aboutsummaryrefslogtreecommitdiffstatshomepage
path: root/src/others/irrlicht-1.8.1/include/irrMath.h
diff options
context:
space:
mode:
Diffstat (limited to 'src/others/irrlicht-1.8.1/include/irrMath.h')
-rw-r--r--src/others/irrlicht-1.8.1/include/irrMath.h732
1 files changed, 732 insertions, 0 deletions
diff --git a/src/others/irrlicht-1.8.1/include/irrMath.h b/src/others/irrlicht-1.8.1/include/irrMath.h
new file mode 100644
index 0000000..3852932
--- /dev/null
+++ b/src/others/irrlicht-1.8.1/include/irrMath.h
@@ -0,0 +1,732 @@
1// Copyright (C) 2002-2012 Nikolaus Gebhardt
2// This file is part of the "Irrlicht Engine".
3// For conditions of distribution and use, see copyright notice in irrlicht.h
4
5#ifndef __IRR_MATH_H_INCLUDED__
6#define __IRR_MATH_H_INCLUDED__
7
8#include "IrrCompileConfig.h"
9#include "irrTypes.h"
10#include <math.h>
11#include <float.h>
12#include <stdlib.h> // for abs() etc.
13#include <limits.h> // For INT_MAX / UINT_MAX
14
15#if defined(_IRR_SOLARIS_PLATFORM_) || defined(__BORLANDC__) || defined (__BCPLUSPLUS__) || defined (_WIN32_WCE)
16 #define sqrtf(X) (irr::f32)sqrt((irr::f64)(X))
17 #define sinf(X) (irr::f32)sin((irr::f64)(X))
18 #define cosf(X) (irr::f32)cos((irr::f64)(X))
19 #define asinf(X) (irr::f32)asin((irr::f64)(X))
20 #define acosf(X) (irr::f32)acos((irr::f64)(X))
21 #define atan2f(X,Y) (irr::f32)atan2((irr::f64)(X),(irr::f64)(Y))
22 #define ceilf(X) (irr::f32)ceil((irr::f64)(X))
23 #define floorf(X) (irr::f32)floor((irr::f64)(X))
24 #define powf(X,Y) (irr::f32)pow((irr::f64)(X),(irr::f64)(Y))
25 #define fmodf(X,Y) (irr::f32)fmod((irr::f64)(X),(irr::f64)(Y))
26 #define fabsf(X) (irr::f32)fabs((irr::f64)(X))
27 #define logf(X) (irr::f32)log((irr::f64)(X))
28#endif
29
30#ifndef FLT_MAX
31#define FLT_MAX 3.402823466E+38F
32#endif
33
34#ifndef FLT_MIN
35#define FLT_MIN 1.17549435e-38F
36#endif
37
38namespace irr
39{
40namespace core
41{
42
43 //! Rounding error constant often used when comparing f32 values.
44
45 const s32 ROUNDING_ERROR_S32 = 0;
46#ifdef __IRR_HAS_S64
47 const s64 ROUNDING_ERROR_S64 = 0;
48#endif
49 const f32 ROUNDING_ERROR_f32 = 0.000001f;
50 const f64 ROUNDING_ERROR_f64 = 0.00000001;
51
52#ifdef PI // make sure we don't collide with a define
53#undef PI
54#endif
55 //! Constant for PI.
56 const f32 PI = 3.14159265359f;
57
58 //! Constant for reciprocal of PI.
59 const f32 RECIPROCAL_PI = 1.0f/PI;
60
61 //! Constant for half of PI.
62 const f32 HALF_PI = PI/2.0f;
63
64#ifdef PI64 // make sure we don't collide with a define
65#undef PI64
66#endif
67 //! Constant for 64bit PI.
68 const f64 PI64 = 3.1415926535897932384626433832795028841971693993751;
69
70 //! Constant for 64bit reciprocal of PI.
71 const f64 RECIPROCAL_PI64 = 1.0/PI64;
72
73 //! 32bit Constant for converting from degrees to radians
74 const f32 DEGTORAD = PI / 180.0f;
75
76 //! 32bit constant for converting from radians to degrees (formally known as GRAD_PI)
77 const f32 RADTODEG = 180.0f / PI;
78
79 //! 64bit constant for converting from degrees to radians (formally known as GRAD_PI2)
80 const f64 DEGTORAD64 = PI64 / 180.0;
81
82 //! 64bit constant for converting from radians to degrees
83 const f64 RADTODEG64 = 180.0 / PI64;
84
85 //! Utility function to convert a radian value to degrees
86 /** Provided as it can be clearer to write radToDeg(X) than RADTODEG * X
87 \param radians The radians value to convert to degrees.
88 */
89 inline f32 radToDeg(f32 radians)
90 {
91 return RADTODEG * radians;
92 }
93
94 //! Utility function to convert a radian value to degrees
95 /** Provided as it can be clearer to write radToDeg(X) than RADTODEG * X
96 \param radians The radians value to convert to degrees.
97 */
98 inline f64 radToDeg(f64 radians)
99 {
100 return RADTODEG64 * radians;
101 }
102
103 //! Utility function to convert a degrees value to radians
104 /** Provided as it can be clearer to write degToRad(X) than DEGTORAD * X
105 \param degrees The degrees value to convert to radians.
106 */
107 inline f32 degToRad(f32 degrees)
108 {
109 return DEGTORAD * degrees;
110 }
111
112 //! Utility function to convert a degrees value to radians
113 /** Provided as it can be clearer to write degToRad(X) than DEGTORAD * X
114 \param degrees The degrees value to convert to radians.
115 */
116 inline f64 degToRad(f64 degrees)
117 {
118 return DEGTORAD64 * degrees;
119 }
120
121 //! returns minimum of two values. Own implementation to get rid of the STL (VS6 problems)
122 template<class T>
123 inline const T& min_(const T& a, const T& b)
124 {
125 return a < b ? a : b;
126 }
127
128 //! returns minimum of three values. Own implementation to get rid of the STL (VS6 problems)
129 template<class T>
130 inline const T& min_(const T& a, const T& b, const T& c)
131 {
132 return a < b ? min_(a, c) : min_(b, c);
133 }
134
135 //! returns maximum of two values. Own implementation to get rid of the STL (VS6 problems)
136 template<class T>
137 inline const T& max_(const T& a, const T& b)
138 {
139 return a < b ? b : a;
140 }
141
142 //! returns maximum of three values. Own implementation to get rid of the STL (VS6 problems)
143 template<class T>
144 inline const T& max_(const T& a, const T& b, const T& c)
145 {
146 return a < b ? max_(b, c) : max_(a, c);
147 }
148
149 //! returns abs of two values. Own implementation to get rid of STL (VS6 problems)
150 template<class T>
151 inline T abs_(const T& a)
152 {
153 return a < (T)0 ? -a : a;
154 }
155
156 //! returns linear interpolation of a and b with ratio t
157 //! \return: a if t==0, b if t==1, and the linear interpolation else
158 template<class T>
159 inline T lerp(const T& a, const T& b, const f32 t)
160 {
161 return (T)(a*(1.f-t)) + (b*t);
162 }
163
164 //! clamps a value between low and high
165 template <class T>
166 inline const T clamp (const T& value, const T& low, const T& high)
167 {
168 return min_ (max_(value,low), high);
169 }
170
171 //! swaps the content of the passed parameters
172 // Note: We use the same trick as boost and use two template arguments to
173 // avoid ambiguity when swapping objects of an Irrlicht type that has not
174 // it's own swap overload. Otherwise we get conflicts with some compilers
175 // in combination with stl.
176 template <class T1, class T2>
177 inline void swap(T1& a, T2& b)
178 {
179 T1 c(a);
180 a = b;
181 b = c;
182 }
183
184 //! returns if a equals b, taking possible rounding errors into account
185 inline bool equals(const f64 a, const f64 b, const f64 tolerance = ROUNDING_ERROR_f64)
186 {
187 return (a + tolerance >= b) && (a - tolerance <= b);
188 }
189
190 //! returns if a equals b, taking possible rounding errors into account
191 inline bool equals(const f32 a, const f32 b, const f32 tolerance = ROUNDING_ERROR_f32)
192 {
193 return (a + tolerance >= b) && (a - tolerance <= b);
194 }
195
196 union FloatIntUnion32
197 {
198 FloatIntUnion32(float f1 = 0.0f) : f(f1) {}
199 // Portable sign-extraction
200 bool sign() const { return (i >> 31) != 0; }
201
202 irr::s32 i;
203 irr::f32 f;
204 };
205
206 //! We compare the difference in ULP's (spacing between floating-point numbers, aka ULP=1 means there exists no float between).
207 //\result true when numbers have a ULP <= maxUlpDiff AND have the same sign.
208 inline bool equalsByUlp(f32 a, f32 b, int maxUlpDiff)
209 {
210 // Based on the ideas and code from Bruce Dawson on
211 // http://www.altdevblogaday.com/2012/02/22/comparing-floating-point-numbers-2012-edition/
212 // When floats are interpreted as integers the two nearest possible float numbers differ just
213 // by one integer number. Also works the other way round, an integer of 1 interpreted as float
214 // is for example the smallest possible float number.
215
216 FloatIntUnion32 fa(a);
217 FloatIntUnion32 fb(b);
218
219 // Different signs, we could maybe get difference to 0, but so close to 0 using epsilons is better.
220 if ( fa.sign() != fb.sign() )
221 {
222 // Check for equality to make sure +0==-0
223 if (fa.i == fb.i)
224 return true;
225 return false;
226 }
227
228 // Find the difference in ULPs.
229 int ulpsDiff = abs_(fa.i- fb.i);
230 if (ulpsDiff <= maxUlpDiff)
231 return true;
232
233 return false;
234 }
235
236#if 0
237 //! returns if a equals b, not using any rounding tolerance
238 inline bool equals(const s32 a, const s32 b)
239 {
240 return (a == b);
241 }
242
243 //! returns if a equals b, not using any rounding tolerance
244 inline bool equals(const u32 a, const u32 b)
245 {
246 return (a == b);
247 }
248#endif
249 //! returns if a equals b, taking an explicit rounding tolerance into account
250 inline bool equals(const s32 a, const s32 b, const s32 tolerance = ROUNDING_ERROR_S32)
251 {
252 return (a + tolerance >= b) && (a - tolerance <= b);
253 }
254
255 //! returns if a equals b, taking an explicit rounding tolerance into account
256 inline bool equals(const u32 a, const u32 b, const s32 tolerance = ROUNDING_ERROR_S32)
257 {
258 return (a + tolerance >= b) && (a - tolerance <= b);
259 }
260
261#ifdef __IRR_HAS_S64
262 //! returns if a equals b, taking an explicit rounding tolerance into account
263 inline bool equals(const s64 a, const s64 b, const s64 tolerance = ROUNDING_ERROR_S64)
264 {
265 return (a + tolerance >= b) && (a - tolerance <= b);
266 }
267#endif
268
269 //! returns if a equals zero, taking rounding errors into account
270 inline bool iszero(const f64 a, const f64 tolerance = ROUNDING_ERROR_f64)
271 {
272 return fabs(a) <= tolerance;
273 }
274
275 //! returns if a equals zero, taking rounding errors into account
276 inline bool iszero(const f32 a, const f32 tolerance = ROUNDING_ERROR_f32)
277 {
278 return fabsf(a) <= tolerance;
279 }
280
281 //! returns if a equals not zero, taking rounding errors into account
282 inline bool isnotzero(const f32 a, const f32 tolerance = ROUNDING_ERROR_f32)
283 {
284 return fabsf(a) > tolerance;
285 }
286
287 //! returns if a equals zero, taking rounding errors into account
288 inline bool iszero(const s32 a, const s32 tolerance = 0)
289 {
290 return ( a & 0x7ffffff ) <= tolerance;
291 }
292
293 //! returns if a equals zero, taking rounding errors into account
294 inline bool iszero(const u32 a, const u32 tolerance = 0)
295 {
296 return a <= tolerance;
297 }
298
299#ifdef __IRR_HAS_S64
300 //! returns if a equals zero, taking rounding errors into account
301 inline bool iszero(const s64 a, const s64 tolerance = 0)
302 {
303 return abs_(a) <= tolerance;
304 }
305#endif
306
307 inline s32 s32_min(s32 a, s32 b)
308 {
309 const s32 mask = (a - b) >> 31;
310 return (a & mask) | (b & ~mask);
311 }
312
313 inline s32 s32_max(s32 a, s32 b)
314 {
315 const s32 mask = (a - b) >> 31;
316 return (b & mask) | (a & ~mask);
317 }
318
319 inline s32 s32_clamp (s32 value, s32 low, s32 high)
320 {
321 return s32_min(s32_max(value,low), high);
322 }
323
324 /*
325 float IEEE-754 bit represenation
326
327 0 0x00000000
328 1.0 0x3f800000
329 0.5 0x3f000000
330 3 0x40400000
331 +inf 0x7f800000
332 -inf 0xff800000
333 +NaN 0x7fc00000 or 0x7ff00000
334 in general: number = (sign ? -1:1) * 2^(exponent) * 1.(mantissa bits)
335 */
336
337 typedef union { u32 u; s32 s; f32 f; } inttofloat;
338
339 #define F32_AS_S32(f) (*((s32 *) &(f)))
340 #define F32_AS_U32(f) (*((u32 *) &(f)))
341 #define F32_AS_U32_POINTER(f) ( ((u32 *) &(f)))
342
343 #define F32_VALUE_0 0x00000000
344 #define F32_VALUE_1 0x3f800000
345 #define F32_SIGN_BIT 0x80000000U
346 #define F32_EXPON_MANTISSA 0x7FFFFFFFU
347
348 //! code is taken from IceFPU
349 //! Integer representation of a floating-point value.
350#ifdef IRRLICHT_FAST_MATH
351 #define IR(x) ((u32&)(x))
352#else
353 inline u32 IR(f32 x) {inttofloat tmp; tmp.f=x; return tmp.u;}
354#endif
355
356 //! Absolute integer representation of a floating-point value
357 #define AIR(x) (IR(x)&0x7fffffff)
358
359 //! Floating-point representation of an integer value.
360#ifdef IRRLICHT_FAST_MATH
361 #define FR(x) ((f32&)(x))
362#else
363 inline f32 FR(u32 x) {inttofloat tmp; tmp.u=x; return tmp.f;}
364 inline f32 FR(s32 x) {inttofloat tmp; tmp.s=x; return tmp.f;}
365#endif
366
367 //! integer representation of 1.0
368 #define IEEE_1_0 0x3f800000
369 //! integer representation of 255.0
370 #define IEEE_255_0 0x437f0000
371
372#ifdef IRRLICHT_FAST_MATH
373 #define F32_LOWER_0(f) (F32_AS_U32(f) > F32_SIGN_BIT)
374 #define F32_LOWER_EQUAL_0(f) (F32_AS_S32(f) <= F32_VALUE_0)
375 #define F32_GREATER_0(f) (F32_AS_S32(f) > F32_VALUE_0)
376 #define F32_GREATER_EQUAL_0(f) (F32_AS_U32(f) <= F32_SIGN_BIT)
377 #define F32_EQUAL_1(f) (F32_AS_U32(f) == F32_VALUE_1)
378 #define F32_EQUAL_0(f) ( (F32_AS_U32(f) & F32_EXPON_MANTISSA ) == F32_VALUE_0)
379
380 // only same sign
381 #define F32_A_GREATER_B(a,b) (F32_AS_S32((a)) > F32_AS_S32((b)))
382
383#else
384
385 #define F32_LOWER_0(n) ((n) < 0.0f)
386 #define F32_LOWER_EQUAL_0(n) ((n) <= 0.0f)
387 #define F32_GREATER_0(n) ((n) > 0.0f)
388 #define F32_GREATER_EQUAL_0(n) ((n) >= 0.0f)
389 #define F32_EQUAL_1(n) ((n) == 1.0f)
390 #define F32_EQUAL_0(n) ((n) == 0.0f)
391 #define F32_A_GREATER_B(a,b) ((a) > (b))
392#endif
393
394
395#ifndef REALINLINE
396 #ifdef _MSC_VER
397 #define REALINLINE __forceinline
398 #else
399 #define REALINLINE inline
400 #endif
401#endif
402
403#if defined(__BORLANDC__) || defined (__BCPLUSPLUS__)
404
405 // 8-bit bools in borland builder
406
407 //! conditional set based on mask and arithmetic shift
408 REALINLINE u32 if_c_a_else_b ( const c8 condition, const u32 a, const u32 b )
409 {
410 return ( ( -condition >> 7 ) & ( a ^ b ) ) ^ b;
411 }
412
413 //! conditional set based on mask and arithmetic shift
414 REALINLINE u32 if_c_a_else_0 ( const c8 condition, const u32 a )
415 {
416 return ( -condition >> 31 ) & a;
417 }
418#else
419
420 //! conditional set based on mask and arithmetic shift
421 REALINLINE u32 if_c_a_else_b ( const s32 condition, const u32 a, const u32 b )
422 {
423 return ( ( -condition >> 31 ) & ( a ^ b ) ) ^ b;
424 }
425
426 //! conditional set based on mask and arithmetic shift
427 REALINLINE u16 if_c_a_else_b ( const s16 condition, const u16 a, const u16 b )
428 {
429 return ( ( -condition >> 15 ) & ( a ^ b ) ) ^ b;
430 }
431
432 //! conditional set based on mask and arithmetic shift
433 REALINLINE u32 if_c_a_else_0 ( const s32 condition, const u32 a )
434 {
435 return ( -condition >> 31 ) & a;
436 }
437#endif
438
439 /*
440 if (condition) state |= m; else state &= ~m;
441 */
442 REALINLINE void setbit_cond ( u32 &state, s32 condition, u32 mask )
443 {
444 // 0, or any postive to mask
445 //s32 conmask = -condition >> 31;
446 state ^= ( ( -condition >> 31 ) ^ state ) & mask;
447 }
448
449 inline f32 round_( f32 x )
450 {
451 return floorf( x + 0.5f );
452 }
453
454 REALINLINE void clearFPUException ()
455 {
456#ifdef IRRLICHT_FAST_MATH
457 return;
458#ifdef feclearexcept
459 feclearexcept(FE_ALL_EXCEPT);
460#elif defined(_MSC_VER)
461 __asm fnclex;
462#elif defined(__GNUC__) && defined(__x86__)
463 __asm__ __volatile__ ("fclex \n\t");
464#else
465# warn clearFPUException not supported.
466#endif
467#endif
468 }
469
470 // calculate: sqrt ( x )
471 REALINLINE f32 squareroot(const f32 f)
472 {
473 return sqrtf(f);
474 }
475
476 // calculate: sqrt ( x )
477 REALINLINE f64 squareroot(const f64 f)
478 {
479 return sqrt(f);
480 }
481
482 // calculate: sqrt ( x )
483 REALINLINE s32 squareroot(const s32 f)
484 {
485 return static_cast<s32>(squareroot(static_cast<f32>(f)));
486 }
487
488#ifdef __IRR_HAS_S64
489 // calculate: sqrt ( x )
490 REALINLINE s64 squareroot(const s64 f)
491 {
492 return static_cast<s64>(squareroot(static_cast<f64>(f)));
493 }
494#endif
495
496 // calculate: 1 / sqrt ( x )
497 REALINLINE f64 reciprocal_squareroot(const f64 x)
498 {
499 return 1.0 / sqrt(x);
500 }
501
502 // calculate: 1 / sqrtf ( x )
503 REALINLINE f32 reciprocal_squareroot(const f32 f)
504 {
505#if defined ( IRRLICHT_FAST_MATH )
506 #if defined(_MSC_VER)
507 // SSE reciprocal square root estimate, accurate to 12 significant
508 // bits of the mantissa
509 f32 recsqrt;
510 __asm rsqrtss xmm0, f // xmm0 = rsqrtss(f)
511 __asm movss recsqrt, xmm0 // return xmm0
512 return recsqrt;
513
514/*
515 // comes from Nvidia
516 u32 tmp = (u32(IEEE_1_0 << 1) + IEEE_1_0 - *(u32*)&x) >> 1;
517 f32 y = *(f32*)&tmp;
518 return y * (1.47f - 0.47f * x * y * y);
519*/
520 #else
521 return 1.f / sqrtf(f);
522 #endif
523#else // no fast math
524 return 1.f / sqrtf(f);
525#endif
526 }
527
528 // calculate: 1 / sqrtf( x )
529 REALINLINE s32 reciprocal_squareroot(const s32 x)
530 {
531 return static_cast<s32>(reciprocal_squareroot(static_cast<f32>(x)));
532 }
533
534 // calculate: 1 / x
535 REALINLINE f32 reciprocal( const f32 f )
536 {
537#if defined (IRRLICHT_FAST_MATH)
538
539 // SSE Newton-Raphson reciprocal estimate, accurate to 23 significant
540 // bi ts of the mantissa
541 // One Newtown-Raphson Iteration:
542 // f(i+1) = 2 * rcpss(f) - f * rcpss(f) * rcpss(f)
543 f32 rec;
544 __asm rcpss xmm0, f // xmm0 = rcpss(f)
545 __asm movss xmm1, f // xmm1 = f
546 __asm mulss xmm1, xmm0 // xmm1 = f * rcpss(f)
547 __asm mulss xmm1, xmm0 // xmm2 = f * rcpss(f) * rcpss(f)
548 __asm addss xmm0, xmm0 // xmm0 = 2 * rcpss(f)
549 __asm subss xmm0, xmm1 // xmm0 = 2 * rcpss(f)
550 // - f * rcpss(f) * rcpss(f)
551 __asm movss rec, xmm0 // return xmm0
552 return rec;
553
554
555 //! i do not divide through 0.. (fpu expection)
556 // instead set f to a high value to get a return value near zero..
557 // -1000000000000.f.. is use minus to stay negative..
558 // must test's here (plane.normal dot anything ) checks on <= 0.f
559 //u32 x = (-(AIR(f) != 0 ) >> 31 ) & ( IR(f) ^ 0xd368d4a5 ) ^ 0xd368d4a5;
560 //return 1.f / FR ( x );
561
562#else // no fast math
563 return 1.f / f;
564#endif
565 }
566
567 // calculate: 1 / x
568 REALINLINE f64 reciprocal ( const f64 f )
569 {
570 return 1.0 / f;
571 }
572
573
574 // calculate: 1 / x, low precision allowed
575 REALINLINE f32 reciprocal_approxim ( const f32 f )
576 {
577#if defined( IRRLICHT_FAST_MATH)
578
579 // SSE Newton-Raphson reciprocal estimate, accurate to 23 significant
580 // bi ts of the mantissa
581 // One Newtown-Raphson Iteration:
582 // f(i+1) = 2 * rcpss(f) - f * rcpss(f) * rcpss(f)
583 f32 rec;
584 __asm rcpss xmm0, f // xmm0 = rcpss(f)
585 __asm movss xmm1, f // xmm1 = f
586 __asm mulss xmm1, xmm0 // xmm1 = f * rcpss(f)
587 __asm mulss xmm1, xmm0 // xmm2 = f * rcpss(f) * rcpss(f)
588 __asm addss xmm0, xmm0 // xmm0 = 2 * rcpss(f)
589 __asm subss xmm0, xmm1 // xmm0 = 2 * rcpss(f)
590 // - f * rcpss(f) * rcpss(f)
591 __asm movss rec, xmm0 // return xmm0
592 return rec;
593
594
595/*
596 // SSE reciprocal estimate, accurate to 12 significant bits of
597 f32 rec;
598 __asm rcpss xmm0, f // xmm0 = rcpss(f)
599 __asm movss rec , xmm0 // return xmm0
600 return rec;
601*/
602/*
603 register u32 x = 0x7F000000 - IR ( p );
604 const f32 r = FR ( x );
605 return r * (2.0f - p * r);
606*/
607#else // no fast math
608 return 1.f / f;
609#endif
610 }
611
612
613 REALINLINE s32 floor32(f32 x)
614 {
615#ifdef IRRLICHT_FAST_MATH
616 const f32 h = 0.5f;
617
618 s32 t;
619
620#if defined(_MSC_VER)
621 __asm
622 {
623 fld x
624 fsub h
625 fistp t
626 }
627#elif defined(__GNUC__)
628 __asm__ __volatile__ (
629 "fsub %2 \n\t"
630 "fistpl %0"
631 : "=m" (t)
632 : "t" (x), "f" (h)
633 : "st"
634 );
635#else
636# warn IRRLICHT_FAST_MATH not supported.
637 return (s32) floorf ( x );
638#endif
639 return t;
640#else // no fast math
641 return (s32) floorf ( x );
642#endif
643 }
644
645
646 REALINLINE s32 ceil32 ( f32 x )
647 {
648#ifdef IRRLICHT_FAST_MATH
649 const f32 h = 0.5f;
650
651 s32 t;
652
653#if defined(_MSC_VER)
654 __asm
655 {
656 fld x
657 fadd h
658 fistp t
659 }
660#elif defined(__GNUC__)
661 __asm__ __volatile__ (
662 "fadd %2 \n\t"
663 "fistpl %0 \n\t"
664 : "=m"(t)
665 : "t"(x), "f"(h)
666 : "st"
667 );
668#else
669# warn IRRLICHT_FAST_MATH not supported.
670 return (s32) ceilf ( x );
671#endif
672 return t;
673#else // not fast math
674 return (s32) ceilf ( x );
675#endif
676 }
677
678
679
680 REALINLINE s32 round32(f32 x)
681 {
682#if defined(IRRLICHT_FAST_MATH)
683 s32 t;
684
685#if defined(_MSC_VER)
686 __asm
687 {
688 fld x
689 fistp t
690 }
691#elif defined(__GNUC__)
692 __asm__ __volatile__ (
693 "fistpl %0 \n\t"
694 : "=m"(t)
695 : "t"(x)
696 : "st"
697 );
698#else
699# warn IRRLICHT_FAST_MATH not supported.
700 return (s32) round_(x);
701#endif
702 return t;
703#else // no fast math
704 return (s32) round_(x);
705#endif
706 }
707
708 inline f32 f32_max3(const f32 a, const f32 b, const f32 c)
709 {
710 return a > b ? (a > c ? a : c) : (b > c ? b : c);
711 }
712
713 inline f32 f32_min3(const f32 a, const f32 b, const f32 c)
714 {
715 return a < b ? (a < c ? a : c) : (b < c ? b : c);
716 }
717
718 inline f32 fract ( f32 x )
719 {
720 return x - floorf ( x );
721 }
722
723} // end namespace core
724} // end namespace irr
725
726#ifndef IRRLICHT_FAST_MATH
727 using irr::core::IR;
728 using irr::core::FR;
729#endif
730
731#endif
732