnum(*xp) || *xp=='_'; xp++); + saved = *xp; + *xp = 0; + if( rp->lhsalias && strcmp(cp,rp->lhsalias)==0 ){ + append_str("yygotominor.yy%d",0,rp->lhs->dtnum,0); + cp = xp; + lhsused = 1; + }else{ + for(i=0; inrhs; i++){ + if( rp->rhsalias[i] && strcmp(cp,rp->rhsalias[i])==0 ){ + if( cp!=rp->code && cp[-1]=='@' ){ + /* If the argument is of the form @X then substituted + ** the token number of X, not the value of X */ + append_str("yymsp[%d].major",-1,i-rp->nrhs+1,0); + }else{ + struct symbol *sp = rp->rhs[i]; + int dtnum; + if( sp->type==MULTITERMINAL ){ + dtnum = sp->subsym[0]->dtnum; + }else{ + dtnum = sp->dtnum; + } + append_str("yymsp[%d].minor.yy%d",0,i-rp->nrhs+1, dtnum); + } + cp = xp; + used[i] = 1; + break; + } + } + } + *xp = saved; + } + append_str(cp, 1, 0, 0); + } /* End loop */ + + /* Check to make sure the LHS has been used */ + if( rp->lhsalias && !lhsused ){ + ErrorMsg(lemp->filename,rp->ruleline, + "Label \"%s\" for \"%s(%s)\" is never used.", + rp->lhsalias,rp->lhs->name,rp->lhsalias); + lemp->errorcnt++; + } + + /* Generate destructor code for RHS symbols which are not used in the + ** reduce code */ + for(i=0; inrhs; i++){ + if( rp->rhsalias[i] && !used[i] ){ + ErrorMsg(lemp->filename,rp->ruleline, + "Label %s for \"%s(%s)\" is never used.", + rp->rhsalias[i],rp->rhs[i]->name,rp->rhsalias[i]); + lemp->errorcnt++; + }else if( rp->rhsalias[i]==0 ){ + if( has_destructor(rp->rhs[i],lemp) ){ + append_str(" yy_destructor(yypParser,%d,&yymsp[%d].minor);\n", 0, + rp->rhs[i]->index,i-rp->nrhs+1); + }else{ + /* No destructor defined for this term */ + } + } + } + if( rp->code ){ + cp = append_str(0,0,0,0); + rp->code = Strsafe(cp?cp:""); + } +} + +/* +** Generate code which executes when the rule "rp" is reduced. Write +** the code to "out". Make sure lineno stays up-to-date. +*/ +PRIVATE void emit_code( + FILE *out, + struct rule *rp, + struct lemon *lemp, + int *lineno +){ + const char *cp; + + /* Generate code to do the reduce action */ + if( rp->code ){ + if (!lemp->nolinenosflag) { (*lineno)++; tplt_linedir(out,rp->line,lemp->filename); } + fprintf(out,"{%s",rp->code); + for(cp=rp->code; *cp; cp++){ + if( *cp=='\n' ) (*lineno)++; + } /* End loop */ + fprintf(out,"}\n"); (*lineno)++; + if (!lemp->nolinenosflag) { (*lineno)++; tplt_linedir(out,*lineno,lemp->outname); } + } /* End if( rp->code ) */ + + return; +} + +/* +** Print the definition of the union used for the parser's data stack. +** This union contains fields for every possible data type for tokens +** and nonterminals. In the process of computing and printing this +** union, also set the ".dtnum" field of every terminal and nonterminal +** symbol. +*/ +void print_stack_union( + FILE *out, /* The output stream */ + struct lemon *lemp, /* The main info structure for this parser */ + int *plineno, /* Pointer to the line number */ + int mhflag /* True if generating makeheaders output */ +){ + int lineno = *plineno; /* The line number of the output */ + char **types; /* A hash table of datatypes */ + int arraysize; /* Size of the "types" array */ + int maxdtlength; /* Maximum length of any ".datatype" field. */ + char *stddt; /* Standardized name for a datatype */ + int i,j; /* Loop counters */ + unsigned hash; /* For hashing the name of a type */ + const char *name; /* Name of the parser */ + + /* Allocate and initialize types[] and allocate stddt[] */ + arraysize = lemp->nsymbol * 2; + types = (char**)calloc( arraysize, sizeof(char*) ); + if( types==0 ){ + fprintf(stderr,"Out of memory.\n"); + exit(1); + } + for(i=0; ivartype ){ + maxdtlength = lemonStrlen(lemp->vartype); + } + for(i=0; insymbol; i++){ + int len; + struct symbol *sp = lemp->symbols[i]; + if( sp->datatype==0 ) continue; + len = lemonStrlen(sp->datatype); + if( len>maxdtlength ) maxdtlength = len; + } + stddt = (char*)malloc( maxdtlength*2 + 1 ); + if( stddt==0 ){ + fprintf(stderr,"Out of memory.\n"); + exit(1); + } + + /* Build a hash table of datatypes. The ".dtnum" field of each symbol + ** is filled in with the hash index plus 1. A ".dtnum" value of 0 is + ** used for terminal symbols. If there is no %default_type defined then + ** 0 is also used as the .dtnum value for nonterminals which do not specify + ** a datatype using the %type directive. + */ + for(i=0; insymbol; i++){ + struct symbol *sp = lemp->symbols[i]; + char *cp; + if( sp==lemp->errsym ){ + sp->dtnum = arraysize+1; + continue; + } + if( sp->type!=NONTERMINAL || (sp->datatype==0 && lemp->vartype==0) ){ + sp->dtnum = 0; + continue; + } + cp = sp->datatype; + if( cp==0 ) cp = lemp->vartype; + j = 0; + while( isspace(*cp) ) cp++; + while( *cp ) stddt[j++] = *cp++; + while( j>0 && isspace(stddt[j-1]) ) j--; + stddt[j] = 0; + if( lemp->tokentype && strcmp(stddt, lemp->tokentype)==0 ){ + sp->dtnum = 0; + continue; + } + hash = 0; + for(j=0; stddt[j]; j++){ + hash = hash*53 + stddt[j]; + } + hash = (hash & 0x7fffffff)%arraysize; + while( types[hash] ){ + if( strcmp(types[hash],stddt)==0 ){ + sp->dtnum = hash + 1; + break; + } + hash++; + if( hash>=(unsigned)arraysize ) hash = 0; + } + if( types[hash]==0 ){ + sp->dtnum = hash + 1; + types[hash] = (char*)malloc( lemonStrlen(stddt)+1 ); + if( types[hash]==0 ){ + fprintf(stderr,"Out of memory.\n"); + exit(1); + } + lemon_strcpy(types[hash],stddt); + } + } + + /* Print out the definition of YYTOKENTYPE and YYMINORTYPE */ + name = lemp->name ? lemp->name : "Parse"; + lineno = *plineno; + if( mhflag ){ fprintf(out,"#if INTERFACE\n"); lineno++; } + fprintf(out,"#define %sTOKENTYPE %s\n",name, + lemp->tokentype?lemp->tokentype:"void*"); lineno++; + if( mhflag ){ fprintf(out,"#endif\n"); lineno++; } + fprintf(out,"typedef union {\n"); lineno++; + fprintf(out," int yyinit;\n"); lineno++; + fprintf(out," %sTOKENTYPE yy0;\n",name); lineno++; + for(i=0; ierrsym->useCnt ){ + fprintf(out," int yy%d;\n",lemp->errsym->dtnum); lineno++; + } + free(stddt); + free(types); + fprintf(out,"} YYMINORTYPE;\n"); lineno++; + *plineno = lineno; +} + +/* +** Return the name of a C datatype able to represent values between +** lwr and upr, inclusive. +*/ +static const char *minimum_size_type(int lwr, int upr){ + if( lwr>=0 ){ + if( upr<=255 ){ + return "unsigned char"; + }else if( upr<65535 ){ + return "unsigned short int"; + }else{ + return "unsigned int"; + } + }else if( lwr>=-127 && upr<=127 ){ + return "signed char"; + }else if( lwr>=-32767 && upr<32767 ){ + return "short"; + }else{ + return "int"; + } +} + +/* +** Each state contains a set of token transaction and a set of +** nonterminal transactions. Each of these sets makes an instance +** of the following structure. An array of these structures is used +** to order the creation of entries in the yy_action[] table. +*/ +struct axset { + struct state *stp; /* A pointer to a state */ + int isTkn; /* True to use tokens. False for non-terminals */ + int nAction; /* Number of actions */ + int iOrder; /* Original order of action sets */ +}; + +/* +** Compare to axset structures for sorting purposes +*/ +static int axset_compare(const void *a, const void *b){ + struct axset *p1 = (struct axset*)a; + struct axset *p2 = (struct axset*)b; + int c; + c = p2->nAction - p1->nAction; + if( c==0 ){ + c = p2->iOrder - p1->iOrder; + } + assert( c!=0 || p1==p2 ); + return c; +} + +/* +** Write text on "out" that describes the rule "rp". +*/ +static void writeRuleText(FILE *out, struct rule *rp){ + int j; + fprintf(out,"%s ::=", rp->lhs->name); + for(j=0; jnrhs; j++){ + struct symbol *sp = rp->rhs[j]; + if( sp->type!=MULTITERMINAL ){ + fprintf(out," %s", sp->name); + }else{ + int k; + fprintf(out," %s", sp->subsym[0]->name); + for(k=1; knsubsym; k++){ + fprintf(out,"|%s",sp->subsym[k]->name); + } + } + } +} + + +/* Generate C source code for the parser */ +void ReportTable( + struct lemon *lemp, + int mhflag /* Output in makeheaders format if true */ +){ + FILE *out, *in; + char line[LINESIZE]; + int lineno; + struct state *stp; + struct action *ap; + struct rule *rp; + struct acttab *pActtab; + int i, j, n; + const char *name; + int mnTknOfst, mxTknOfst; + int mnNtOfst, mxNtOfst; + struct axset *ax; + + in = tplt_open(lemp); + if( in==0 ) return; + out = file_open(lemp,".c","wb"); + if( out==0 ){ + fclose(in); + return; + } + lineno = 1; + tplt_xfer(lemp->name,in,out,&lineno); + + /* Generate the include code, if any */ + tplt_print(out,lemp,lemp->include,&lineno); + if( mhflag ){ + char *name = file_makename(lemp, ".h"); + fprintf(out,"#include \"%s\"\n", name); lineno++; + free(name); + } + tplt_xfer(lemp->name,in,out,&lineno); + + /* Generate #defines for all tokens */ + if( mhflag ){ + const char *prefix; + fprintf(out,"#if INTERFACE\n"); lineno++; + if( lemp->tokenprefix ) prefix = lemp->tokenprefix; + else prefix = ""; + for(i=1; interminal; i++){ + fprintf(out,"#define %s%-30s %2d\n",prefix,lemp->symbols[i]->name,i); + lineno++; + } + fprintf(out,"#endif\n"); lineno++; + } + tplt_xfer(lemp->name,in,out,&lineno); + + /* Generate the defines */ + fprintf(out,"#define YYCODETYPE %s\n", + minimum_size_type(0, lemp->nsymbol+1)); lineno++; + fprintf(out,"#define YYNOCODE %d\n",lemp->nsymbol+1); lineno++; + fprintf(out,"#define YYACTIONTYPE %s\n", + minimum_size_type(0, lemp->nstate+lemp->nrule+5)); lineno++; + if( lemp->wildcard ){ + fprintf(out,"#define YYWILDCARD %d\n", + lemp->wildcard->index); lineno++; + } + print_stack_union(out,lemp,&lineno,mhflag); + fprintf(out, "#ifndef YYSTACKDEPTH\n"); lineno++; + if( lemp->stacksize ){ + fprintf(out,"#define YYSTACKDEPTH %s\n",lemp->stacksize); lineno++; + }else{ + fprintf(out,"#define YYSTACKDEPTH 100\n"); lineno++; + } + fprintf(out, "#endif\n"); lineno++; + if( mhflag ){ + fprintf(out,"#if INTERFACE\n"); lineno++; + } + name = lemp->name ? lemp->name : "Parse"; + if( lemp->arg && lemp->arg[0] ){ + int i; + i = lemonStrlen(lemp->arg); + while( i>=1 && isspace(lemp->arg[i-1]) ) i--; + while( i>=1 && (isalnum(lemp->arg[i-1]) || lemp->arg[i-1]=='_') ) i--; + fprintf(out,"#define %sARG_SDECL %s;\n",name,lemp->arg); lineno++; + fprintf(out,"#define %sARG_PDECL ,%s\n",name,lemp->arg); lineno++; + fprintf(out,"#define %sARG_FETCH %s = yypParser->%s\n", + name,lemp->arg,&lemp->arg[i]); lineno++; + fprintf(out,"#define %sARG_STORE yypParser->%s = %s\n", + name,&lemp->arg[i],&lemp->arg[i]); lineno++; + }else{ + fprintf(out,"#define %sARG_SDECL\n",name); lineno++; + fprintf(out,"#define %sARG_PDECL\n",name); lineno++; + fprintf(out,"#define %sARG_FETCH\n",name); lineno++; + fprintf(out,"#define %sARG_STORE\n",name); lineno++; + } + if( mhflag ){ + fprintf(out,"#endif\n"); lineno++; + } + fprintf(out,"#define YYNSTATE %d\n",lemp->nstate); lineno++; + fprintf(out,"#define YYNRULE %d\n",lemp->nrule); lineno++; + if( lemp->errsym->useCnt ){ + fprintf(out,"#define YYERRORSYMBOL %d\n",lemp->errsym->index); lineno++; + fprintf(out,"#define YYERRSYMDT yy%d\n",lemp->errsym->dtnum); lineno++; + } + if( lemp->has_fallback ){ + fprintf(out,"#define YYFALLBACK 1\n"); lineno++; + } + tplt_xfer(lemp->name,in,out,&lineno); + + /* Generate the action table and its associates: + ** + ** yy_action[] A single table containing all actions. + ** yy_lookahead[] A table containing the lookahead for each entry in + ** yy_action. Used to detect hash collisions. + ** yy_shift_ofst[] For each state, the offset into yy_action for + ** shifting terminals. + ** yy_reduce_ofst[] For each state, the offset into yy_action for + ** shifting non-terminals after a reduce. + ** yy_default[] Default action for each state. + */ + + /* Compute the actions on all states and count them up */ + ax = (struct axset *) calloc(lemp->nstate*2, sizeof(ax[0])); + if( ax==0 ){ + fprintf(stderr,"malloc failed\n"); + exit(1); + } + for(i=0; instate; i++){ + stp = lemp->sorted[i]; + ax[i*2].stp = stp; + ax[i*2].isTkn = 1; + ax[i*2].nAction = stp->nTknAct; + ax[i*2+1].stp = stp; + ax[i*2+1].isTkn = 0; + ax[i*2+1].nAction = stp->nNtAct; + } + mxTknOfst = mnTknOfst = 0; + mxNtOfst = mnNtOfst = 0; + + /* Compute the action table. In order to try to keep the size of the + ** action table to a minimum, the heuristic of placing the largest action + ** sets first is used. + */ + for(i=0; instate*2; i++) ax[i].iOrder = i; + qsort(ax, lemp->nstate*2, sizeof(ax[0]), axset_compare); + pActtab = acttab_alloc(); + for(i=0; instate*2 && ax[i].nAction>0; i++){ + stp = ax[i].stp; + if( ax[i].isTkn ){ + for(ap=stp->ap; ap; ap=ap->next){ + int action; + if( ap->sp->index>=lemp->nterminal ) continue; + action = compute_action(lemp, ap); + if( action<0 ) continue; + acttab_action(pActtab, ap->sp->index, action); + } + stp->iTknOfst = acttab_insert(pActtab); + if( stp->iTknOfstiTknOfst; + if( stp->iTknOfst>mxTknOfst ) mxTknOfst = stp->iTknOfst; + }else{ + for(ap=stp->ap; ap; ap=ap->next){ + int action; + if( ap->sp->indexnterminal ) continue; + if( ap->sp->index==lemp->nsymbol ) continue; + action = compute_action(lemp, ap); + if( action<0 ) continue; + acttab_action(pActtab, ap->sp->index, action); + } + stp->iNtOfst = acttab_insert(pActtab); + if( stp->iNtOfstiNtOfst; + if( stp->iNtOfst>mxNtOfst ) mxNtOfst = stp->iNtOfst; + } + } + free(ax); + + /* Output the yy_action table */ + n = acttab_size(pActtab); + fprintf(out,"#define YY_ACTTAB_COUNT (%d)\n", n); lineno++; + fprintf(out,"static const YYACTIONTYPE yy_action[] = {\n"); lineno++; + for(i=j=0; instate + lemp->nrule + 2; + if( j==0 ) fprintf(out," /* %5d */ ", i); + fprintf(out, " %4d,", action); + if( j==9 || i==n-1 ){ + fprintf(out, "\n"); lineno++; + j = 0; + }else{ + j++; + } + } + fprintf(out, "};\n"); lineno++; + + /* Output the yy_lookahead table */ + fprintf(out,"static const YYCODETYPE yy_lookahead[] = {\n"); lineno++; + for(i=j=0; insymbol; + if( j==0 ) fprintf(out," /* %5d */ ", i); + fprintf(out, " %4d,", la); + if( j==9 || i==n-1 ){ + fprintf(out, "\n"); lineno++; + j = 0; + }else{ + j++; + } + } + fprintf(out, "};\n"); lineno++; + + /* Output the yy_shift_ofst[] table */ + fprintf(out, "#define YY_SHIFT_USE_DFLT (%d)\n", mnTknOfst-1); lineno++; + n = lemp->nstate; + while( n>0 && lemp->sorted[n-1]->iTknOfst==NO_OFFSET ) n--; + fprintf(out, "#define YY_SHIFT_COUNT (%d)\n", n-1); lineno++; + fprintf(out, "#define YY_SHIFT_MIN (%d)\n", mnTknOfst); lineno++; + fprintf(out, "#define YY_SHIFT_MAX (%d)\n", mxTknOfst); lineno++; + fprintf(out, "static const %s yy_shift_ofst[] = {\n", + minimum_size_type(mnTknOfst-1, mxTknOfst)); lineno++; + for(i=j=0; isorted[i]; + ofst = stp->iTknOfst; + if( ofst==NO_OFFSET ) ofst = mnTknOfst - 1; + if( j==0 ) fprintf(out," /* %5d */ ", i); + fprintf(out, " %4d,", ofst); + if( j==9 || i==n-1 ){ + fprintf(out, "\n"); lineno++; + j = 0; + }else{ + j++; + } + } + fprintf(out, "};\n"); lineno++; + + /* Output the yy_reduce_ofst[] table */ + fprintf(out, "#define YY_REDUCE_USE_DFLT (%d)\n", mnNtOfst-1); lineno++; + n = lemp->nstate; + while( n>0 && lemp->sorted[n-1]->iNtOfst==NO_OFFSET ) n--; + fprintf(out, "#define YY_REDUCE_COUNT (%d)\n", n-1); lineno++; + fprintf(out, "#define YY_REDUCE_MIN (%d)\n", mnNtOfst); lineno++; + fprintf(out, "#define YY_REDUCE_MAX (%d)\n", mxNtOfst); lineno++; + fprintf(out, "static const %s yy_reduce_ofst[] = {\n", + minimum_size_type(mnNtOfst-1, mxNtOfst)); lineno++; + for(i=j=0; isorted[i]; + ofst = stp->iNtOfst; + if( ofst==NO_OFFSET ) ofst = mnNtOfst - 1; + if( j==0 ) fprintf(out," /* %5d */ ", i); + fprintf(out, " %4d,", ofst); + if( j==9 || i==n-1 ){ + fprintf(out, "\n"); lineno++; + j = 0; + }else{ + j++; + } + } + fprintf(out, "};\n"); lineno++; + + /* Output the default action table */ + fprintf(out, "static const YYACTIONTYPE yy_default[] = {\n"); lineno++; + n = lemp->nstate; + for(i=j=0; isorted[i]; + if( j==0 ) fprintf(out," /* %5d */ ", i); + fprintf(out, " %4d,", stp->iDflt); + if( j==9 || i==n-1 ){ + fprintf(out, "\n"); lineno++; + j = 0; + }else{ + j++; + } + } + fprintf(out, "};\n"); lineno++; + tplt_xfer(lemp->name,in,out,&lineno); + + /* Generate the table of fallback tokens. + */ + if( lemp->has_fallback ){ + int mx = lemp->nterminal - 1; + while( mx>0 && lemp->symbols[mx]->fallback==0 ){ mx--; } + for(i=0; i<=mx; i++){ + struct symbol *p = lemp->symbols[i]; + if( p->fallback==0 ){ + fprintf(out, " 0, /* %10s => nothing */\n", p->name); + }else{ + fprintf(out, " %3d, /* %10s => %s */\n", p->fallback->index, + p->name, p->fallback->name); + } + lineno++; + } + } + tplt_xfer(lemp->name, in, out, &lineno); + + /* Generate a table containing the symbolic name of every symbol + */ + for(i=0; insymbol; i++){ + lemon_sprintf(line,"\"%s\",",lemp->symbols[i]->name); + fprintf(out," %-15s",line); + if( (i&3)==3 ){ fprintf(out,"\n"); lineno++; } + } + if( (i&3)!=0 ){ fprintf(out,"\n"); lineno++; } + tplt_xfer(lemp->name,in,out,&lineno); + + /* Generate a table containing a text string that describes every + ** rule in the rule set of the grammar. This information is used + ** when tracing REDUCE actions. + */ + for(i=0, rp=lemp->rule; rp; rp=rp->next, i++){ + assert( rp->index==i ); + fprintf(out," /* %3d */ \"", i); + writeRuleText(out, rp); + fprintf(out,"\",\n"); lineno++; + } + tplt_xfer(lemp->name,in,out,&lineno); + + /* Generate code which executes every time a symbol is popped from + ** the stack while processing errors or while destroying the parser. + ** (In other words, generate the %destructor actions) + */ + if( lemp->tokendest ){ + int once = 1; + for(i=0; insymbol; i++){ + struct symbol *sp = lemp->symbols[i]; + if( sp==0 || sp->type!=TERMINAL ) continue; + if( once ){ + fprintf(out, " /* TERMINAL Destructor */\n"); lineno++; + once = 0; + } + fprintf(out," case %d: /* %s */\n", sp->index, sp->name); lineno++; + } + for(i=0; insymbol && lemp->symbols[i]->type!=TERMINAL; i++); + if( insymbol ){ + emit_destructor_code(out,lemp->symbols[i],lemp,&lineno); + fprintf(out," break;\n"); lineno++; + } + } + if( lemp->vardest ){ + struct symbol *dflt_sp = 0; + int once = 1; + for(i=0; insymbol; i++){ + struct symbol *sp = lemp->symbols[i]; + if( sp==0 || sp->type==TERMINAL || + sp->index<=0 || sp->destructor!=0 ) continue; + if( once ){ + fprintf(out, " /* Default NON-TERMINAL Destructor */\n"); lineno++; + once = 0; + } + fprintf(out," case %d: /* %s */\n", sp->index, sp->name); lineno++; + dflt_sp = sp; + } + if( dflt_sp!=0 ){ + emit_destructor_code(out,dflt_sp,lemp,&lineno); + } + fprintf(out," break;\n"); lineno++; + } + for(i=0; insymbol; i++){ + struct symbol *sp = lemp->symbols[i]; + if( sp==0 || sp->type==TERMINAL || sp->destructor==0 ) continue; + fprintf(out," case %d: /* %s */\n", sp->index, sp->name); lineno++; + + /* Combine duplicate destructors into a single case */ + for(j=i+1; jnsymbol; j++){ + struct symbol *sp2 = lemp->symbols[j]; + if( sp2 && sp2->type!=TERMINAL && sp2->destructor + && sp2->dtnum==sp->dtnum + && strcmp(sp->destructor,sp2->destructor)==0 ){ + fprintf(out," case %d: /* %s */\n", + sp2->index, sp2->name); lineno++; + sp2->destructor = 0; + } + } + + emit_destructor_code(out,lemp->symbols[i],lemp,&lineno); + fprintf(out," break;\n"); lineno++; + } + tplt_xfer(lemp->name,in,out,&lineno); + + /* Generate code which executes whenever the parser stack overflows */ + tplt_print(out,lemp,lemp->overflow,&lineno); + tplt_xfer(lemp->name,in,out,&lineno); + + /* Generate the table of rule information + ** + ** Note: This code depends on the fact that rules are number + ** sequentually beginning with 0. + */ + for(rp=lemp->rule; rp; rp=rp->next){ + fprintf(out," { %d, %d },\n",rp->lhs->index,rp->nrhs); lineno++; + } + tplt_xfer(lemp->name,in,out,&lineno); + + /* Generate code which execution during each REDUCE action */ + for(rp=lemp->rule; rp; rp=rp->next){ + translate_code(lemp, rp); + } + /* First output rules other than the default: rule */ + for(rp=lemp->rule; rp; rp=rp->next){ + struct rule *rp2; /* Other rules with the same action */ + if( rp->code==0 ) continue; + if( rp->code[0]=='\n' && rp->code[1]==0 ) continue; /* Will be default: */ + fprintf(out," case %d: /* ", rp->index); + writeRuleText(out, rp); + fprintf(out, " */\n"); lineno++; + for(rp2=rp->next; rp2; rp2=rp2->next){ + if( rp2->code==rp->code ){ + fprintf(out," case %d: /* ", rp2->index); + writeRuleText(out, rp2); + fprintf(out," */ yytestcase(yyruleno==%d);\n", rp2->index); lineno++; + rp2->code = 0; + } + } + emit_code(out,rp,lemp,&lineno); + fprintf(out," break;\n"); lineno++; + rp->code = 0; + } + /* Finally, output the default: rule. We choose as the default: all + ** empty actions. */ + fprintf(out," default:\n"); lineno++; + for(rp=lemp->rule; rp; rp=rp->next){ + if( rp->code==0 ) continue; + assert( rp->code[0]=='\n' && rp->code[1]==0 ); + fprintf(out," /* (%d) ", rp->index); + writeRuleText(out, rp); + fprintf(out, " */ yytestcase(yyruleno==%d);\n", rp->index); lineno++; + } + fprintf(out," break;\n"); lineno++; + tplt_xfer(lemp->name,in,out,&lineno); + + /* Generate code which executes if a parse fails */ + tplt_print(out,lemp,lemp->failure,&lineno); + tplt_xfer(lemp->name,in,out,&lineno); + + /* Generate code which executes when a syntax error occurs */ + tplt_print(out,lemp,lemp->error,&lineno); + tplt_xfer(lemp->name,in,out,&lineno); + + /* Generate code which executes when the parser accepts its input */ + tplt_print(out,lemp,lemp->accept,&lineno); + tplt_xfer(lemp->name,in,out,&lineno); + + /* Append any addition code the user desires */ + tplt_print(out,lemp,lemp->extracode,&lineno); + + fclose(in); + fclose(out); + return; +} + +/* Generate a header file for the parser */ +void ReportHeader(struct lemon *lemp) +{ + FILE *out, *in; + const char *prefix; + char line[LINESIZE]; + char pattern[LINESIZE]; + int i; + + if( lemp->tokenprefix ) prefix = lemp->tokenprefix; + else prefix = ""; + in = file_open(lemp,".h","rb"); + if( in ){ + int nextChar; + for(i=1; interminal && fgets(line,LINESIZE,in); i++){ + lemon_sprintf(pattern,"#define %s%-30s %3d\n", + prefix,lemp->symbols[i]->name,i); + if( strcmp(line,pattern) ) break; + } + nextChar = fgetc(in); + fclose(in); + if( i==lemp->nterminal && nextChar==EOF ){ + /* No change in the file. Don't rewrite it. */ + return; + } + } + out = file_open(lemp,".h","wb"); + if( out ){ + for(i=1; interminal; i++){ + fprintf(out,"#define %s%-30s %3d\n",prefix,lemp->symbols[i]->name,i); + } + fclose(out); + } + return; +} + +/* Reduce the size of the action tables, if possible, by making use +** of defaults. +** +** In this version, we take the most frequent REDUCE action and make +** it the default. Except, there is no default if the wildcard token +** is a possible look-ahead. +*/ +void CompressTables(struct lemon *lemp) +{ + struct state *stp; + struct action *ap, *ap2; + struct rule *rp, *rp2, *rbest; + int nbest, n; + int i; + int usesWildcard; + + for(i=0; instate; i++){ + stp = lemp->sorted[i]; + nbest = 0; + rbest = 0; + usesWildcard = 0; + + for(ap=stp->ap; ap; ap=ap->next){ + if( ap->type==SHIFT && ap->sp==lemp->wildcard ){ + usesWildcard = 1; + } + if( ap->type!=REDUCE ) continue; + rp = ap->x.rp; + if( rp->lhsStart ) continue; + if( rp==rbest ) continue; + n = 1; + for(ap2=ap->next; ap2; ap2=ap2->next){ + if( ap2->type!=REDUCE ) continue; + rp2 = ap2->x.rp; + if( rp2==rbest ) continue; + if( rp2==rp ) n++; + } + if( n>nbest ){ + nbest = n; + rbest = rp; + } + } + + /* Do not make a default if the number of rules to default + ** is not at least 1 or if the wildcard token is a possible + ** lookahead. + */ + if( nbest<1 || usesWildcard ) continue; + + + /* Combine matching REDUCE actions into a single default */ + for(ap=stp->ap; ap; ap=ap->next){ + if( ap->type==REDUCE && ap->x.rp==rbest ) break; + } + assert( ap ); + ap->sp = Symbol_new("{default}"); + for(ap=ap->next; ap; ap=ap->next){ + if( ap->type==REDUCE && ap->x.rp==rbest ) ap->type = NOT_USED; + } + stp->ap = Action_sort(stp->ap); + } +} + + +/* +** Compare two states for sorting purposes. The smaller state is the +** one with the most non-terminal actions. If they have the same number +** of non-terminal actions, then the smaller is the one with the most +** token actions. +*/ +static int stateResortCompare(const void *a, const void *b){ + const struct state *pA = *(const struct state**)a; + const struct state *pB = *(const struct state**)b; + int n; + + n = pB->nNtAct - pA->nNtAct; + if( n==0 ){ + n = pB->nTknAct - pA->nTknAct; + if( n==0 ){ + n = pB->statenum - pA->statenum; + } + } + assert( n!=0 ); + return n; +} + + +/* +** Renumber and resort states so that states with fewer choices +** occur at the end. Except, keep state 0 as the first state. +*/ +void ResortStates(struct lemon *lemp) +{ + int i; + struct state *stp; + struct action *ap; + + for(i=0; instate; i++){ + stp = lemp->sorted[i]; + stp->nTknAct = stp->nNtAct = 0; + stp->iDflt = lemp->nstate + lemp->nrule; + stp->iTknOfst = NO_OFFSET; + stp->iNtOfst = NO_OFFSET; + for(ap=stp->ap; ap; ap=ap->next){ + if( compute_action(lemp,ap)>=0 ){ + if( ap->sp->indexnterminal ){ + stp->nTknAct++; + }else if( ap->sp->indexnsymbol ){ + stp->nNtAct++; + }else{ + stp->iDflt = compute_action(lemp, ap); + } + } + } + } + qsort(&lemp->sorted[1], lemp->nstate-1, sizeof(lemp->sorted[0]), + stateResortCompare); + for(i=0; instate; i++){ + lemp->sorted[i]->statenum = i; + } +} + + +/***************** From the file "set.c" ************************************/ +/* +** Set manipulation routines for the LEMON parser generator. +*/ + +static int size = 0; + +/* Set the set size */ +void SetSize(int n) +{ + size = n+1; +} + +/* Allocate a new set */ +char *SetNew(){ + char *s; + s = (char*)calloc( size, 1); + if( s==0 ){ + extern void memory_error(); + memory_error(); + } + return s; +} + +/* Deallocate a set */ +void SetFree(char *s) +{ + free(s); +} + +/* Add a new element to the set. Return TRUE if the element was added +** and FALSE if it was already there. */ +int SetAdd(char *s, int e) +{ + int rv; + assert( e>=0 && esize = 1024; + x1a->count = 0; + x1a->tbl = (x1node*)calloc(1024, sizeof(x1node) + sizeof(x1node*)); + if( x1a->tbl==0 ){ + free(x1a); + x1a = 0; + }else{ + int i; + x1a->ht = (x1node**)&(x1a->tbl[1024]); + for(i=0; i<1024; i++) x1a->ht[i] = 0; + } + } +} +/* Insert a new record into the array. Return TRUE if successful. +** Prior data with the same key is NOT overwritten */ +int Strsafe_insert(const char *data) +{ + x1node *np; + unsigned h; + unsigned ph; + + if( x1a==0 ) return 0; + ph = strhash(data); + h = ph & (x1a->size-1); + np = x1a->ht[h]; + while( np ){ + if( strcmp(np->data,data)==0 ){ + /* An existing entry with the same key is found. */ + /* Fail because overwrite is not allows. */ + return 0; + } + np = np->next; + } + if( x1a->count>=x1a->size ){ + /* Need to make the hash table bigger */ + int i,size; + struct s_x1 array; + array.size = size = x1a->size*2; + array.count = x1a->count; + array.tbl = (x1node*)calloc(size, sizeof(x1node) + sizeof(x1node*)); + if( array.tbl==0 ) return 0; /* Fail due to malloc failure */ + array.ht = (x1node**)&(array.tbl[size]); + for(i=0; icount; i++){ + x1node *oldnp, *newnp; + oldnp = &(x1a->tbl[i]); + h = strhash(oldnp->data) & (size-1); + newnp = &(array.tbl[i]); + if( array.ht[h] ) array.ht[h]->from = &(newnp->next); + newnp->next = array.ht[h]; + newnp->data = oldnp->data; + newnp->from = &(array.ht[h]); + array.ht[h] = newnp; + } + free(x1a->tbl); + *x1a = array; + } + /* Insert the new data */ + h = ph & (x1a->size-1); + np = &(x1a->tbl[x1a->count++]); + np->data = data; + if( x1a->ht[h] ) x1a->ht[h]->from = &(np->next); + np->next = x1a->ht[h]; + x1a->ht[h] = np; + np->from = &(x1a->ht[h]); + return 1; +} + +/* Return a pointer to data assigned to the given key. Return NULL +** if no such key. */ +const char *Strsafe_find(const char *key) +{ + unsigned h; + x1node *np; + + if( x1a==0 ) return 0; + h = strhash(key) & (x1a->size-1); + np = x1a->ht[h]; + while( np ){ + if( strcmp(np->data,key)==0 ) break; + np = np->next; + } + return np ? np->data : 0; +} + +/* Return a pointer to the (terminal or nonterminal) symbol "x". +** Create a new symbol if this is the first time "x" has been seen. +*/ +struct symbol *Symbol_new(const char *x) +{ + struct symbol *sp; + + sp = Symbol_find(x); + if( sp==0 ){ + sp = (struct symbol *)calloc(1, sizeof(struct symbol) ); + MemoryCheck(sp); + sp->name = Strsafe(x); + sp->type = isupper(*x) ? TERMINAL : NONTERMINAL; + sp->rule = 0; + sp->fallback = 0; + sp->prec = -1; + sp->assoc = UNK; + sp->firstset = 0; + sp->lambda = LEMON_FALSE; + sp->destructor = 0; + sp->destLineno = 0; + sp->datatype = 0; + sp->useCnt = 0; + Symbol_insert(sp,sp->name); + } + sp->useCnt++; + return sp; +} + +/* Compare two symbols for sorting purposes. Return negative, +** zero, or positive if a is less then, equal to, or greater +** than b. +** +** Symbols that begin with upper case letters (terminals or tokens) +** must sort before symbols that begin with lower case letters +** (non-terminals). And MULTITERMINAL symbols (created using the +** %token_class directive) must sort at the very end. Other than +** that, the order does not matter. +** +** We find experimentally that leaving the symbols in their original +** order (the order they appeared in the grammar file) gives the +** smallest parser tables in SQLite. +*/ +int Symbolcmpp(const void *_a, const void *_b) +{ + const struct symbol *a = *(const struct symbol **) _a; + const struct symbol *b = *(const struct symbol **) _b; + int i1 = a->type==MULTITERMINAL ? 3 : a->name[0]>'Z' ? 2 : 1; + int i2 = b->type==MULTITERMINAL ? 3 : b->name[0]>'Z' ? 2 : 1; + return i1==i2 ? a->index - b->index : i1 - i2; +} + +/* There is one instance of the following structure for each +** associative array of type "x2". +*/ +struct s_x2 { + int size; /* The number of available slots. */ + /* Must be a power of 2 greater than or */ + /* equal to 1 */ + int count; /* Number of currently slots filled */ + struct s_x2node *tbl; /* The data stored here */ + struct s_x2node **ht; /* Hash table for lookups */ +}; + +/* There is one instance of this structure for every data element +** in an associative array of type "x2". +*/ +typedef struct s_x2node { + struct symbol *data; /* The data */ + const char *key; /* The key */ + struct s_x2node *next; /* Next entry with the same hash */ + struct s_x2node **from; /* Previous link */ +} x2node; + +/* There is only one instance of the array, which is the following */ +static struct s_x2 *x2a; + +/* Allocate a new associative array */ +void Symbol_init(){ + if( x2a ) return; + x2a = (struct s_x2*)malloc( sizeof(struct s_x2) ); + if( x2a ){ + x2a->size = 128; + x2a->count = 0; + x2a->tbl = (x2node*)calloc(128, sizeof(x2node) + sizeof(x2node*)); + if( x2a->tbl==0 ){ + free(x2a); + x2a = 0; + }else{ + int i; + x2a->ht = (x2node**)&(x2a->tbl[128]); + for(i=0; i<128; i++) x2a->ht[i] = 0; + } + } +} +/* Insert a new record into the array. Return TRUE if successful. +** Prior data with the same key is NOT overwritten */ +int Symbol_insert(struct symbol *data, const char *key) +{ + x2node *np; + unsigned h; + unsigned ph; + + if( x2a==0 ) return 0; + ph = strhash(key); + h = ph & (x2a->size-1); + np = x2a->ht[h]; + while( np ){ + if( strcmp(np->key,key)==0 ){ + /* An existing entry with the same key is found. */ + /* Fail because overwrite is not allows. */ + return 0; + } + np = np->next; + } + if( x2a->count>=x2a->size ){ + /* Need to make the hash table bigger */ + int i,size; + struct s_x2 array; + array.size = size = x2a->size*2; + array.count = x2a->count; + array.tbl = (x2node*)calloc(size, sizeof(x2node) + sizeof(x2node*)); + if( array.tbl==0 ) return 0; /* Fail due to malloc failure */ + array.ht = (x2node**)&(array.tbl[size]); + for(i=0; icount; i++){ + x2node *oldnp, *newnp; + oldnp = &(x2a->tbl[i]); + h = strhash(oldnp->key) & (size-1); + newnp = &(array.tbl[i]); + if( array.ht[h] ) array.ht[h]->from = &(newnp->next); + newnp->next = array.ht[h]; + newnp->key = oldnp->key; + newnp->data = oldnp->data; + newnp->from = &(array.ht[h]); + array.ht[h] = newnp; + } + free(x2a->tbl); + *x2a = array; + } + /* Insert the new data */ + h = ph & (x2a->size-1); + np = &(x2a->tbl[x2a->count++]); + np->key = key; + np->data = data; + if( x2a->ht[h] ) x2a->ht[h]->from = &(np->next); + np->next = x2a->ht[h]; + x2a->ht[h] = np; + np->from = &(x2a->ht[h]); + return 1; +} + +/* Return a pointer to data assigned to the given key. Return NULL +** if no such key. */ +struct symbol *Symbol_find(const char *key) +{ + unsigned h; + x2node *np; + + if( x2a==0 ) return 0; + h = strhash(key) & (x2a->size-1); + np = x2a->ht[h]; + while( np ){ + if( strcmp(np->key,key)==0 ) break; + np = np->next; + } + return np ? np->data : 0; +} + +/* Return the n-th data. Return NULL if n is out of range. */ +struct symbol *Symbol_Nth(int n) +{ + struct symbol *data; + if( x2a && n>0 && n<=x2a->count ){ + data = x2a->tbl[n-1].data; + }else{ + data = 0; + } + return data; +} + +/* Return the size of the array */ +int Symbol_count() +{ + return x2a ? x2a->count : 0; +} + +/* Return an array of pointers to all data in the table. +** The array is obtained from malloc. Return NULL if memory allocation +** problems, or if the array is empty. */ +struct symbol **Symbol_arrayof() +{ + struct symbol **array; + int i,size; + if( x2a==0 ) return 0; + size = x2a->count; + array = (struct symbol **)calloc(size, sizeof(struct symbol *)); + if( array ){ + for(i=0; itbl[i].data; + } + return array; +} + +/* Compare two configurations */ +int Configcmp(const char *_a,const char *_b) +{ + const struct config *a = (struct config *) _a; + const struct config *b = (struct config *) _b; + int x; + x = a->rp->index - b->rp->index; + if( x==0 ) x = a->dot - b->dot; + return x; +} + +/* Compare two states */ +PRIVATE int statecmp(struct config *a, struct config *b) +{ + int rc; + for(rc=0; rc==0 && a && b; a=a->bp, b=b->bp){ + rc = a->rp->index - b->rp->index; + if( rc==0 ) rc = a->dot - b->dot; + } + if( rc==0 ){ + if( a ) rc = 1; + if( b ) rc = -1; + } + return rc; +} + +/* Hash a state */ +PRIVATE unsigned statehash(struct config *a) +{ + unsigned h=0; + while( a ){ + h = h*571 + a->rp->index*37 + a->dot; + a = a->bp; + } + return h; +} + +/* Allocate a new state structure */ +struct state *State_new() +{ + struct state *newstate; + newstate = (struct state *)calloc(1, sizeof(struct state) ); + MemoryCheck(newstate); + return newstate; +} + +/* There is one instance of the following structure for each +** associative array of type "x3". +*/ +struct s_x3 { + int size; /* The number of available slots. */ + /* Must be a power of 2 greater than or */ + /* equal to 1 */ + int count; /* Number of currently slots filled */ + struct s_x3node *tbl; /* The data stored here */ + struct s_x3node **ht; /* Hash table for lookups */ +}; + +/* There is one instance of this structure for every data element +** in an associative array of type "x3". +*/ +typedef struct s_x3node { + struct state *data; /* The data */ + struct config *key; /* The key */ + struct s_x3node *next; /* Next entry with the same hash */ + struct s_x3node **from; /* Previous link */ +} x3node; + +/* There is only one instance of the array, which is the following */ +static struct s_x3 *x3a; + +/* Allocate a new associative array */ +void State_init(){ + if( x3a ) return; + x3a = (struct s_x3*)malloc( sizeof(struct s_x3) ); + if( x3a ){ + x3a->size = 128; + x3a->count = 0; + x3a->tbl = (x3node*)calloc(128, sizeof(x3node) + sizeof(x3node*)); + if( x3a->tbl==0 ){ + free(x3a); + x3a = 0; + }else{ + int i; + x3a->ht = (x3node**)&(x3a->tbl[128]); + for(i=0; i<128; i++) x3a->ht[i] = 0; + } + } +} +/* Insert a new record into the array. Return TRUE if successful. +** Prior data with the same key is NOT overwritten */ +int State_insert(struct state *data, struct config *key) +{ + x3node *np; + unsigned h; + unsigned ph; + + if( x3a==0 ) return 0; + ph = statehash(key); + h = ph & (x3a->size-1); + np = x3a->ht[h]; + while( np ){ + if( statecmp(np->key,key)==0 ){ + /* An existing entry with the same key is found. */ + /* Fail because overwrite is not allows. */ + return 0; + } + np = np->next; + } + if( x3a->count>=x3a->size ){ + /* Need to make the hash table bigger */ + int i,size; + struct s_x3 array; + array.size = size = x3a->size*2; + array.count = x3a->count; + array.tbl = (x3node*)calloc(size, sizeof(x3node) + sizeof(x3node*)); + if( array.tbl==0 ) return 0; /* Fail due to malloc failure */ + array.ht = (x3node**)&(array.tbl[size]); + for(i=0; icount; i++){ + x3node *oldnp, *newnp; + oldnp = &(x3a->tbl[i]); + h = statehash(oldnp->key) & (size-1); + newnp = &(array.tbl[i]); + if( array.ht[h] ) array.ht[h]->from = &(newnp->next); + newnp->next = array.ht[h]; + newnp->key = oldnp->key; + newnp->data = oldnp->data; + newnp->from = &(array.ht[h]); + array.ht[h] = newnp; + } + free(x3a->tbl); + *x3a = array; + } + /* Insert the new data */ + h = ph & (x3a->size-1); + np = &(x3a->tbl[x3a->count++]); + np->key = key; + np->data = data; + if( x3a->ht[h] ) x3a->ht[h]->from = &(np->next); + np->next = x3a->ht[h]; + x3a->ht[h] = np; + np->from = &(x3a->ht[h]); + return 1; +} + +/* Return a pointer to data assigned to the given key. Return NULL +** if no such key. */ +struct state *State_find(struct config *key) +{ + unsigned h; + x3node *np; + + if( x3a==0 ) return 0; + h = statehash(key) & (x3a->size-1); + np = x3a->ht[h]; + while( np ){ + if( statecmp(np->key,key)==0 ) break; + np = np->next; + } + return np ? np->data : 0; +} + +/* Return an array of pointers to all data in the table. +** The array is obtained from malloc. Return NULL if memory allocation +** problems, or if the array is empty. */ +struct state **State_arrayof() +{ + struct state **array; + int i,size; + if( x3a==0 ) return 0; + size = x3a->count; + array = (struct state **)calloc(size, sizeof(struct state *)); + if( array ){ + for(i=0; itbl[i].data; + } + return array; +} + +/* Hash a configuration */ +PRIVATE unsigned confighash(struct config *a) +{ + unsigned h=0; + h = h*571 + a->rp->index*37 + a->dot; + return h; +} + +/* There is one instance of the following structure for each +** associative array of type "x4". +*/ +struct s_x4 { + int size; /* The number of available slots. */ + /* Must be a power of 2 greater than or */ + /* equal to 1 */ + int count; /* Number of currently slots filled */ + struct s_x4node *tbl; /* The data stored here */ + struct s_x4node **ht; /* Hash table for lookups */ +}; + +/* There is one instance of this structure for every data element +** in an associative array of type "x4". +*/ +typedef struct s_x4node { + struct config *data; /* The data */ + struct s_x4node *next; /* Next entry with the same hash */ + struct s_x4node **from; /* Previous link */ +} x4node; + +/* There is only one instance of the array, which is the following */ +static struct s_x4 *x4a; + +/* Allocate a new associative array */ +void Configtable_init(){ + if( x4a ) return; + x4a = (struct s_x4*)malloc( sizeof(struct s_x4) ); + if( x4a ){ + x4a->size = 64; + x4a->count = 0; + x4a->tbl = (x4node*)calloc(64, sizeof(x4node) + sizeof(x4node*)); + if( x4a->tbl==0 ){ + free(x4a); + x4a = 0; + }else{ + int i; + x4a->ht = (x4node**)&(x4a->tbl[64]); + for(i=0; i<64; i++) x4a->ht[i] = 0; + } + } +} +/* Insert a new record into the array. Return TRUE if successful. +** Prior data with the same key is NOT overwritten */ +int Configtable_insert(struct config *data) +{ + x4node *np; + unsigned h; + unsigned ph; + + if( x4a==0 ) return 0; + ph = confighash(data); + h = ph & (x4a->size-1); + np = x4a->ht[h]; + while( np ){ + if( Configcmp((const char *) np->data,(const char *) data)==0 ){ + /* An existing entry with the same key is found. */ + /* Fail because overwrite is not allows. */ + return 0; + } + np = np->next; + } + if( x4a->count>=x4a->size ){ + /* Need to make the hash table bigger */ + int i,size; + struct s_x4 array; + array.size = size = x4a->size*2; + array.count = x4a->count; + array.tbl = (x4node*)calloc(size, sizeof(x4node) + sizeof(x4node*)); + if( array.tbl==0 ) return 0; /* Fail due to malloc failure */ + array.ht = (x4node**)&(array.tbl[size]); + for(i=0; icount; i++){ + x4node *oldnp, *newnp; + oldnp = &(x4a->tbl[i]); + h = confighash(oldnp->data) & (size-1); + newnp = &(array.tbl[i]); + if( array.ht[h] ) array.ht[h]->from = &(newnp->next); + newnp->next = array.ht[h]; + newnp->data = oldnp->data; + newnp->from = &(array.ht[h]); + array.ht[h] = newnp; + } + free(x4a->tbl); + *x4a = array; + } + /* Insert the new data */ + h = ph & (x4a->size-1); + np = &(x4a->tbl[x4a->count++]); + np->data = data; + if( x4a->ht[h] ) x4a->ht[h]->from = &(np->next); + np->next = x4a->ht[h]; + x4a->ht[h] = np; + np->from = &(x4a->ht[h]); + return 1; +} + +/* Return a pointer to data assigned to the given key. Return NULL +** if no such key. */ +struct config *Configtable_find(struct config *key) +{ + int h; + x4node *np; + + if( x4a==0 ) return 0; + h = confighash(key) & (x4a->size-1); + np = x4a->ht[h]; + while( np ){ + if( Configcmp((const char *) np->data,(const char *) key)==0 ) break; + np = np->next; + } + return np ? np->data : 0; +} + +/* Remove all data from the table. Pass each data to the function "f" +** as it is removed. ("f" may be null to avoid this step.) */ +void Configtable_clear(int(*f)(struct config *)) +{ + int i; + if( x4a==0 || x4a->count==0 ) return; + if( f ) for(i=0; icount; i++) (*f)(x4a->tbl[i].data); + for(i=0; isize; i++) x4a->ht[i] = 0; + x4a->count = 0; + return; +} diff --git a/src/others/lemon/lempar.c b/src/others/lemon/lempar.c new file mode 100644 index 0000000..fe56d2d --- /dev/null +++ b/src/others/lemon/lempar.c @@ -0,0 +1,850 @@ +/* Driver template for the LEMON parser generator. +** The author disclaims copyright to this source code. +*/ +/* First off, code is included that follows the "include" declaration +** in the input grammar file. */ +#include +%% +/* Next is all token values, in a form suitable for use by makeheaders. +** This section will be null unless lemon is run with the -m switch. +*/ +/* +** These constants (all generated automatically by the parser generator) +** specify the various kinds of tokens (terminals) that the parser +** understands. +** +** Each symbol here is a terminal symbol in the grammar. +*/ +%% +/* Make sure the INTERFACE macro is defined. +*/ +#ifndef INTERFACE +# define INTERFACE 1 +#endif +/* The next thing included is series of defines which control +** various aspects of the generated parser. +** YYCODETYPE is the data type used for storing terminal +** and nonterminal numbers. "unsigned char" is +** used if there are fewer than 250 terminals +** and nonterminals. "int" is used otherwise. +** YYNOCODE is a number of type YYCODETYPE which corresponds +** to no legal terminal or nonterminal number. This +** number is used to fill in empty slots of the hash +** table. +** YYFALLBACK If defined, this indicates that one or more tokens +** have fall-back values which should be used if the +** original value of the token will not parse. +** YYACTIONTYPE is the data type used for storing terminal +** and nonterminal numbers. "unsigned char" is +** used if there are fewer than 250 rules and +** states combined. "int" is used otherwise. +** ParseTOKENTYPE is the data type used for minor tokens given +** directly to the parser from the tokenizer. +** YYMINORTYPE is the data type used for all minor tokens. +** This is typically a union of many types, one of +** which is ParseTOKENTYPE. The entry in the union +** for base tokens is called "yy0". +** YYSTACKDEPTH is the maximum depth of the parser's stack. If +** zero the stack is dynamically sized using realloc() +** ParseARG_SDECL A static variable declaration for the %extra_argument +** ParseARG_PDECL A parameter declaration for the %extra_argument +** ParseARG_STORE Code to store %extra_argument into yypParser +** ParseARG_FETCH Code to extract %extra_argument from yypParser +** YYNSTATE the combined number of states. +** YYNRULE the number of rules in the grammar +** YYERRORSYMBOL is the code number of the error symbol. If not +** defined, then do no error processing. +*/ +%% +#define YY_NO_ACTION (YYNSTATE+YYNRULE+2) +#define YY_ACCEPT_ACTION (YYNSTATE+YYNRULE+1) +#define YY_ERROR_ACTION (YYNSTATE+YYNRULE) + +/* The yyzerominor constant is used to initialize instances of +** YYMINORTYPE objects to zero. */ +static const YYMINORTYPE yyzerominor = { 0 }; + +/* Define the yytestcase() macro to be a no-op if is not already defined +** otherwise. +** +** Applications can choose to define yytestcase() in the %include section +** to a macro that can assist in verifying code coverage. For production +** code the yytestcase() macro should be turned off. But it is useful +** for testing. +*/ +#ifndef yytestcase +# define yytestcase(X) +#endif + + +/* Next are the tables used to determine what action to take based on the +** current state and lookahead token. These tables are used to implement +** functions that take a state number and lookahead value and return an +** action integer. +** +** Suppose the action integer is N. Then the action is determined as +** follows +** +** 0 <= N < YYNSTATE Shift N. That is, push the lookahead +** token onto the stack and goto state N. +** +** YYNSTATE <= N < YYNSTATE+YYNRULE Reduce by rule N-YYNSTATE. +** +** N == YYNSTATE+YYNRULE A syntax error has occurred. +** +** N == YYNSTATE+YYNRULE+1 The parser accepts its input. +** +** N == YYNSTATE+YYNRULE+2 No such action. Denotes unused +** slots in the yy_action[] table. +** +** The action table is constructed as a single large table named yy_action[]. +** Given state S and lookahead X, the action is computed as +** +** yy_action[ yy_shift_ofst[S] + X ] +** +** If the index value yy_shift_ofst[S]+X is out of range or if the value +** yy_lookahead[yy_shift_ofst[S]+X] is not equal to X or if yy_shift_ofst[S] +** is equal to YY_SHIFT_USE_DFLT, it means that the action is not in the table +** and that yy_default[S] should be used instead. +** +** The formula above is for computing the action when the lookahead is +** a terminal symbol. If the lookahead is a non-terminal (as occurs after +** a reduce action) then the yy_reduce_ofst[] array is used in place of +** the yy_shift_ofst[] array and YY_REDUCE_USE_DFLT is used in place of +** YY_SHIFT_USE_DFLT. +** +** The following are the tables generated in this section: +** +** yy_action[] A single table containing all actions. +** yy_lookahead[] A table containing the lookahead for each entry in +** yy_action. Used to detect hash collisions. +** yy_shift_ofst[] For each state, the offset into yy_action for +** shifting terminals. +** yy_reduce_ofst[] For each state, the offset into yy_action for +** shifting non-terminals after a reduce. +** yy_default[] Default action for each state. +*/ +%% + +/* The next table maps tokens into fallback tokens. If a construct +** like the following: +** +** %fallback ID X Y Z. +** +** appears in the grammar, then ID becomes a fallback token for X, Y, +** and Z. Whenever one of the tokens X, Y, or Z is input to the parser +** but it does not parse, the type of the token is changed to ID and +** the parse is retried before an error is thrown. +*/ +#ifdef YYFALLBACK +static const YYCODETYPE yyFallback[] = { +%% +}; +#endif /* YYFALLBACK */ + +/* The following structure represents a single element of the +** parser's stack. Information stored includes: +** +** + The state number for the parser at this level of the stack. +** +** + The value of the token stored at this level of the stack. +** (In other words, the "major" token.) +** +** + The semantic value stored at this level of the stack. This is +** the information used by the action routines in the grammar. +** It is sometimes called the "minor" token. +*/ +struct yyStackEntry { + YYACTIONTYPE stateno; /* The state-number */ + YYCODETYPE major; /* The major token value. This is the code + ** number for the token at this stack level */ + YYMINORTYPE minor; /* The user-supplied minor token value. This + ** is the value of the token */ +}; +typedef struct yyStackEntry yyStackEntry; + +/* The state of the parser is completely contained in an instance of +** the following structure */ +struct yyParser { + int yyidx; /* Index of top element in stack */ +#ifdef YYTRACKMAXSTACKDEPTH + int yyidxMax; /* Maximum value of yyidx */ +#endif + int yyerrcnt; /* Shifts left before out of the error */ + ParseARG_SDECL /* A place to hold %extra_argument */ +#if YYSTACKDEPTH<=0 + int yystksz; /* Current side of the stack */ + yyStackEntry *yystack; /* The parser's stack */ +#else + yyStackEntry yystack[YYSTACKDEPTH]; /* The parser's stack */ +#endif +}; +typedef struct yyParser yyParser; + +#ifndef NDEBUG +#include +static FILE *yyTraceFILE = 0; +static char *yyTracePrompt = 0; +#endif /* NDEBUG */ + +#ifndef NDEBUG +/* +** Turn parser tracing on by giving a stream to which to write the trace +** and a prompt to preface each trace message. Tracing is turned off +** by making either argument NULL +** +** Inputs: +**
    +**
  • A FILE* to which trace output should be written. +** If NULL, then tracing is turned off. +**
  • A prefix string written at the beginning of every +** line of trace output. If NULL, then tracing is +** turned off. +**
+** +** Outputs: +** None. +*/ +void ParseTrace(FILE *TraceFILE, char *zTracePrompt){ + yyTraceFILE = TraceFILE; + yyTracePrompt = zTracePrompt; + if( yyTraceFILE==0 ) yyTracePrompt = 0; + else if( yyTracePrompt==0 ) yyTraceFILE = 0; +} +#endif /* NDEBUG */ + +#ifndef NDEBUG +/* For tracing shifts, the names of all terminals and nonterminals +** are required. The following table supplies these names */ +static const char *const yyTokenName[] = { +%% +}; +#endif /* NDEBUG */ + +#ifndef NDEBUG +/* For tracing reduce actions, the names of all rules are required. +*/ +static const char *const yyRuleName[] = { +%% +}; +#endif /* NDEBUG */ + + +#if YYSTACKDEPTH<=0 +/* +** Try to increase the size of the parser stack. +*/ +static void yyGrowStack(yyParser *p){ + int newSize; + yyStackEntry *pNew; + + newSize = p->yystksz*2 + 100; + pNew = realloc(p->yystack, newSize*sizeof(pNew[0])); + if( pNew ){ + p->yystack = pNew; + p->yystksz = newSize; +#ifndef NDEBUG + if( yyTraceFILE ){ + fprintf(yyTraceFILE,"%sStack grows to %d entries!\n", + yyTracePrompt, p->yystksz); + } +#endif + } +} +#endif + +/* +** This function allocates a new parser. +** The only argument is a pointer to a function which works like +** malloc. +** +** Inputs: +** A pointer to the function used to allocate memory. +** +** Outputs: +** A pointer to a parser. This pointer is used in subsequent calls +** to Parse and ParseFree. +*/ +void *ParseAlloc(void *(*mallocProc)(size_t)){ + yyParser *pParser; + pParser = (yyParser*)(*mallocProc)( (size_t)sizeof(yyParser) ); + if( pParser ){ + pParser->yyidx = -1; +#ifdef YYTRACKMAXSTACKDEPTH + pParser->yyidxMax = 0; +#endif +#if YYSTACKDEPTH<=0 + pParser->yystack = NULL; + pParser->yystksz = 0; + yyGrowStack(pParser); +#endif + } + return pParser; +} + +/* The following function deletes the value associated with a +** symbol. The symbol can be either a terminal or nonterminal. +** "yymajor" is the symbol code, and "yypminor" is a pointer to +** the value. +*/ +static void yy_destructor( + yyParser *yypParser, /* The parser */ + YYCODETYPE yymajor, /* Type code for object to destroy */ + YYMINORTYPE *yypminor /* The object to be destroyed */ +){ + ParseARG_FETCH; + switch( yymajor ){ + /* Here is inserted the actions which take place when a + ** terminal or non-terminal is destroyed. This can happen + ** when the symbol is popped from the stack during a + ** reduce or during error processing or when a parser is + ** being destroyed before it is finished parsing. + ** + ** Note: during a reduce, the only symbols destroyed are those + ** which appear on the RHS of the rule, but which are not used + ** inside the C code. + */ +%% + default: break; /* If no destructor action specified: do nothing */ + } +} + +/* +** Pop the parser's stack once. +** +** If there is a destructor routine associated with the token which +** is popped from the stack, then call it. +** +** Return the major token number for the symbol popped. +*/ +static int yy_pop_parser_stack(yyParser *pParser){ + YYCODETYPE yymajor; + yyStackEntry *yytos = &pParser->yystack[pParser->yyidx]; + + if( pParser->yyidx<0 ) return 0; +#ifndef NDEBUG + if( yyTraceFILE && pParser->yyidx>=0 ){ + fprintf(yyTraceFILE,"%sPopping %s\n", + yyTracePrompt, + yyTokenName[yytos->major]); + } +#endif + yymajor = yytos->major; + yy_destructor(pParser, yymajor, &yytos->minor); + pParser->yyidx--; + return yymajor; +} + +/* +** Deallocate and destroy a parser. Destructors are all called for +** all stack elements before shutting the parser down. +** +** Inputs: +**
    +**
  • A pointer to the parser. This should be a pointer +** obtained from ParseAlloc. +**
  • A pointer to a function used to reclaim memory obtained +** from malloc. +**
+*/ +void ParseFree( + void *p, /* The parser to be deleted */ + void (*freeProc)(void*) /* Function used to reclaim memory */ +){ + yyParser *pParser = (yyParser*)p; + if( pParser==0 ) return; + while( pParser->yyidx>=0 ) yy_pop_parser_stack(pParser); +#if YYSTACKDEPTH<=0 + free(pParser->yystack); +#endif + (*freeProc)((void*)pParser); +} + +/* +** Return the peak depth of the stack for a parser. +*/ +#ifdef YYTRACKMAXSTACKDEPTH +int ParseStackPeak(void *p){ + yyParser *pParser = (yyParser*)p; + return pParser->yyidxMax; +} +#endif + +/* +** Find the appropriate action for a parser given the terminal +** look-ahead token iLookAhead. +** +** If the look-ahead token is YYNOCODE, then check to see if the action is +** independent of the look-ahead. If it is, return the action, otherwise +** return YY_NO_ACTION. +*/ +static int yy_find_shift_action( + yyParser *pParser, /* The parser */ + YYCODETYPE iLookAhead /* The look-ahead token */ +){ + int i; + int stateno = pParser->yystack[pParser->yyidx].stateno; + + if( stateno>YY_SHIFT_COUNT + || (i = yy_shift_ofst[stateno])==YY_SHIFT_USE_DFLT ){ + return yy_default[stateno]; + } + assert( iLookAhead!=YYNOCODE ); + i += iLookAhead; + if( i<0 || i>=YY_ACTTAB_COUNT || yy_lookahead[i]!=iLookAhead ){ + if( iLookAhead>0 ){ +#ifdef YYFALLBACK + YYCODETYPE iFallback; /* Fallback token */ + if( iLookAhead %s\n", + yyTracePrompt, yyTokenName[iLookAhead], yyTokenName[iFallback]); + } +#endif + return yy_find_shift_action(pParser, iFallback); + } +#endif +#ifdef YYWILDCARD + { + int j = i - iLookAhead + YYWILDCARD; + if( +#if YY_SHIFT_MIN+YYWILDCARD<0 + j>=0 && +#endif +#if YY_SHIFT_MAX+YYWILDCARD>=YY_ACTTAB_COUNT + j %s\n", + yyTracePrompt, yyTokenName[iLookAhead], yyTokenName[YYWILDCARD]); + } +#endif /* NDEBUG */ + return yy_action[j]; + } + } +#endif /* YYWILDCARD */ + } + return yy_default[stateno]; + }else{ + return yy_action[i]; + } +} + +/* +** Find the appropriate action for a parser given the non-terminal +** look-ahead token iLookAhead. +** +** If the look-ahead token is YYNOCODE, then check to see if the action is +** independent of the look-ahead. If it is, return the action, otherwise +** return YY_NO_ACTION. +*/ +static int yy_find_reduce_action( + int stateno, /* Current state number */ + YYCODETYPE iLookAhead /* The look-ahead token */ +){ + int i; +#ifdef YYERRORSYMBOL + if( stateno>YY_REDUCE_COUNT ){ + return yy_default[stateno]; + } +#else + assert( stateno<=YY_REDUCE_COUNT ); +#endif + i = yy_reduce_ofst[stateno]; + assert( i!=YY_REDUCE_USE_DFLT ); + assert( iLookAhead!=YYNOCODE ); + i += iLookAhead; +#ifdef YYERRORSYMBOL + if( i<0 || i>=YY_ACTTAB_COUNT || yy_lookahead[i]!=iLookAhead ){ + return yy_default[stateno]; + } +#else + assert( i>=0 && iyyidx--; +#ifndef NDEBUG + if( yyTraceFILE ){ + fprintf(yyTraceFILE,"%sStack Overflow!\n",yyTracePrompt); + } +#endif + while( yypParser->yyidx>=0 ) yy_pop_parser_stack(yypParser); + /* Here code is inserted which will execute if the parser + ** stack every overflows */ +%% + ParseARG_STORE; /* Suppress warning about unused %extra_argument var */ +} + +/* +** Perform a shift action. +*/ +static void yy_shift( + yyParser *yypParser, /* The parser to be shifted */ + int yyNewState, /* The new state to shift in */ + int yyMajor, /* The major token to shift in */ + YYMINORTYPE *yypMinor /* Pointer to the minor token to shift in */ +){ + yyStackEntry *yytos; + yypParser->yyidx++; +#ifdef YYTRACKMAXSTACKDEPTH + if( yypParser->yyidx>yypParser->yyidxMax ){ + yypParser->yyidxMax = yypParser->yyidx; + } +#endif +#if YYSTACKDEPTH>0 + if( yypParser->yyidx>=YYSTACKDEPTH ){ + yyStackOverflow(yypParser, yypMinor); + return; + } +#else + if( yypParser->yyidx>=yypParser->yystksz ){ + yyGrowStack(yypParser); + if( yypParser->yyidx>=yypParser->yystksz ){ + yyStackOverflow(yypParser, yypMinor); + return; + } + } +#endif + yytos = &yypParser->yystack[yypParser->yyidx]; + yytos->stateno = (YYACTIONTYPE)yyNewState; + yytos->major = (YYCODETYPE)yyMajor; + yytos->minor = *yypMinor; +#ifndef NDEBUG + if( yyTraceFILE && yypParser->yyidx>0 ){ + int i; + fprintf(yyTraceFILE,"%sShift %d\n",yyTracePrompt,yyNewState); + fprintf(yyTraceFILE,"%sStack:",yyTracePrompt); + for(i=1; i<=yypParser->yyidx; i++) + fprintf(yyTraceFILE," %s",yyTokenName[yypParser->yystack[i].major]); + fprintf(yyTraceFILE,"\n"); + } +#endif +} + +/* The following table contains information about every rule that +** is used during the reduce. +*/ +static const struct { + YYCODETYPE lhs; /* Symbol on the left-hand side of the rule */ + unsigned char nrhs; /* Number of right-hand side symbols in the rule */ +} yyRuleInfo[] = { +%% +}; + +static void yy_accept(yyParser*); /* Forward Declaration */ + +/* +** Perform a reduce action and the shift that must immediately +** follow the reduce. +*/ +static void yy_reduce( + yyParser *yypParser, /* The parser */ + int yyruleno /* Number of the rule by which to reduce */ +){ + int yygoto; /* The next state */ + int yyact; /* The next action */ + YYMINORTYPE yygotominor; /* The LHS of the rule reduced */ + yyStackEntry *yymsp; /* The top of the parser's stack */ + int yysize; /* Amount to pop the stack */ + ParseARG_FETCH; + yymsp = &yypParser->yystack[yypParser->yyidx]; +#ifndef NDEBUG + if( yyTraceFILE && yyruleno>=0 + && yyruleno<(int)(sizeof(yyRuleName)/sizeof(yyRuleName[0])) ){ + fprintf(yyTraceFILE, "%sReduce [%s].\n", yyTracePrompt, + yyRuleName[yyruleno]); + } +#endif /* NDEBUG */ + + /* Silence complaints from purify about yygotominor being uninitialized + ** in some cases when it is copied into the stack after the following + ** switch. yygotominor is uninitialized when a rule reduces that does + ** not set the value of its left-hand side nonterminal. Leaving the + ** value of the nonterminal uninitialized is utterly harmless as long + ** as the value is never used. So really the only thing this code + ** accomplishes is to quieten purify. + ** + ** 2007-01-16: The wireshark project (www.wireshark.org) reports that + ** without this code, their parser segfaults. I'm not sure what there + ** parser is doing to make this happen. This is the second bug report + ** from wireshark this week. Clearly they are stressing Lemon in ways + ** that it has not been previously stressed... (SQLite ticket #2172) + */ + /*memset(&yygotominor, 0, sizeof(yygotominor));*/ + yygotominor = yyzerominor; + + + switch( yyruleno ){ + /* Beginning here are the reduction cases. A typical example + ** follows: + ** case 0: + ** #line + ** { ... } // User supplied code + ** #line + ** break; + */ +%% + }; + yygoto = yyRuleInfo[yyruleno].lhs; + yysize = yyRuleInfo[yyruleno].nrhs; + yypParser->yyidx -= yysize; + yyact = yy_find_reduce_action(yymsp[-yysize].stateno,(YYCODETYPE)yygoto); + if( yyact < YYNSTATE ){ +#ifdef NDEBUG + /* If we are not debugging and the reduce action popped at least + ** one element off the stack, then we can push the new element back + ** onto the stack here, and skip the stack overflow test in yy_shift(). + ** That gives a significant speed improvement. */ + if( yysize ){ + yypParser->yyidx++; + yymsp -= yysize-1; + yymsp->stateno = (YYACTIONTYPE)yyact; + yymsp->major = (YYCODETYPE)yygoto; + yymsp->minor = yygotominor; + }else +#endif + { + yy_shift(yypParser,yyact,yygoto,&yygotominor); + } + }else{ + assert( yyact == YYNSTATE + YYNRULE + 1 ); + yy_accept(yypParser); + } +} + +/* +** The following code executes when the parse fails +*/ +#ifndef YYNOERRORRECOVERY +static void yy_parse_failed( + yyParser *yypParser /* The parser */ +){ + ParseARG_FETCH; +#ifndef NDEBUG + if( yyTraceFILE ){ + fprintf(yyTraceFILE,"%sFail!\n",yyTracePrompt); + } +#endif + while( yypParser->yyidx>=0 ) yy_pop_parser_stack(yypParser); + /* Here code is inserted which will be executed whenever the + ** parser fails */ +%% + ParseARG_STORE; /* Suppress warning about unused %extra_argument variable */ +} +#endif /* YYNOERRORRECOVERY */ + +/* +** The following code executes when a syntax error first occurs. +*/ +static void yy_syntax_error( + yyParser *yypParser, /* The parser */ + int yymajor, /* The major type of the error token */ + YYMINORTYPE yyminor /* The minor type of the error token */ +){ + ParseARG_FETCH; +#define TOKEN (yyminor.yy0) +%% + ParseARG_STORE; /* Suppress warning about unused %extra_argument variable */ +} + +/* +** The following is executed when the parser accepts +*/ +static void yy_accept( + yyParser *yypParser /* The parser */ +){ + ParseARG_FETCH; +#ifndef NDEBUG + if( yyTraceFILE ){ + fprintf(yyTraceFILE,"%sAccept!\n",yyTracePrompt); + } +#endif + while( yypParser->yyidx>=0 ) yy_pop_parser_stack(yypParser); + /* Here code is inserted which will be executed whenever the + ** parser accepts */ +%% + ParseARG_STORE; /* Suppress warning about unused %extra_argument variable */ +} + +/* The main parser program. +** The first argument is a pointer to a structure obtained from +** "ParseAlloc" which describes the current state of the parser. +** The second argument is the major token number. The third is +** the minor token. The fourth optional argument is whatever the +** user wants (and specified in the grammar) and is available for +** use by the action routines. +** +** Inputs: +**
    +**
  • A pointer to the parser (an opaque structure.) +**
  • The major token number. +**
  • The minor token number. +**
  • An option argument of a grammar-specified type. +**
+** +** Outputs: +** None. +*/ +void Parse( + void *yyp, /* The parser */ + int yymajor, /* The major token code number */ + ParseTOKENTYPE yyminor /* The value for the token */ + ParseARG_PDECL /* Optional %extra_argument parameter */ +){ + YYMINORTYPE yyminorunion; + int yyact; /* The parser action. */ + int yyendofinput; /* True if we are at the end of input */ +#ifdef YYERRORSYMBOL + int yyerrorhit = 0; /* True if yymajor has invoked an error */ +#endif + yyParser *yypParser; /* The parser */ + + /* (re)initialize the parser, if necessary */ + yypParser = (yyParser*)yyp; + if( yypParser->yyidx<0 ){ +#if YYSTACKDEPTH<=0 + if( yypParser->yystksz <=0 ){ + /*memset(&yyminorunion, 0, sizeof(yyminorunion));*/ + yyminorunion = yyzerominor; + yyStackOverflow(yypParser, &yyminorunion); + return; + } +#endif + yypParser->yyidx = 0; + yypParser->yyerrcnt = -1; + yypParser->yystack[0].stateno = 0; + yypParser->yystack[0].major = 0; + } + yyminorunion.yy0 = yyminor; + yyendofinput = (yymajor==0); + ParseARG_STORE; + +#ifndef NDEBUG + if( yyTraceFILE ){ + fprintf(yyTraceFILE,"%sInput %s\n",yyTracePrompt,yyTokenName[yymajor]); + } +#endif + + do{ + yyact = yy_find_shift_action(yypParser,(YYCODETYPE)yymajor); + if( yyactyyerrcnt--; + yymajor = YYNOCODE; + }else if( yyact < YYNSTATE + YYNRULE ){ + yy_reduce(yypParser,yyact-YYNSTATE); + }else{ + assert( yyact == YY_ERROR_ACTION ); +#ifdef YYERRORSYMBOL + int yymx; +#endif +#ifndef NDEBUG + if( yyTraceFILE ){ + fprintf(yyTraceFILE,"%sSyntax Error!\n",yyTracePrompt); + } +#endif +#ifdef YYERRORSYMBOL + /* A syntax error has occurred. + ** The response to an error depends upon whether or not the + ** grammar defines an error token "ERROR". + ** + ** This is what we do if the grammar does define ERROR: + ** + ** * Call the %syntax_error function. + ** + ** * Begin popping the stack until we enter a state where + ** it is legal to shift the error symbol, then shift + ** the error symbol. + ** + ** * Set the error count to three. + ** + ** * Begin accepting and shifting new tokens. No new error + ** processing will occur until three tokens have been + ** shifted successfully. + ** + */ + if( yypParser->yyerrcnt<0 ){ + yy_syntax_error(yypParser,yymajor,yyminorunion); + } + yymx = yypParser->yystack[yypParser->yyidx].major; + if( yymx==YYERRORSYMBOL || yyerrorhit ){ +#ifndef NDEBUG + if( yyTraceFILE ){ + fprintf(yyTraceFILE,"%sDiscard input token %s\n", + yyTracePrompt,yyTokenName[yymajor]); + } +#endif + yy_destructor(yypParser, (YYCODETYPE)yymajor,&yyminorunion); + yymajor = YYNOCODE; + }else{ + while( + yypParser->yyidx >= 0 && + yymx != YYERRORSYMBOL && + (yyact = yy_find_reduce_action( + yypParser->yystack[yypParser->yyidx].stateno, + YYERRORSYMBOL)) >= YYNSTATE + ){ + yy_pop_parser_stack(yypParser); + } + if( yypParser->yyidx < 0 || yymajor==0 ){ + yy_destructor(yypParser,(YYCODETYPE)yymajor,&yyminorunion); + yy_parse_failed(yypParser); + yymajor = YYNOCODE; + }else if( yymx!=YYERRORSYMBOL ){ + YYMINORTYPE u2; + u2.YYERRSYMDT = 0; + yy_shift(yypParser,yyact,YYERRORSYMBOL,&u2); + } + } + yypParser->yyerrcnt = 3; + yyerrorhit = 1; +#elif defined(YYNOERRORRECOVERY) + /* If the YYNOERRORRECOVERY macro is defined, then do not attempt to + ** do any kind of error recovery. Instead, simply invoke the syntax + ** error routine and continue going as if nothing had happened. + ** + ** Applications can set this macro (for example inside %include) if + ** they intend to abandon the parse upon the first syntax error seen. + */ + yy_syntax_error(yypParser,yymajor,yyminorunion); + yy_destructor(yypParser,(YYCODETYPE)yymajor,&yyminorunion); + yymajor = YYNOCODE; + +#else /* YYERRORSYMBOL is not defined */ + /* This is what we do if the grammar does not define ERROR: + ** + ** * Report an error message, and throw away the input token. + ** + ** * If the input token is $, then fail the parse. + ** + ** As before, subsequent error messages are suppressed until + ** three input tokens have been successfully shifted. + */ + if( yypParser->yyerrcnt<=0 ){ + yy_syntax_error(yypParser,yymajor,yyminorunion); + } + yypParser->yyerrcnt = 3; + yy_destructor(yypParser,(YYCODETYPE)yymajor,&yyminorunion); + if( yyendofinput ){ + yy_parse_failed(yypParser); + } + yymajor = YYNOCODE; +#endif + } + }while( yymajor!=YYNOCODE && yypParser->yyidx>=0 ); + return; +} -- cgit v1.1