aboutsummaryrefslogtreecommitdiffstatshomepage
path: root/libraries/luajit-2.0/src/lj_opt_split.c
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--libraries/luajit-2.0/src/lj_opt_split.c723
1 files changed, 0 insertions, 723 deletions
diff --git a/libraries/luajit-2.0/src/lj_opt_split.c b/libraries/luajit-2.0/src/lj_opt_split.c
deleted file mode 100644
index 913a7a0..0000000
--- a/libraries/luajit-2.0/src/lj_opt_split.c
+++ /dev/null
@@ -1,723 +0,0 @@
1/*
2** SPLIT: Split 64 bit IR instructions into 32 bit IR instructions.
3** Copyright (C) 2005-2011 Mike Pall. See Copyright Notice in luajit.h
4*/
5
6#define lj_opt_split_c
7#define LUA_CORE
8
9#include "lj_obj.h"
10
11#if LJ_HASJIT && (LJ_SOFTFP || (LJ_32 && LJ_HASFFI))
12
13#include "lj_err.h"
14#include "lj_str.h"
15#include "lj_ir.h"
16#include "lj_jit.h"
17#include "lj_ircall.h"
18#include "lj_iropt.h"
19#include "lj_vm.h"
20
21/* SPLIT pass:
22**
23** This pass splits up 64 bit IR instructions into multiple 32 bit IR
24** instructions. It's only active for soft-float targets or for 32 bit CPUs
25** which lack native 64 bit integer operations (the FFI is currently the
26** only emitter for 64 bit integer instructions).
27**
28** Splitting the IR in a separate pass keeps each 32 bit IR assembler
29** backend simple. Only a small amount of extra functionality needs to be
30** implemented. This is much easier than adding support for allocating
31** register pairs to each backend (believe me, I tried). A few simple, but
32** important optimizations can be performed by the SPLIT pass, which would
33** be tedious to do in the backend.
34**
35** The basic idea is to replace each 64 bit IR instruction with its 32 bit
36** equivalent plus an extra HIOP instruction. The splitted IR is not passed
37** through FOLD or any other optimizations, so each HIOP is guaranteed to
38** immediately follow it's counterpart. The actual functionality of HIOP is
39** inferred from the previous instruction.
40**
41** The operands of HIOP hold the hiword input references. The output of HIOP
42** is the hiword output reference, which is also used to hold the hiword
43** register or spill slot information. The register allocator treats this
44** instruction independently of any other instruction, which improves code
45** quality compared to using fixed register pairs.
46**
47** It's easier to split up some instructions into two regular 32 bit
48** instructions. E.g. XLOAD is split up into two XLOADs with two different
49** addresses. Obviously 64 bit constants need to be split up into two 32 bit
50** constants, too. Some hiword instructions can be entirely omitted, e.g.
51** when zero-extending a 32 bit value to 64 bits. 64 bit arguments for calls
52** are split up into two 32 bit arguments each.
53**
54** On soft-float targets, floating-point instructions are directly converted
55** to soft-float calls by the SPLIT pass (except for comparisons and MIN/MAX).
56** HIOP for number results has the type IRT_SOFTFP ("sfp" in -jdump).
57**
58** Here's the IR and x64 machine code for 'x.b = x.a + 1' for a struct with
59** two int64_t fields:
60**
61** 0100 p32 ADD base +8
62** 0101 i64 XLOAD 0100
63** 0102 i64 ADD 0101 +1
64** 0103 p32 ADD base +16
65** 0104 i64 XSTORE 0103 0102
66**
67** mov rax, [esi+0x8]
68** add rax, +0x01
69** mov [esi+0x10], rax
70**
71** Here's the transformed IR and the x86 machine code after the SPLIT pass:
72**
73** 0100 p32 ADD base +8
74** 0101 int XLOAD 0100
75** 0102 p32 ADD base +12
76** 0103 int XLOAD 0102
77** 0104 int ADD 0101 +1
78** 0105 int HIOP 0103 +0
79** 0106 p32 ADD base +16
80** 0107 int XSTORE 0106 0104
81** 0108 p32 ADD base +20
82** 0109 int XSTORE 0108 0105
83**
84** mov eax, [esi+0x8]
85** mov ecx, [esi+0xc]
86** add eax, +0x01
87** adc ecx, +0x00
88** mov [esi+0x10], eax
89** mov [esi+0x14], ecx
90**
91** You may notice the reassociated hiword address computation, which is
92** later fused into the mov operands by the assembler.
93*/
94
95/* Some local macros to save typing. Undef'd at the end. */
96#define IR(ref) (&J->cur.ir[(ref)])
97
98/* Directly emit the transformed IR without updating chains etc. */
99static IRRef split_emit(jit_State *J, uint16_t ot, IRRef1 op1, IRRef1 op2)
100{
101 IRRef nref = lj_ir_nextins(J);
102 IRIns *ir = IR(nref);
103 ir->ot = ot;
104 ir->op1 = op1;
105 ir->op2 = op2;
106 return nref;
107}
108
109#if LJ_SOFTFP
110/* Emit a (checked) number to integer conversion. */
111static IRRef split_num2int(jit_State *J, IRRef lo, IRRef hi, int check)
112{
113 IRRef tmp, res;
114#if LJ_LE
115 tmp = split_emit(J, IRT(IR_CARG, IRT_NIL), lo, hi);
116#else
117 tmp = split_emit(J, IRT(IR_CARG, IRT_NIL), hi, lo);
118#endif
119 res = split_emit(J, IRTI(IR_CALLN), tmp, IRCALL_softfp_d2i);
120 if (check) {
121 tmp = split_emit(J, IRTI(IR_CALLN), res, IRCALL_softfp_i2d);
122 split_emit(J, IRT(IR_HIOP, IRT_SOFTFP), tmp, tmp);
123 split_emit(J, IRTGI(IR_EQ), tmp, lo);
124 split_emit(J, IRTG(IR_HIOP, IRT_SOFTFP), tmp+1, hi);
125 }
126 return res;
127}
128
129/* Emit a CALLN with one split 64 bit argument. */
130static IRRef split_call_l(jit_State *J, IRRef1 *hisubst, IRIns *oir,
131 IRIns *ir, IRCallID id)
132{
133 IRRef tmp, op1 = ir->op1;
134 J->cur.nins--;
135#if LJ_LE
136 tmp = split_emit(J, IRT(IR_CARG, IRT_NIL), oir[op1].prev, hisubst[op1]);
137#else
138 tmp = split_emit(J, IRT(IR_CARG, IRT_NIL), hisubst[op1], oir[op1].prev);
139#endif
140 ir->prev = tmp = split_emit(J, IRTI(IR_CALLN), tmp, id);
141 return split_emit(J, IRT(IR_HIOP, IRT_SOFTFP), tmp, tmp);
142}
143
144/* Emit a CALLN with one split 64 bit argument and a 32 bit argument. */
145static IRRef split_call_li(jit_State *J, IRRef1 *hisubst, IRIns *oir,
146 IRIns *ir, IRCallID id)
147{
148 IRRef tmp, op1 = ir->op1, op2 = ir->op2;
149 J->cur.nins--;
150#if LJ_LE
151 tmp = split_emit(J, IRT(IR_CARG, IRT_NIL), oir[op1].prev, hisubst[op1]);
152#else
153 tmp = split_emit(J, IRT(IR_CARG, IRT_NIL), hisubst[op1], oir[op1].prev);
154#endif
155 tmp = split_emit(J, IRT(IR_CARG, IRT_NIL), tmp, oir[op2].prev);
156 ir->prev = tmp = split_emit(J, IRTI(IR_CALLN), tmp, id);
157 return split_emit(J, IRT(IR_HIOP, IRT_SOFTFP), tmp, tmp);
158}
159#endif
160
161/* Emit a CALLN with two split 64 bit arguments. */
162static IRRef split_call_ll(jit_State *J, IRRef1 *hisubst, IRIns *oir,
163 IRIns *ir, IRCallID id)
164{
165 IRRef tmp, op1 = ir->op1, op2 = ir->op2;
166 J->cur.nins--;
167#if LJ_LE
168 tmp = split_emit(J, IRT(IR_CARG, IRT_NIL), oir[op1].prev, hisubst[op1]);
169 tmp = split_emit(J, IRT(IR_CARG, IRT_NIL), tmp, oir[op2].prev);
170 tmp = split_emit(J, IRT(IR_CARG, IRT_NIL), tmp, hisubst[op2]);
171#else
172 tmp = split_emit(J, IRT(IR_CARG, IRT_NIL), hisubst[op1], oir[op1].prev);
173 tmp = split_emit(J, IRT(IR_CARG, IRT_NIL), tmp, hisubst[op2]);
174 tmp = split_emit(J, IRT(IR_CARG, IRT_NIL), tmp, oir[op2].prev);
175#endif
176 ir->prev = tmp = split_emit(J, IRTI(IR_CALLN), tmp, id);
177 return split_emit(J,
178 IRT(IR_HIOP, (LJ_SOFTFP && irt_isnum(ir->t)) ? IRT_SOFTFP : IRT_INT),
179 tmp, tmp);
180}
181
182/* Get a pointer to the other 32 bit word (LE: hiword, BE: loword). */
183static IRRef split_ptr(jit_State *J, IRIns *oir, IRRef ref)
184{
185 IRRef nref = oir[ref].prev;
186 IRIns *ir = IR(nref);
187 int32_t ofs = 4;
188 if (ir->o == IR_ADD && irref_isk(ir->op2) && !irt_isphi(oir[ref].t)) {
189 /* Reassociate address. */
190 ofs += IR(ir->op2)->i;
191 nref = ir->op1;
192 if (ofs == 0) return nref;
193 }
194 return split_emit(J, IRTI(IR_ADD), nref, lj_ir_kint(J, ofs));
195}
196
197/* Transform the old IR to the new IR. */
198static void split_ir(jit_State *J)
199{
200 IRRef nins = J->cur.nins, nk = J->cur.nk;
201 MSize irlen = nins - nk;
202 MSize need = (irlen+1)*(sizeof(IRIns) + sizeof(IRRef1));
203 IRIns *oir = (IRIns *)lj_str_needbuf(J->L, &G(J->L)->tmpbuf, need);
204 IRRef1 *hisubst;
205 IRRef ref;
206
207 /* Copy old IR to buffer. */
208 memcpy(oir, IR(nk), irlen*sizeof(IRIns));
209 /* Bias hiword substitution table and old IR. Loword kept in field prev. */
210 hisubst = (IRRef1 *)&oir[irlen] - nk;
211 oir -= nk;
212
213 /* Remove all IR instructions, but retain IR constants. */
214 J->cur.nins = REF_FIRST;
215 J->loopref = 0;
216
217 /* Process constants and fixed references. */
218 for (ref = nk; ref <= REF_BASE; ref++) {
219 IRIns *ir = &oir[ref];
220 if ((LJ_SOFTFP && ir->o == IR_KNUM) || ir->o == IR_KINT64) {
221 /* Split up 64 bit constant. */
222 TValue tv = *ir_k64(ir);
223 ir->prev = lj_ir_kint(J, (int32_t)tv.u32.lo);
224 hisubst[ref] = lj_ir_kint(J, (int32_t)tv.u32.hi);
225 } else {
226 ir->prev = ref; /* Identity substitution for loword. */
227 hisubst[ref] = 0;
228 }
229 }
230
231 /* Process old IR instructions. */
232 for (ref = REF_FIRST; ref < nins; ref++) {
233 IRIns *ir = &oir[ref];
234 IRRef nref = lj_ir_nextins(J);
235 IRIns *nir = IR(nref);
236 IRRef hi = 0;
237
238 /* Copy-substitute old instruction to new instruction. */
239 nir->op1 = ir->op1 < nk ? ir->op1 : oir[ir->op1].prev;
240 nir->op2 = ir->op2 < nk ? ir->op2 : oir[ir->op2].prev;
241 ir->prev = nref; /* Loword substitution. */
242 nir->o = ir->o;
243 nir->t.irt = ir->t.irt & ~(IRT_MARK|IRT_ISPHI);
244 hisubst[ref] = 0;
245
246 /* Split 64 bit instructions. */
247#if LJ_SOFTFP
248 if (irt_isnum(ir->t)) {
249 nir->t.irt = IRT_INT | (nir->t.irt & IRT_GUARD); /* Turn into INT op. */
250 /* Note: hi ref = lo ref + 1! Required for SNAP_SOFTFPNUM logic. */
251 switch (ir->o) {
252 case IR_ADD:
253 hi = split_call_ll(J, hisubst, oir, ir, IRCALL_softfp_add);
254 break;
255 case IR_SUB:
256 hi = split_call_ll(J, hisubst, oir, ir, IRCALL_softfp_sub);
257 break;
258 case IR_MUL:
259 hi = split_call_ll(J, hisubst, oir, ir, IRCALL_softfp_mul);
260 break;
261 case IR_DIV:
262 hi = split_call_ll(J, hisubst, oir, ir, IRCALL_softfp_div);
263 break;
264 case IR_POW:
265 hi = split_call_li(J, hisubst, oir, ir, IRCALL_lj_vm_powi);
266 break;
267 case IR_FPMATH:
268 /* Try to rejoin pow from EXP2, MUL and LOG2. */
269 if (nir->op2 == IRFPM_EXP2 && nir->op1 > J->loopref) {
270 IRIns *irp = IR(nir->op1);
271 if (irp->o == IR_CALLN && irp->op2 == IRCALL_softfp_mul) {
272 IRIns *irm4 = IR(irp->op1);
273 IRIns *irm3 = IR(irm4->op1);
274 IRIns *irm12 = IR(irm3->op1);
275 IRIns *irl1 = IR(irm12->op1);
276 if (irm12->op1 > J->loopref && irl1->o == IR_CALLN &&
277 irl1->op2 == IRCALL_lj_vm_log2) {
278 IRRef tmp = irl1->op1; /* Recycle first two args from LOG2. */
279 IRRef arg3 = irm3->op2, arg4 = irm4->op2;
280 J->cur.nins--;
281 tmp = split_emit(J, IRT(IR_CARG, IRT_NIL), tmp, arg3);
282 tmp = split_emit(J, IRT(IR_CARG, IRT_NIL), tmp, arg4);
283 ir->prev = tmp = split_emit(J, IRTI(IR_CALLN), tmp, IRCALL_pow);
284 hi = split_emit(J, IRT(IR_HIOP, LJ_SOFTFP), tmp, tmp);
285 break;
286 }
287 }
288 }
289 hi = split_call_l(J, hisubst, oir, ir, IRCALL_lj_vm_floor + ir->op2);
290 break;
291 case IR_ATAN2:
292 hi = split_call_ll(J, hisubst, oir, ir, IRCALL_atan2);
293 break;
294 case IR_LDEXP:
295 hi = split_call_li(J, hisubst, oir, ir, IRCALL_ldexp);
296 break;
297 case IR_NEG: case IR_ABS:
298 nir->o = IR_CONV; /* Pass through loword. */
299 nir->op2 = (IRT_INT << 5) | IRT_INT;
300 hi = split_emit(J, IRT(ir->o == IR_NEG ? IR_BXOR : IR_BAND, IRT_SOFTFP),
301 hisubst[ir->op1], hisubst[ir->op2]);
302 break;
303 case IR_SLOAD:
304 if ((nir->op2 & IRSLOAD_CONVERT)) { /* Convert from int to number. */
305 nir->op2 &= ~IRSLOAD_CONVERT;
306 ir->prev = nref = split_emit(J, IRTI(IR_CALLN), nref,
307 IRCALL_softfp_i2d);
308 hi = split_emit(J, IRT(IR_HIOP, IRT_SOFTFP), nref, nref);
309 break;
310 }
311 /* fallthrough */
312 case IR_ALOAD: case IR_HLOAD: case IR_ULOAD: case IR_VLOAD:
313 case IR_STRTO:
314 hi = split_emit(J, IRT(IR_HIOP, IRT_SOFTFP), nref, nref);
315 break;
316 case IR_XLOAD: {
317 IRIns inslo = *nir; /* Save/undo the emit of the lo XLOAD. */
318 J->cur.nins--;
319 hi = split_ptr(J, oir, ir->op1); /* Insert the hiref ADD. */
320 nref = lj_ir_nextins(J);
321 nir = IR(nref);
322 *nir = inslo; /* Re-emit lo XLOAD immediately before hi XLOAD. */
323 hi = split_emit(J, IRT(IR_XLOAD, IRT_SOFTFP), hi, ir->op2);
324#if LJ_LE
325 ir->prev = nref;
326#else
327 ir->prev = hi; hi = nref;
328#endif
329 break;
330 }
331 case IR_ASTORE: case IR_HSTORE: case IR_USTORE:
332 split_emit(J, IRT(IR_HIOP, IRT_SOFTFP), nir->op1, hisubst[ir->op2]);
333 break;
334 case IR_XSTORE: {
335#if LJ_LE
336 IRRef hiref = hisubst[ir->op2];
337#else
338 IRRef hiref = nir->op2; nir->op2 = hisubst[ir->op2];
339#endif
340 split_emit(J, IRT(IR_XSTORE, IRT_SOFTFP),
341 split_ptr(J, oir, ir->op1), hiref);
342 break;
343 }
344 case IR_CONV: { /* Conversion to number. Others handled below. */
345 IRType st = (IRType)(ir->op2 & IRCONV_SRCMASK);
346 UNUSED(st);
347#if LJ_32 && LJ_HASFFI
348 if (st == IRT_I64 || st == IRT_U64) {
349 hi = split_call_l(J, hisubst, oir, ir,
350 st == IRT_I64 ? IRCALL_fp64_l2d : IRCALL_fp64_ul2d);
351 break;
352 }
353#endif
354 lua_assert(st == IRT_INT ||
355 (LJ_32 && LJ_HASFFI && (st == IRT_U32 || st == IRT_FLOAT)));
356 nir->o = IR_CALLN;
357#if LJ_32 && LJ_HASFFI
358 nir->op2 = st == IRT_INT ? IRCALL_softfp_i2d :
359 st == IRT_FLOAT ? IRCALL_softfp_f2d :
360 IRCALL_softfp_ui2d;
361#else
362 nir->op2 = IRCALL_softfp_i2d;
363#endif
364 hi = split_emit(J, IRT(IR_HIOP, IRT_SOFTFP), nref, nref);
365 break;
366 }
367 case IR_CALLS:
368 case IR_CALLXS:
369 goto split_call;
370 case IR_PHI:
371 if (nir->op1 == nir->op2)
372 J->cur.nins--; /* Drop useless PHIs. */
373 if (hisubst[ir->op1] != hisubst[ir->op2])
374 split_emit(J, IRT(IR_PHI, IRT_SOFTFP),
375 hisubst[ir->op1], hisubst[ir->op2]);
376 break;
377 default:
378 lua_assert(ir->o <= IR_NE || ir->o == IR_MIN || ir->o == IR_MAX);
379 hi = split_emit(J, IRTG(IR_HIOP, IRT_SOFTFP),
380 hisubst[ir->op1], hisubst[ir->op2]);
381 break;
382 }
383 } else
384#endif
385#if LJ_32 && LJ_HASFFI
386 if (irt_isint64(ir->t)) {
387 IRRef hiref = hisubst[ir->op1];
388 nir->t.irt = IRT_INT | (nir->t.irt & IRT_GUARD); /* Turn into INT op. */
389 switch (ir->o) {
390 case IR_ADD:
391 case IR_SUB:
392 /* Use plain op for hiword if loword cannot produce a carry/borrow. */
393 if (irref_isk(nir->op2) && IR(nir->op2)->i == 0) {
394 ir->prev = nir->op1; /* Pass through loword. */
395 nir->op1 = hiref; nir->op2 = hisubst[ir->op2];
396 hi = nref;
397 break;
398 }
399 /* fallthrough */
400 case IR_NEG:
401 hi = split_emit(J, IRTI(IR_HIOP), hiref, hisubst[ir->op2]);
402 break;
403 case IR_MUL:
404 hi = split_call_ll(J, hisubst, oir, ir, IRCALL_lj_carith_mul64);
405 break;
406 case IR_DIV:
407 hi = split_call_ll(J, hisubst, oir, ir,
408 irt_isi64(ir->t) ? IRCALL_lj_carith_divi64 :
409 IRCALL_lj_carith_divu64);
410 break;
411 case IR_MOD:
412 hi = split_call_ll(J, hisubst, oir, ir,
413 irt_isi64(ir->t) ? IRCALL_lj_carith_modi64 :
414 IRCALL_lj_carith_modu64);
415 break;
416 case IR_POW:
417 hi = split_call_ll(J, hisubst, oir, ir,
418 irt_isi64(ir->t) ? IRCALL_lj_carith_powi64 :
419 IRCALL_lj_carith_powu64);
420 break;
421 case IR_FLOAD:
422 lua_assert(ir->op2 == IRFL_CDATA_INT64);
423 hi = split_emit(J, IRTI(IR_FLOAD), nir->op1, IRFL_CDATA_INT64_4);
424#if LJ_BE
425 ir->prev = hi; hi = nref;
426#endif
427 break;
428 case IR_XLOAD:
429 hi = split_emit(J, IRTI(IR_XLOAD), split_ptr(J, oir, ir->op1), ir->op2);
430#if LJ_BE
431 ir->prev = hi; hi = nref;
432#endif
433 break;
434 case IR_XSTORE:
435#if LJ_LE
436 hiref = hisubst[ir->op2];
437#else
438 hiref = nir->op2; nir->op2 = hisubst[ir->op2];
439#endif
440 split_emit(J, IRTI(IR_XSTORE), split_ptr(J, oir, ir->op1), hiref);
441 break;
442 case IR_CONV: { /* Conversion to 64 bit integer. Others handled below. */
443 IRType st = (IRType)(ir->op2 & IRCONV_SRCMASK);
444#if LJ_SOFTFP
445 if (st == IRT_NUM) { /* NUM to 64 bit int conv. */
446 hi = split_call_l(J, hisubst, oir, ir,
447 irt_isi64(ir->t) ? IRCALL_fp64_d2l : IRCALL_fp64_d2ul);
448 } else if (st == IRT_FLOAT) { /* FLOAT to 64 bit int conv. */
449 nir->o = IR_CALLN;
450 nir->op2 = irt_isi64(ir->t) ? IRCALL_fp64_f2l : IRCALL_fp64_f2ul;
451 hi = split_emit(J, IRTI(IR_HIOP), nref, nref);
452 }
453#else
454 if (st == IRT_NUM || st == IRT_FLOAT) { /* FP to 64 bit int conv. */
455 hi = split_emit(J, IRTI(IR_HIOP), nir->op1, nref);
456 }
457#endif
458 else if (st == IRT_I64 || st == IRT_U64) { /* 64/64 bit cast. */
459 /* Drop cast, since assembler doesn't care. */
460 goto fwdlo;
461 } else if ((ir->op2 & IRCONV_SEXT)) { /* Sign-extend to 64 bit. */
462 IRRef k31 = lj_ir_kint(J, 31);
463 nir = IR(nref); /* May have been reallocated. */
464 ir->prev = nir->op1; /* Pass through loword. */
465 nir->o = IR_BSAR; /* hi = bsar(lo, 31). */
466 nir->op2 = k31;
467 hi = nref;
468 } else { /* Zero-extend to 64 bit. */
469 hi = lj_ir_kint(J, 0);
470 goto fwdlo;
471 }
472 break;
473 }
474 case IR_CALLXS:
475 goto split_call;
476 case IR_PHI: {
477 IRRef hiref2;
478 if ((irref_isk(nir->op1) && irref_isk(nir->op2)) ||
479 nir->op1 == nir->op2)
480 J->cur.nins--; /* Drop useless PHIs. */
481 hiref2 = hisubst[ir->op2];
482 if (!((irref_isk(hiref) && irref_isk(hiref2)) || hiref == hiref2))
483 split_emit(J, IRTI(IR_PHI), hiref, hiref2);
484 break;
485 }
486 default:
487 lua_assert(ir->o <= IR_NE); /* Comparisons. */
488 split_emit(J, IRTGI(IR_HIOP), hiref, hisubst[ir->op2]);
489 break;
490 }
491 } else
492#endif
493#if LJ_SOFTFP
494 if (ir->o == IR_SLOAD) {
495 if ((nir->op2 & IRSLOAD_CONVERT)) { /* Convert from number to int. */
496 nir->op2 &= ~IRSLOAD_CONVERT;
497 if (!(nir->op2 & IRSLOAD_TYPECHECK))
498 nir->t.irt = IRT_INT; /* Drop guard. */
499 split_emit(J, IRT(IR_HIOP, IRT_SOFTFP), nref, nref);
500 ir->prev = split_num2int(J, nref, nref+1, irt_isguard(ir->t));
501 }
502 } else if (ir->o == IR_TOBIT) {
503 IRRef tmp, op1 = ir->op1;
504 J->cur.nins--;
505#if LJ_LE
506 tmp = split_emit(J, IRT(IR_CARG, IRT_NIL), oir[op1].prev, hisubst[op1]);
507#else
508 tmp = split_emit(J, IRT(IR_CARG, IRT_NIL), hisubst[op1], oir[op1].prev);
509#endif
510 ir->prev = split_emit(J, IRTI(IR_CALLN), tmp, IRCALL_lj_vm_tobit);
511 } else if (ir->o == IR_TOSTR) {
512 if (hisubst[ir->op1]) {
513 if (irref_isk(ir->op1))
514 nir->op1 = ir->op1;
515 else
516 split_emit(J, IRT(IR_HIOP, IRT_NIL), hisubst[ir->op1], nref);
517 }
518 } else if (ir->o == IR_HREF || ir->o == IR_NEWREF) {
519 if (irref_isk(ir->op2) && hisubst[ir->op2])
520 nir->op2 = ir->op2;
521 } else
522#endif
523 if (ir->o == IR_CONV) { /* See above, too. */
524 IRType st = (IRType)(ir->op2 & IRCONV_SRCMASK);
525#if LJ_32 && LJ_HASFFI
526 if (st == IRT_I64 || st == IRT_U64) { /* Conversion from 64 bit int. */
527#if LJ_SOFTFP
528 if (irt_isfloat(ir->t)) {
529 split_call_l(J, hisubst, oir, ir,
530 st == IRT_I64 ? IRCALL_fp64_l2f : IRCALL_fp64_ul2f);
531 J->cur.nins--; /* Drop unused HIOP. */
532 }
533#else
534 if (irt_isfp(ir->t)) { /* 64 bit integer to FP conversion. */
535 ir->prev = split_emit(J, IRT(IR_HIOP, irt_type(ir->t)),
536 hisubst[ir->op1], nref);
537 }
538#endif
539 else { /* Truncate to lower 32 bits. */
540 fwdlo:
541 ir->prev = nir->op1; /* Forward loword. */
542 /* Replace with NOP to avoid messing up the snapshot logic. */
543 nir->ot = IRT(IR_NOP, IRT_NIL);
544 nir->op1 = nir->op2 = 0;
545 }
546 }
547#endif
548#if LJ_SOFTFP && LJ_32 && LJ_HASFFI
549 else if (irt_isfloat(ir->t)) {
550 if (st == IRT_NUM) {
551 split_call_l(J, hisubst, oir, ir, IRCALL_softfp_d2f);
552 J->cur.nins--; /* Drop unused HIOP. */
553 } else {
554 nir->o = IR_CALLN;
555 nir->op2 = st == IRT_INT ? IRCALL_softfp_i2f : IRCALL_softfp_ui2f;
556 }
557 } else if (st == IRT_FLOAT) {
558 nir->o = IR_CALLN;
559 nir->op2 = irt_isint(ir->t) ? IRCALL_softfp_f2i : IRCALL_softfp_f2ui;
560 } else
561#endif
562#if LJ_SOFTFP
563 if (st == IRT_NUM || (LJ_32 && LJ_HASFFI && st == IRT_FLOAT)) {
564 if (irt_isguard(ir->t)) {
565 lua_assert(st == IRT_NUM && irt_isint(ir->t));
566 J->cur.nins--;
567 ir->prev = split_num2int(J, nir->op1, hisubst[ir->op1], 1);
568 } else {
569 split_call_l(J, hisubst, oir, ir,
570#if LJ_32 && LJ_HASFFI
571 st == IRT_NUM ?
572 (irt_isint(ir->t) ? IRCALL_softfp_d2i : IRCALL_softfp_d2ui) :
573 (irt_isint(ir->t) ? IRCALL_softfp_f2i : IRCALL_softfp_f2ui)
574#else
575 IRCALL_softfp_d2i
576#endif
577 );
578 J->cur.nins--; /* Drop unused HIOP. */
579 }
580 }
581#endif
582 } else if (ir->o == IR_CALLXS) {
583 IRRef hiref;
584 split_call:
585 hiref = hisubst[ir->op1];
586 if (hiref) {
587 IROpT ot = nir->ot;
588 IRRef op2 = nir->op2;
589 nir->ot = IRT(IR_CARG, IRT_NIL);
590#if LJ_LE
591 nir->op2 = hiref;
592#else
593 nir->op2 = nir->op1; nir->op1 = hiref;
594#endif
595 ir->prev = nref = split_emit(J, ot, nref, op2);
596 }
597 if (LJ_SOFTFP ? irt_is64(ir->t) : irt_isint64(ir->t))
598 hi = split_emit(J,
599 IRT(IR_HIOP, (LJ_SOFTFP && irt_isnum(ir->t)) ? IRT_SOFTFP : IRT_INT),
600 nref, nref);
601 } else if (ir->o == IR_CARG) {
602 IRRef hiref = hisubst[ir->op1];
603 if (hiref) {
604 IRRef op2 = nir->op2;
605#if LJ_LE
606 nir->op2 = hiref;
607#else
608 nir->op2 = nir->op1; nir->op1 = hiref;
609#endif
610 ir->prev = nref = split_emit(J, IRT(IR_CARG, IRT_NIL), nref, op2);
611 nir = IR(nref);
612 }
613 hiref = hisubst[ir->op2];
614 if (hiref) {
615#if !LJ_TARGET_X86
616 int carg = 0;
617 IRIns *cir;
618 for (cir = IR(nir->op1); cir->o == IR_CARG; cir = IR(cir->op1))
619 carg++;
620 if ((carg & 1) == 0) { /* Align 64 bit arguments. */
621 IRRef op2 = nir->op2;
622 nir->op2 = REF_NIL;
623 nref = split_emit(J, IRT(IR_CARG, IRT_NIL), nref, op2);
624 nir = IR(nref);
625 }
626#endif
627#if LJ_BE
628 { IRRef tmp = nir->op2; nir->op2 = hiref; hiref = tmp; }
629#endif
630 ir->prev = split_emit(J, IRT(IR_CARG, IRT_NIL), nref, hiref);
631 }
632 } else if (ir->o == IR_CNEWI) {
633 if (hisubst[ir->op2])
634 split_emit(J, IRT(IR_HIOP, IRT_NIL), nref, hisubst[ir->op2]);
635 } else if (ir->o == IR_LOOP) {
636 J->loopref = nref; /* Needed by assembler. */
637 }
638 hisubst[ref] = hi; /* Store hiword substitution. */
639 }
640
641 /* Add PHI marks. */
642 for (ref = J->cur.nins-1; ref >= REF_FIRST; ref--) {
643 IRIns *ir = IR(ref);
644 if (ir->o != IR_PHI) break;
645 if (!irref_isk(ir->op1)) irt_setphi(IR(ir->op1)->t);
646 if (ir->op2 > J->loopref) irt_setphi(IR(ir->op2)->t);
647 }
648
649 /* Substitute snapshot maps. */
650 oir[nins].prev = J->cur.nins; /* Substitution for last snapshot. */
651 {
652 SnapNo i, nsnap = J->cur.nsnap;
653 for (i = 0; i < nsnap; i++) {
654 SnapShot *snap = &J->cur.snap[i];
655 SnapEntry *map = &J->cur.snapmap[snap->mapofs];
656 MSize n, nent = snap->nent;
657 snap->ref = snap->ref == REF_FIRST ? REF_FIRST : oir[snap->ref].prev;
658 for (n = 0; n < nent; n++) {
659 SnapEntry sn = map[n];
660 IRIns *ir = &oir[snap_ref(sn)];
661 if (!(LJ_SOFTFP && (sn & SNAP_SOFTFPNUM) && irref_isk(snap_ref(sn))))
662 map[n] = ((sn & 0xffff0000) | ir->prev);
663 }
664 }
665 }
666}
667
668/* Protected callback for split pass. */
669static TValue *cpsplit(lua_State *L, lua_CFunction dummy, void *ud)
670{
671 jit_State *J = (jit_State *)ud;
672 split_ir(J);
673 UNUSED(L); UNUSED(dummy);
674 return NULL;
675}
676
677#if defined(LUA_USE_ASSERT) || LJ_SOFTFP
678/* Slow, but sure way to check whether a SPLIT pass is needed. */
679static int split_needsplit(jit_State *J)
680{
681 IRIns *ir, *irend;
682 IRRef ref;
683 for (ir = IR(REF_FIRST), irend = IR(J->cur.nins); ir < irend; ir++)
684 if (LJ_SOFTFP ? irt_is64orfp(ir->t) : irt_isint64(ir->t))
685 return 1;
686 if (LJ_SOFTFP) {
687 for (ref = J->chain[IR_SLOAD]; ref; ref = IR(ref)->prev)
688 if ((IR(ref)->op2 & IRSLOAD_CONVERT))
689 return 1;
690 }
691 for (ref = J->chain[IR_CONV]; ref; ref = IR(ref)->prev) {
692 IRType st = (IR(ref)->op2 & IRCONV_SRCMASK);
693 if ((LJ_SOFTFP && (st == IRT_NUM || st == IRT_FLOAT)) ||
694 st == IRT_I64 || st == IRT_U64)
695 return 1;
696 }
697 return 0; /* Nope. */
698}
699#endif
700
701/* SPLIT pass. */
702void lj_opt_split(jit_State *J)
703{
704#if LJ_SOFTFP
705 if (!J->needsplit)
706 J->needsplit = split_needsplit(J);
707#else
708 lua_assert(J->needsplit >= split_needsplit(J)); /* Verify flag. */
709#endif
710 if (J->needsplit) {
711 int errcode = lj_vm_cpcall(J->L, NULL, J, cpsplit);
712 if (errcode) {
713 /* Completely reset the trace to avoid inconsistent dump on abort. */
714 J->cur.nins = J->cur.nk = REF_BASE;
715 J->cur.nsnap = 0;
716 lj_err_throw(J->L, errcode); /* Propagate errors. */
717 }
718 }
719}
720
721#undef IR
722
723#endif