aboutsummaryrefslogtreecommitdiffstatshomepage
path: root/libraries/luajit-2.0/src/buildvm_ppcspe.dasc
diff options
context:
space:
mode:
Diffstat (limited to 'libraries/luajit-2.0/src/buildvm_ppcspe.dasc')
-rw-r--r--libraries/luajit-2.0/src/buildvm_ppcspe.dasc3704
1 files changed, 0 insertions, 3704 deletions
diff --git a/libraries/luajit-2.0/src/buildvm_ppcspe.dasc b/libraries/luajit-2.0/src/buildvm_ppcspe.dasc
deleted file mode 100644
index 3ec36f7..0000000
--- a/libraries/luajit-2.0/src/buildvm_ppcspe.dasc
+++ /dev/null
@@ -1,3704 +0,0 @@
1|// Low-level VM code for PowerPC/e500 CPUs.
2|// Bytecode interpreter, fast functions and helper functions.
3|// Copyright (C) 2005-2011 Mike Pall. See Copyright Notice in luajit.h
4|
5|.arch ppc
6|.section code_op, code_sub
7|
8|.actionlist build_actionlist
9|.globals GLOB_
10|.globalnames globnames
11|.externnames extnames
12|
13|// Note: The ragged indentation of the instructions is intentional.
14|// The starting columns indicate data dependencies.
15|
16|//-----------------------------------------------------------------------
17|
18|// Fixed register assignments for the interpreter.
19|// Don't use: r1 = sp, r2 and r13 = reserved and/or small data area ptr
20|
21|// The following must be C callee-save (but BASE is often refetched).
22|.define BASE, r14 // Base of current Lua stack frame.
23|.define KBASE, r15 // Constants of current Lua function.
24|.define PC, r16 // Next PC.
25|.define DISPATCH, r17 // Opcode dispatch table.
26|.define LREG, r18 // Register holding lua_State (also in SAVE_L).
27|.define MULTRES, r19 // Size of multi-result: (nresults+1)*8.
28|
29|// Constants for vectorized type-comparisons (hi+low GPR). C callee-save.
30|.define TISNUM, r22
31|.define TISSTR, r23
32|.define TISTAB, r24
33|.define TISFUNC, r25
34|.define TISNIL, r26
35|.define TOBIT, r27
36|.define ZERO, TOBIT // Zero in lo word.
37|
38|// The following temporaries are not saved across C calls, except for RA.
39|.define RA, r20 // Callee-save.
40|.define RB, r10
41|.define RC, r11
42|.define RD, r12
43|.define INS, r7 // Overlaps CARG5.
44|
45|.define TMP0, r0
46|.define TMP1, r8
47|.define TMP2, r9
48|.define TMP3, r6 // Overlaps CARG4.
49|
50|// Saved temporaries.
51|.define SAVE0, r21
52|
53|// Calling conventions.
54|.define CARG1, r3
55|.define CARG2, r4
56|.define CARG3, r5
57|.define CARG4, r6 // Overlaps TMP3.
58|.define CARG5, r7 // Overlaps INS.
59|
60|.define CRET1, r3
61|.define CRET2, r4
62|
63|// Stack layout while in interpreter. Must match with lj_frame.h.
64|.define SAVE_LR, 188(sp)
65|.define CFRAME_SPACE, 184 // Delta for sp.
66|// Back chain for sp: 184(sp) <-- sp entering interpreter
67|.define SAVE_r31, 176(sp) // 64 bit register saves.
68|.define SAVE_r30, 168(sp)
69|.define SAVE_r29, 160(sp)
70|.define SAVE_r28, 152(sp)
71|.define SAVE_r27, 144(sp)
72|.define SAVE_r26, 136(sp)
73|.define SAVE_r25, 128(sp)
74|.define SAVE_r24, 120(sp)
75|.define SAVE_r23, 112(sp)
76|.define SAVE_r22, 104(sp)
77|.define SAVE_r21, 96(sp)
78|.define SAVE_r20, 88(sp)
79|.define SAVE_r19, 80(sp)
80|.define SAVE_r18, 72(sp)
81|.define SAVE_r17, 64(sp)
82|.define SAVE_r16, 56(sp)
83|.define SAVE_r15, 48(sp)
84|.define SAVE_r14, 40(sp)
85|.define SAVE_CR, 36(sp)
86|.define UNUSED1, 32(sp)
87|.define SAVE_ERRF, 28(sp) // 32 bit C frame info.
88|.define SAVE_NRES, 24(sp)
89|.define SAVE_CFRAME, 20(sp)
90|.define SAVE_L, 16(sp)
91|.define SAVE_PC, 12(sp)
92|.define SAVE_MULTRES, 8(sp)
93|// Next frame lr: 4(sp)
94|// Back chain for sp: 0(sp) <-- sp while in interpreter
95|
96|.macro save_, reg; evstdd reg, SAVE_..reg; .endmacro
97|.macro rest_, reg; evldd reg, SAVE_..reg; .endmacro
98|
99|.macro saveregs
100| stwu sp, -CFRAME_SPACE(sp)
101| save_ r14; save_ r15; save_ r16; save_ r17; save_ r18; save_ r19
102| mflr r0; mfcr r12
103| save_ r20; save_ r21; save_ r22; save_ r23; save_ r24; save_ r25
104| stw r0, SAVE_LR; stw r12, SAVE_CR
105| save_ r26; save_ r27; save_ r28; save_ r29; save_ r30; save_ r31
106|.endmacro
107|
108|.macro restoreregs
109| lwz r0, SAVE_LR; lwz r12, SAVE_CR
110| rest_ r14; rest_ r15; rest_ r16; rest_ r17; rest_ r18; rest_ r19
111| mtlr r0; mtcrf 0x38, r12
112| rest_ r20; rest_ r21; rest_ r22; rest_ r23; rest_ r24; rest_ r25
113| rest_ r26; rest_ r27; rest_ r28; rest_ r29; rest_ r30; rest_ r31
114| addi sp, sp, CFRAME_SPACE
115|.endmacro
116|
117|// Type definitions. Some of these are only used for documentation.
118|.type L, lua_State, LREG
119|.type GL, global_State
120|.type TVALUE, TValue
121|.type GCOBJ, GCobj
122|.type STR, GCstr
123|.type TAB, GCtab
124|.type LFUNC, GCfuncL
125|.type CFUNC, GCfuncC
126|.type PROTO, GCproto
127|.type UPVAL, GCupval
128|.type NODE, Node
129|.type NARGS8, int
130|.type TRACE, GCtrace
131|
132|//-----------------------------------------------------------------------
133|
134|// These basic macros should really be part of DynASM.
135|.macro srwi, rx, ry, n; rlwinm rx, ry, 32-n, n, 31; .endmacro
136|.macro slwi, rx, ry, n; rlwinm rx, ry, n, 0, 31-n; .endmacro
137|.macro rotlwi, rx, ry, n; rlwinm rx, ry, n, 0, 31; .endmacro
138|.macro rotlw, rx, ry, rn; rlwnm rx, ry, rn, 0, 31; .endmacro
139|.macro subi, rx, ry, i; addi rx, ry, -i; .endmacro
140|
141|// Trap for not-yet-implemented parts.
142|.macro NYI; tw 4, sp, sp; .endmacro
143|
144|//-----------------------------------------------------------------------
145|
146|// Access to frame relative to BASE.
147|.define FRAME_PC, -8
148|.define FRAME_FUNC, -4
149|
150|// Instruction decode.
151|.macro decode_OP4, dst, ins; rlwinm dst, ins, 2, 22, 29; .endmacro
152|.macro decode_RA8, dst, ins; rlwinm dst, ins, 27, 21, 28; .endmacro
153|.macro decode_RB8, dst, ins; rlwinm dst, ins, 11, 21, 28; .endmacro
154|.macro decode_RC8, dst, ins; rlwinm dst, ins, 19, 21, 28; .endmacro
155|.macro decode_RD8, dst, ins; rlwinm dst, ins, 19, 13, 28; .endmacro
156|
157|.macro decode_OP1, dst, ins; rlwinm dst, ins, 0, 24, 31; .endmacro
158|.macro decode_RD4, dst, ins; rlwinm dst, ins, 18, 14, 29; .endmacro
159|
160|// Instruction fetch.
161|.macro ins_NEXT1
162| lwz INS, 0(PC)
163| addi PC, PC, 4
164|.endmacro
165|// Instruction decode+dispatch.
166|.macro ins_NEXT2
167| decode_OP4 TMP1, INS
168| decode_RB8 RB, INS
169| decode_RD8 RD, INS
170| lwzx TMP0, DISPATCH, TMP1
171| decode_RA8 RA, INS
172| decode_RC8 RC, INS
173| mtctr TMP0
174| bctr
175|.endmacro
176|.macro ins_NEXT
177| ins_NEXT1
178| ins_NEXT2
179|.endmacro
180|
181|// Instruction footer.
182|.if 1
183| // Replicated dispatch. Less unpredictable branches, but higher I-Cache use.
184| .define ins_next, ins_NEXT
185| .define ins_next_, ins_NEXT
186| .define ins_next1, ins_NEXT1
187| .define ins_next2, ins_NEXT2
188|.else
189| // Common dispatch. Lower I-Cache use, only one (very) unpredictable branch.
190| // Affects only certain kinds of benchmarks (and only with -j off).
191| .macro ins_next
192| b ->ins_next
193| .endmacro
194| .macro ins_next1
195| .endmacro
196| .macro ins_next2
197| b ->ins_next
198| .endmacro
199| .macro ins_next_
200| ->ins_next:
201| ins_NEXT
202| .endmacro
203|.endif
204|
205|// Call decode and dispatch.
206|.macro ins_callt
207| // BASE = new base, RB = LFUNC/CFUNC, RC = nargs*8, FRAME_PC(BASE) = PC
208| lwz PC, LFUNC:RB->pc
209| lwz INS, 0(PC)
210| addi PC, PC, 4
211| decode_OP4 TMP1, INS
212| decode_RA8 RA, INS
213| lwzx TMP0, DISPATCH, TMP1
214| add RA, RA, BASE
215| mtctr TMP0
216| bctr
217|.endmacro
218|
219|.macro ins_call
220| // BASE = new base, RB = LFUNC/CFUNC, RC = nargs*8, PC = caller PC
221| stw PC, FRAME_PC(BASE)
222| ins_callt
223|.endmacro
224|
225|//-----------------------------------------------------------------------
226|
227|// Macros to test operand types.
228|.macro checknum, reg; evcmpltu reg, TISNUM; .endmacro
229|.macro checkstr, reg; evcmpeq reg, TISSTR; .endmacro
230|.macro checktab, reg; evcmpeq reg, TISTAB; .endmacro
231|.macro checkfunc, reg; evcmpeq reg, TISFUNC; .endmacro
232|.macro checknil, reg; evcmpeq reg, TISNIL; .endmacro
233|.macro checkok, label; blt label; .endmacro
234|.macro checkfail, label; bge label; .endmacro
235|.macro checkanyfail, label; bns label; .endmacro
236|.macro checkallok, label; bso label; .endmacro
237|
238|.macro branch_RD
239| srwi TMP0, RD, 1
240| add PC, PC, TMP0
241| addis PC, PC, -(BCBIAS_J*4 >> 16)
242|.endmacro
243|
244|// Assumes DISPATCH is relative to GL.
245#define DISPATCH_GL(field) (GG_DISP2G + (int)offsetof(global_State, field))
246#define DISPATCH_J(field) (GG_DISP2J + (int)offsetof(jit_State, field))
247|
248#define PC2PROTO(field) ((int)offsetof(GCproto, field)-(int)sizeof(GCproto))
249|
250|.macro hotloop
251| NYI
252|.endmacro
253|
254|.macro hotcall
255| NYI
256|.endmacro
257|
258|// Set current VM state. Uses TMP0.
259|.macro li_vmstate, st; li TMP0, ~LJ_VMST_..st; .endmacro
260|.macro st_vmstate; stw TMP0, DISPATCH_GL(vmstate)(DISPATCH); .endmacro
261|
262|// Move table write barrier back. Overwrites mark and tmp.
263|.macro barrierback, tab, mark, tmp
264| lwz tmp, DISPATCH_GL(gc.grayagain)(DISPATCH)
265| // Assumes LJ_GC_BLACK is 0x04.
266| rlwinm mark, mark, 0, 30, 28 // black2gray(tab)
267| stw tab, DISPATCH_GL(gc.grayagain)(DISPATCH)
268| stb mark, tab->marked
269| stw tmp, tab->gclist
270|.endmacro
271|
272|//-----------------------------------------------------------------------
273
274/* Generate subroutines used by opcodes and other parts of the VM. */
275/* The .code_sub section should be last to help static branch prediction. */
276static void build_subroutines(BuildCtx *ctx)
277{
278 |.code_sub
279 |
280 |//-----------------------------------------------------------------------
281 |//-- Return handling ----------------------------------------------------
282 |//-----------------------------------------------------------------------
283 |
284 |->vm_returnp:
285 | // See vm_return. Also: TMP2 = previous base.
286 | andi. TMP0, PC, FRAME_P
287 | evsplati TMP1, LJ_TTRUE
288 | beq ->cont_dispatch
289 |
290 | // Return from pcall or xpcall fast func.
291 | lwz PC, FRAME_PC(TMP2) // Fetch PC of previous frame.
292 | mr BASE, TMP2 // Restore caller base.
293 | // Prepending may overwrite the pcall frame, so do it at the end.
294 | stwu TMP1, FRAME_PC(RA) // Prepend true to results.
295 |
296 |->vm_returnc:
297 | andi. TMP0, PC, FRAME_TYPE
298 | addi RD, RD, 8 // RD = (nresults+1)*8.
299 | mr MULTRES, RD
300 | beq ->BC_RET_Z // Handle regular return to Lua.
301 |
302 |->vm_return:
303 | // BASE = base, RA = resultptr, RD/MULTRES = (nresults+1)*8, PC = return
304 | // TMP0 = PC & FRAME_TYPE
305 | cmpwi TMP0, FRAME_C
306 | rlwinm TMP2, PC, 0, 0, 28
307 | li_vmstate C
308 | sub TMP2, BASE, TMP2 // TMP2 = previous base.
309 | bne ->vm_returnp
310 |
311 | addic. TMP1, RD, -8
312 | stw TMP2, L->base
313 | lwz TMP2, SAVE_NRES
314 | subi BASE, BASE, 8
315 | st_vmstate
316 | slwi TMP2, TMP2, 3
317 | beq >2
318 |1:
319 | addic. TMP1, TMP1, -8
320 | evldd TMP0, 0(RA)
321 | addi RA, RA, 8
322 | evstdd TMP0, 0(BASE)
323 | addi BASE, BASE, 8
324 | bne <1
325 |
326 |2:
327 | cmpw TMP2, RD // More/less results wanted?
328 | bne >6
329 |3:
330 | stw BASE, L->top // Store new top.
331 |
332 |->vm_leave_cp:
333 | lwz TMP0, SAVE_CFRAME // Restore previous C frame.
334 | li CRET1, 0 // Ok return status for vm_pcall.
335 | stw TMP0, L->cframe
336 |
337 |->vm_leave_unw:
338 | restoreregs
339 | blr
340 |
341 |6:
342 | ble >7 // Less results wanted?
343 | // More results wanted. Check stack size and fill up results with nil.
344 | lwz TMP1, L->maxstack
345 | cmplw BASE, TMP1
346 | bge >8
347 | evstdd TISNIL, 0(BASE)
348 | addi RD, RD, 8
349 | addi BASE, BASE, 8
350 | b <2
351 |
352 |7: // Less results wanted.
353 | sub TMP0, RD, TMP2
354 | cmpwi TMP2, 0 // LUA_MULTRET+1 case?
355 | sub TMP0, BASE, TMP0 // Subtract the difference.
356 | iseleq BASE, BASE, TMP0 // Either keep top or shrink it.
357 | b <3
358 |
359 |8: // Corner case: need to grow stack for filling up results.
360 | // This can happen if:
361 | // - A C function grows the stack (a lot).
362 | // - The GC shrinks the stack in between.
363 | // - A return back from a lua_call() with (high) nresults adjustment.
364 | stw BASE, L->top // Save current top held in BASE (yes).
365 | mr SAVE0, RD
366 | mr CARG2, TMP2
367 | mr CARG1, L
368 | bl extern lj_state_growstack // (lua_State *L, int n)
369 | lwz TMP2, SAVE_NRES
370 | mr RD, SAVE0
371 | slwi TMP2, TMP2, 3
372 | lwz BASE, L->top // Need the (realloced) L->top in BASE.
373 | b <2
374 |
375 |->vm_unwind_c: // Unwind C stack, return from vm_pcall.
376 | // (void *cframe, int errcode)
377 | mr sp, CARG1
378 | mr CRET1, CARG2
379 |->vm_unwind_c_eh: // Landing pad for external unwinder.
380 | lwz L, SAVE_L
381 | li TMP0, ~LJ_VMST_C
382 | lwz GL:TMP1, L->glref
383 | stw TMP0, GL:TMP1->vmstate
384 | b ->vm_leave_unw
385 |
386 |->vm_unwind_ff: // Unwind C stack, return from ff pcall.
387 | // (void *cframe)
388 | rlwinm sp, CARG1, 0, 0, 29
389 |->vm_unwind_ff_eh: // Landing pad for external unwinder.
390 | lwz L, SAVE_L
391 | evsplati TISNUM, LJ_TISNUM+1 // Setup type comparison constants.
392 | evsplati TISFUNC, LJ_TFUNC
393 | lus TOBIT, 0x4338
394 | evsplati TISTAB, LJ_TTAB
395 | li TMP0, 0
396 | lwz BASE, L->base
397 | evmergelo TOBIT, TOBIT, TMP0
398 | lwz DISPATCH, L->glref // Setup pointer to dispatch table.
399 | evsplati TISSTR, LJ_TSTR
400 | li TMP1, LJ_TFALSE
401 | evsplati TISNIL, LJ_TNIL
402 | li_vmstate INTERP
403 | lwz PC, FRAME_PC(BASE) // Fetch PC of previous frame.
404 | la RA, -8(BASE) // Results start at BASE-8.
405 | addi DISPATCH, DISPATCH, GG_G2DISP
406 | stw TMP1, 0(RA) // Prepend false to error message.
407 | li RD, 16 // 2 results: false + error message.
408 | st_vmstate
409 | b ->vm_returnc
410 |
411 |//-----------------------------------------------------------------------
412 |//-- Grow stack for calls -----------------------------------------------
413 |//-----------------------------------------------------------------------
414 |
415 |->vm_growstack_c: // Grow stack for C function.
416 | li CARG2, LUA_MINSTACK
417 | b >2
418 |
419 |->vm_growstack_l: // Grow stack for Lua function.
420 | // BASE = new base, RA = BASE+framesize*8, RC = nargs*8, PC = first PC
421 | add RC, BASE, RC
422 | sub RA, RA, BASE
423 | stw BASE, L->base
424 | addi PC, PC, 4 // Must point after first instruction.
425 | stw RC, L->top
426 | srwi CARG2, RA, 3
427 |2:
428 | // L->base = new base, L->top = top
429 | stw PC, SAVE_PC
430 | mr CARG1, L
431 | bl extern lj_state_growstack // (lua_State *L, int n)
432 | lwz BASE, L->base
433 | lwz RC, L->top
434 | lwz LFUNC:RB, FRAME_FUNC(BASE)
435 | sub RC, RC, BASE
436 | // BASE = new base, RB = LFUNC/CFUNC, RC = nargs*8, FRAME_PC(BASE) = PC
437 | ins_callt // Just retry the call.
438 |
439 |//-----------------------------------------------------------------------
440 |//-- Entry points into the assembler VM ---------------------------------
441 |//-----------------------------------------------------------------------
442 |
443 |->vm_resume: // Setup C frame and resume thread.
444 | // (lua_State *L, TValue *base, int nres1 = 0, ptrdiff_t ef = 0)
445 | saveregs
446 | mr L, CARG1
447 | lwz DISPATCH, L->glref // Setup pointer to dispatch table.
448 | mr BASE, CARG2
449 | lbz TMP1, L->status
450 | stw L, SAVE_L
451 | li PC, FRAME_CP
452 | addi TMP0, sp, CFRAME_RESUME
453 | addi DISPATCH, DISPATCH, GG_G2DISP
454 | stw CARG3, SAVE_NRES
455 | cmplwi TMP1, 0
456 | stw CARG3, SAVE_ERRF
457 | stw TMP0, L->cframe
458 | stw CARG3, SAVE_CFRAME
459 | stw CARG1, SAVE_PC // Any value outside of bytecode is ok.
460 | beq >3
461 |
462 | // Resume after yield (like a return).
463 | mr RA, BASE
464 | lwz BASE, L->base
465 | evsplati TISNUM, LJ_TISNUM+1 // Setup type comparison constants.
466 | lwz TMP1, L->top
467 | evsplati TISFUNC, LJ_TFUNC
468 | lus TOBIT, 0x4338
469 | evsplati TISTAB, LJ_TTAB
470 | lwz PC, FRAME_PC(BASE)
471 | li TMP2, 0
472 | evsplati TISSTR, LJ_TSTR
473 | sub RD, TMP1, BASE
474 | evmergelo TOBIT, TOBIT, TMP2
475 | stb CARG3, L->status
476 | andi. TMP0, PC, FRAME_TYPE
477 | li_vmstate INTERP
478 | addi RD, RD, 8
479 | evsplati TISNIL, LJ_TNIL
480 | mr MULTRES, RD
481 | st_vmstate
482 | beq ->BC_RET_Z
483 | b ->vm_return
484 |
485 |->vm_pcall: // Setup protected C frame and enter VM.
486 | // (lua_State *L, TValue *base, int nres1, ptrdiff_t ef)
487 | saveregs
488 | li PC, FRAME_CP
489 | stw CARG4, SAVE_ERRF
490 | b >1
491 |
492 |->vm_call: // Setup C frame and enter VM.
493 | // (lua_State *L, TValue *base, int nres1)
494 | saveregs
495 | li PC, FRAME_C
496 |
497 |1: // Entry point for vm_pcall above (PC = ftype).
498 | lwz TMP1, L:CARG1->cframe
499 | stw CARG3, SAVE_NRES
500 | mr L, CARG1
501 | stw CARG1, SAVE_L
502 | mr BASE, CARG2
503 | stw sp, L->cframe // Add our C frame to cframe chain.
504 | lwz DISPATCH, L->glref // Setup pointer to dispatch table.
505 | stw CARG1, SAVE_PC // Any value outside of bytecode is ok.
506 | stw TMP1, SAVE_CFRAME
507 | addi DISPATCH, DISPATCH, GG_G2DISP
508 |
509 |3: // Entry point for vm_cpcall/vm_resume (BASE = base, PC = ftype).
510 | lwz TMP2, L->base // TMP2 = old base (used in vmeta_call).
511 | evsplati TISNUM, LJ_TISNUM+1 // Setup type comparison constants.
512 | lwz TMP1, L->top
513 | evsplati TISFUNC, LJ_TFUNC
514 | add PC, PC, BASE
515 | evsplati TISTAB, LJ_TTAB
516 | lus TOBIT, 0x4338
517 | li TMP0, 0
518 | sub PC, PC, TMP2 // PC = frame delta + frame type
519 | evsplati TISSTR, LJ_TSTR
520 | sub NARGS8:RC, TMP1, BASE
521 | evmergelo TOBIT, TOBIT, TMP0
522 | li_vmstate INTERP
523 | evsplati TISNIL, LJ_TNIL
524 | st_vmstate
525 |
526 |->vm_call_dispatch:
527 | // TMP2 = old base, BASE = new base, RC = nargs*8, PC = caller PC
528 | li TMP0, -8
529 | evlddx LFUNC:RB, BASE, TMP0
530 | checkfunc LFUNC:RB
531 | checkfail ->vmeta_call
532 |
533 |->vm_call_dispatch_f:
534 | ins_call
535 | // BASE = new base, RB = func, RC = nargs*8, PC = caller PC
536 |
537 |->vm_cpcall: // Setup protected C frame, call C.
538 | // (lua_State *L, lua_CFunction func, void *ud, lua_CPFunction cp)
539 | saveregs
540 | mr L, CARG1
541 | lwz TMP0, L:CARG1->stack
542 | stw CARG1, SAVE_L
543 | lwz TMP1, L->top
544 | stw CARG1, SAVE_PC // Any value outside of bytecode is ok.
545 | sub TMP0, TMP0, TMP1 // Compute -savestack(L, L->top).
546 | lwz TMP1, L->cframe
547 | stw sp, L->cframe // Add our C frame to cframe chain.
548 | li TMP2, 0
549 | stw TMP0, SAVE_NRES // Neg. delta means cframe w/o frame.
550 | stw TMP2, SAVE_ERRF // No error function.
551 | stw TMP1, SAVE_CFRAME
552 | mtctr CARG4
553 | bctrl // (lua_State *L, lua_CFunction func, void *ud)
554 | mr. BASE, CRET1
555 | lwz DISPATCH, L->glref // Setup pointer to dispatch table.
556 | li PC, FRAME_CP
557 | addi DISPATCH, DISPATCH, GG_G2DISP
558 | bne <3 // Else continue with the call.
559 | b ->vm_leave_cp // No base? Just remove C frame.
560 |
561 |//-----------------------------------------------------------------------
562 |//-- Metamethod handling ------------------------------------------------
563 |//-----------------------------------------------------------------------
564 |
565 |// The lj_meta_* functions (except for lj_meta_cat) don't reallocate the
566 |// stack, so BASE doesn't need to be reloaded across these calls.
567 |
568 |//-- Continuation dispatch ----------------------------------------------
569 |
570 |->cont_dispatch:
571 | // BASE = meta base, RA = resultptr, RD = (nresults+1)*8
572 | lwz TMP0, -12(BASE) // Continuation.
573 | mr RB, BASE
574 | mr BASE, TMP2 // Restore caller BASE.
575 | lwz LFUNC:TMP1, FRAME_FUNC(TMP2)
576 | cmplwi TMP0, 0
577 | lwz PC, -16(RB) // Restore PC from [cont|PC].
578 | beq >1
579 | subi TMP2, RD, 8
580 | lwz TMP1, LFUNC:TMP1->pc
581 | evstddx TISNIL, RA, TMP2 // Ensure one valid arg.
582 | lwz KBASE, PC2PROTO(k)(TMP1)
583 | // BASE = base, RA = resultptr, RB = meta base
584 | mtctr TMP0
585 | bctr // Jump to continuation.
586 |
587 |1: // Tail call from C function.
588 | subi TMP1, RB, 16
589 | sub RC, TMP1, BASE
590 | b ->vm_call_tail
591 |
592 |->cont_cat: // RA = resultptr, RB = meta base
593 | lwz INS, -4(PC)
594 | subi CARG2, RB, 16
595 | decode_RB8 SAVE0, INS
596 | evldd TMP0, 0(RA)
597 | add TMP1, BASE, SAVE0
598 | stw BASE, L->base
599 | cmplw TMP1, CARG2
600 | sub CARG3, CARG2, TMP1
601 | decode_RA8 RA, INS
602 | evstdd TMP0, 0(CARG2)
603 | bne ->BC_CAT_Z
604 | evstddx TMP0, BASE, RA
605 | b ->cont_nop
606 |
607 |//-- Table indexing metamethods -----------------------------------------
608 |
609 |->vmeta_tgets1:
610 | evmergelo STR:RC, TISSTR, STR:RC
611 | la CARG3, DISPATCH_GL(tmptv)(DISPATCH)
612 | decode_RB8 RB, INS
613 | evstdd STR:RC, 0(CARG3)
614 | add CARG2, BASE, RB
615 | b >1
616 |
617 |->vmeta_tgets:
618 | evmergelo TAB:RB, TISTAB, TAB:RB
619 | la CARG2, DISPATCH_GL(tmptv)(DISPATCH)
620 | evmergelo STR:RC, TISSTR, STR:RC
621 | evstdd TAB:RB, 0(CARG2)
622 | la CARG3, DISPATCH_GL(tmptv2)(DISPATCH)
623 | evstdd STR:RC, 0(CARG3)
624 | b >1
625 |
626 |->vmeta_tgetb: // TMP0 = index
627 | efdcfsi TMP0, TMP0
628 | decode_RB8 RB, INS
629 | la CARG3, DISPATCH_GL(tmptv)(DISPATCH)
630 | add CARG2, BASE, RB
631 | evstdd TMP0, 0(CARG3)
632 | b >1
633 |
634 |->vmeta_tgetv:
635 | decode_RB8 RB, INS
636 | decode_RC8 RC, INS
637 | add CARG2, BASE, RB
638 | add CARG3, BASE, RC
639 |1:
640 | stw BASE, L->base
641 | mr CARG1, L
642 | stw PC, SAVE_PC
643 | bl extern lj_meta_tget // (lua_State *L, TValue *o, TValue *k)
644 | // Returns TValue * (finished) or NULL (metamethod).
645 | cmplwi CRET1, 0
646 | beq >3
647 | evldd TMP0, 0(CRET1)
648 | evstddx TMP0, BASE, RA
649 | ins_next
650 |
651 |3: // Call __index metamethod.
652 | // BASE = base, L->top = new base, stack = cont/func/t/k
653 | subfic TMP1, BASE, FRAME_CONT
654 | lwz BASE, L->top
655 | stw PC, -16(BASE) // [cont|PC]
656 | add PC, TMP1, BASE
657 | lwz LFUNC:RB, FRAME_FUNC(BASE) // Guaranteed to be a function here.
658 | li NARGS8:RC, 16 // 2 args for func(t, k).
659 | b ->vm_call_dispatch_f
660 |
661 |//-----------------------------------------------------------------------
662 |
663 |->vmeta_tsets1:
664 | evmergelo STR:RC, TISSTR, STR:RC
665 | la CARG3, DISPATCH_GL(tmptv)(DISPATCH)
666 | decode_RB8 RB, INS
667 | evstdd STR:RC, 0(CARG3)
668 | add CARG2, BASE, RB
669 | b >1
670 |
671 |->vmeta_tsets:
672 | evmergelo TAB:RB, TISTAB, TAB:RB
673 | la CARG2, DISPATCH_GL(tmptv)(DISPATCH)
674 | evmergelo STR:RC, TISSTR, STR:RC
675 | evstdd TAB:RB, 0(CARG2)
676 | la CARG3, DISPATCH_GL(tmptv2)(DISPATCH)
677 | evstdd STR:RC, 0(CARG3)
678 | b >1
679 |
680 |->vmeta_tsetb: // TMP0 = index
681 | efdcfsi TMP0, TMP0
682 | decode_RB8 RB, INS
683 | la CARG3, DISPATCH_GL(tmptv)(DISPATCH)
684 | add CARG2, BASE, RB
685 | evstdd TMP0, 0(CARG3)
686 | b >1
687 |
688 |->vmeta_tsetv:
689 | decode_RB8 RB, INS
690 | decode_RC8 RC, INS
691 | add CARG2, BASE, RB
692 | add CARG3, BASE, RC
693 |1:
694 | stw BASE, L->base
695 | mr CARG1, L
696 | stw PC, SAVE_PC
697 | bl extern lj_meta_tset // (lua_State *L, TValue *o, TValue *k)
698 | // Returns TValue * (finished) or NULL (metamethod).
699 | cmplwi CRET1, 0
700 | evlddx TMP0, BASE, RA
701 | beq >3
702 | // NOBARRIER: lj_meta_tset ensures the table is not black.
703 | evstdd TMP0, 0(CRET1)
704 | ins_next
705 |
706 |3: // Call __newindex metamethod.
707 | // BASE = base, L->top = new base, stack = cont/func/t/k/(v)
708 | subfic TMP1, BASE, FRAME_CONT
709 | lwz BASE, L->top
710 | stw PC, -16(BASE) // [cont|PC]
711 | add PC, TMP1, BASE
712 | lwz LFUNC:RB, FRAME_FUNC(BASE) // Guaranteed to be a function here.
713 | li NARGS8:RC, 24 // 3 args for func(t, k, v)
714 | evstdd TMP0, 16(BASE) // Copy value to third argument.
715 | b ->vm_call_dispatch_f
716 |
717 |//-- Comparison metamethods ---------------------------------------------
718 |
719 |->vmeta_comp:
720 | mr CARG1, L
721 | subi PC, PC, 4
722 | add CARG2, BASE, RA
723 | stw PC, SAVE_PC
724 | add CARG3, BASE, RD
725 | stw BASE, L->base
726 | decode_OP1 CARG4, INS
727 | bl extern lj_meta_comp // (lua_State *L, TValue *o1, *o2, int op)
728 | // Returns 0/1 or TValue * (metamethod).
729 |3:
730 | cmplwi CRET1, 1
731 | bgt ->vmeta_binop
732 |4:
733 | lwz INS, 0(PC)
734 | addi PC, PC, 4
735 | decode_RD4 TMP2, INS
736 | addis TMP3, PC, -(BCBIAS_J*4 >> 16)
737 | add TMP2, TMP2, TMP3
738 | isellt PC, PC, TMP2
739 |->cont_nop:
740 | ins_next
741 |
742 |->cont_ra: // RA = resultptr
743 | lwz INS, -4(PC)
744 | evldd TMP0, 0(RA)
745 | decode_RA8 TMP1, INS
746 | evstddx TMP0, BASE, TMP1
747 | b ->cont_nop
748 |
749 |->cont_condt: // RA = resultptr
750 | lwz TMP0, 0(RA)
751 | li TMP1, LJ_TTRUE
752 | cmplw TMP1, TMP0 // Branch if result is true.
753 | b <4
754 |
755 |->cont_condf: // RA = resultptr
756 | lwz TMP0, 0(RA)
757 | li TMP1, LJ_TFALSE
758 | cmplw TMP0, TMP1 // Branch if result is false.
759 | b <4
760 |
761 |->vmeta_equal:
762 | // CARG2, CARG3, CARG4 are already set by BC_ISEQV/BC_ISNEV.
763 | subi PC, PC, 4
764 | stw BASE, L->base
765 | mr CARG1, L
766 | stw PC, SAVE_PC
767 | bl extern lj_meta_equal // (lua_State *L, GCobj *o1, *o2, int ne)
768 | // Returns 0/1 or TValue * (metamethod).
769 | b <3
770 |
771 |//-- Arithmetic metamethods ---------------------------------------------
772 |
773 |->vmeta_arith_vn:
774 | add CARG3, BASE, RB
775 | add CARG4, KBASE, RC
776 | b >1
777 |
778 |->vmeta_arith_nv:
779 | add CARG3, KBASE, RC
780 | add CARG4, BASE, RB
781 | b >1
782 |
783 |->vmeta_unm:
784 | add CARG3, BASE, RD
785 | mr CARG4, CARG3
786 | b >1
787 |
788 |->vmeta_arith_vv:
789 | add CARG3, BASE, RB
790 | add CARG4, BASE, RC
791 |1:
792 | add CARG2, BASE, RA
793 | stw BASE, L->base
794 | mr CARG1, L
795 | stw PC, SAVE_PC
796 | decode_OP1 CARG5, INS // Caveat: CARG5 overlaps INS.
797 | bl extern lj_meta_arith // (lua_State *L, TValue *ra,*rb,*rc, BCReg op)
798 | // Returns NULL (finished) or TValue * (metamethod).
799 | cmplwi CRET1, 0
800 | beq ->cont_nop
801 |
802 | // Call metamethod for binary op.
803 |->vmeta_binop:
804 | // BASE = old base, CRET1 = new base, stack = cont/func/o1/o2
805 | sub TMP1, CRET1, BASE
806 | stw PC, -16(CRET1) // [cont|PC]
807 | mr TMP2, BASE
808 | addi PC, TMP1, FRAME_CONT
809 | mr BASE, CRET1
810 | li NARGS8:RC, 16 // 2 args for func(o1, o2).
811 | b ->vm_call_dispatch
812 |
813 |->vmeta_len:
814#ifdef LUAJIT_ENABLE_LUA52COMPAT
815 | mr SAVE0, CARG1
816#endif
817 | add CARG2, BASE, RD
818 | stw BASE, L->base
819 | mr CARG1, L
820 | stw PC, SAVE_PC
821 | bl extern lj_meta_len // (lua_State *L, TValue *o)
822 | // Returns NULL (retry) or TValue * (metamethod base).
823#ifdef LUAJIT_ENABLE_LUA52COMPAT
824 | cmplwi CRET1, 0
825 | bne ->vmeta_binop // Binop call for compatibility.
826 | mr CARG1, SAVE0
827 | b ->BC_LEN_Z
828#else
829 | b ->vmeta_binop // Binop call for compatibility.
830#endif
831 |
832 |//-- Call metamethod ----------------------------------------------------
833 |
834 |->vmeta_call: // Resolve and call __call metamethod.
835 | // TMP2 = old base, BASE = new base, RC = nargs*8
836 | mr CARG1, L
837 | stw TMP2, L->base // This is the callers base!
838 | subi CARG2, BASE, 8
839 | stw PC, SAVE_PC
840 | add CARG3, BASE, RC
841 | mr SAVE0, NARGS8:RC
842 | bl extern lj_meta_call // (lua_State *L, TValue *func, TValue *top)
843 | lwz LFUNC:RB, FRAME_FUNC(BASE) // Guaranteed to be a function here.
844 | addi NARGS8:RC, SAVE0, 8 // Got one more argument now.
845 | ins_call
846 |
847 |->vmeta_callt: // Resolve __call for BC_CALLT.
848 | // BASE = old base, RA = new base, RC = nargs*8
849 | mr CARG1, L
850 | stw BASE, L->base
851 | subi CARG2, RA, 8
852 | stw PC, SAVE_PC
853 | add CARG3, RA, RC
854 | mr SAVE0, NARGS8:RC
855 | bl extern lj_meta_call // (lua_State *L, TValue *func, TValue *top)
856 | lwz TMP1, FRAME_PC(BASE)
857 | addi NARGS8:RC, SAVE0, 8 // Got one more argument now.
858 | lwz LFUNC:RB, FRAME_FUNC(RA) // Guaranteed to be a function here.
859 | b ->BC_CALLT_Z
860 |
861 |//-- Argument coercion for 'for' statement ------------------------------
862 |
863 |->vmeta_for:
864 | mr CARG1, L
865 | stw BASE, L->base
866 | mr CARG2, RA
867 | stw PC, SAVE_PC
868 | mr SAVE0, INS
869 | bl extern lj_meta_for // (lua_State *L, TValue *base)
870#if LJ_HASJIT
871 | decode_OP1 TMP0, SAVE0
872#endif
873 | decode_RA8 RA, SAVE0
874#if LJ_HASJIT
875 | cmpwi TMP0, BC_JFORI
876#endif
877 | decode_RD8 RD, SAVE0
878#if LJ_HASJIT
879 | beq =>BC_JFORI
880#endif
881 | b =>BC_FORI
882 |
883 |//-----------------------------------------------------------------------
884 |//-- Fast functions -----------------------------------------------------
885 |//-----------------------------------------------------------------------
886 |
887 |.macro .ffunc, name
888 |->ff_ .. name:
889 |.endmacro
890 |
891 |.macro .ffunc_1, name
892 |->ff_ .. name:
893 | cmplwi NARGS8:RC, 8
894 | evldd CARG1, 0(BASE)
895 | blt ->fff_fallback
896 |.endmacro
897 |
898 |.macro .ffunc_2, name
899 |->ff_ .. name:
900 | cmplwi NARGS8:RC, 16
901 | evldd CARG1, 0(BASE)
902 | evldd CARG2, 8(BASE)
903 | blt ->fff_fallback
904 |.endmacro
905 |
906 |.macro .ffunc_n, name
907 | .ffunc_1 name
908 | checknum CARG1
909 | checkfail ->fff_fallback
910 |.endmacro
911 |
912 |.macro .ffunc_nn, name
913 | .ffunc_2 name
914 | evmergehi TMP0, CARG1, CARG2
915 | checknum TMP0
916 | checkanyfail ->fff_fallback
917 |.endmacro
918 |
919 |// Inlined GC threshold check. Caveat: uses TMP0 and TMP1.
920 |.macro ffgccheck
921 | lwz TMP0, DISPATCH_GL(gc.total)(DISPATCH)
922 | lwz TMP1, DISPATCH_GL(gc.threshold)(DISPATCH)
923 | cmplw TMP0, TMP1
924 | bgel ->fff_gcstep
925 |.endmacro
926 |
927 |//-- Base library: checks -----------------------------------------------
928 |
929 |.ffunc assert
930 | cmplwi NARGS8:RC, 8
931 | evldd TMP0, 0(BASE)
932 | blt ->fff_fallback
933 | evaddw TMP1, TISNIL, TISNIL // Synthesize LJ_TFALSE.
934 | la RA, -8(BASE)
935 | evcmpltu cr1, TMP0, TMP1
936 | lwz PC, FRAME_PC(BASE)
937 | bge cr1, ->fff_fallback
938 | evstdd TMP0, 0(RA)
939 | addi RD, NARGS8:RC, 8 // Compute (nresults+1)*8.
940 | beq ->fff_res // Done if exactly 1 argument.
941 | li TMP1, 8
942 | subi RC, RC, 8
943 |1:
944 | cmplw TMP1, RC
945 | evlddx TMP0, BASE, TMP1
946 | evstddx TMP0, RA, TMP1
947 | addi TMP1, TMP1, 8
948 | bne <1
949 | b ->fff_res
950 |
951 |.ffunc type
952 | cmplwi NARGS8:RC, 8
953 | lwz CARG1, 0(BASE)
954 | blt ->fff_fallback
955 | li TMP2, ~LJ_TNUMX
956 | cmplw CARG1, TISNUM
957 | not TMP1, CARG1
958 | isellt TMP1, TMP2, TMP1
959 | slwi TMP1, TMP1, 3
960 | la TMP2, CFUNC:RB->upvalue
961 | evlddx STR:CRET1, TMP2, TMP1
962 | b ->fff_restv
963 |
964 |//-- Base library: getters and setters ---------------------------------
965 |
966 |.ffunc_1 getmetatable
967 | checktab CARG1
968 | evmergehi TMP1, CARG1, CARG1
969 | checkfail >6
970 |1: // Field metatable must be at same offset for GCtab and GCudata!
971 | lwz TAB:RB, TAB:CARG1->metatable
972 |2:
973 | evmr CRET1, TISNIL
974 | cmplwi TAB:RB, 0
975 | lwz STR:RC, DISPATCH_GL(gcroot[GCROOT_MMNAME+MM_metatable])(DISPATCH)
976 | beq ->fff_restv
977 | lwz TMP0, TAB:RB->hmask
978 | evmergelo CRET1, TISTAB, TAB:RB // Use metatable as default result.
979 | lwz TMP1, STR:RC->hash
980 | lwz NODE:TMP2, TAB:RB->node
981 | evmergelo STR:RC, TISSTR, STR:RC
982 | and TMP1, TMP1, TMP0 // idx = str->hash & tab->hmask
983 | slwi TMP0, TMP1, 5
984 | slwi TMP1, TMP1, 3
985 | sub TMP1, TMP0, TMP1
986 | add NODE:TMP2, NODE:TMP2, TMP1 // node = tab->node + (idx*32-idx*8)
987 |3: // Rearranged logic, because we expect _not_ to find the key.
988 | evldd TMP0, NODE:TMP2->key
989 | evldd TMP1, NODE:TMP2->val
990 | evcmpeq TMP0, STR:RC
991 | lwz NODE:TMP2, NODE:TMP2->next
992 | checkallok >5
993 | cmplwi NODE:TMP2, 0
994 | beq ->fff_restv // Not found, keep default result.
995 | b <3
996 |5:
997 | checknil TMP1
998 | checkok ->fff_restv // Ditto for nil value.
999 | evmr CRET1, TMP1 // Return value of mt.__metatable.
1000 | b ->fff_restv
1001 |
1002 |6:
1003 | cmpwi TMP1, LJ_TUDATA
1004 | not TMP1, TMP1
1005 | beq <1
1006 | checknum CARG1
1007 | slwi TMP1, TMP1, 2
1008 | li TMP2, 4*~LJ_TNUMX
1009 | isellt TMP1, TMP2, TMP1
1010 | la TMP2, DISPATCH_GL(gcroot[GCROOT_BASEMT])(DISPATCH)
1011 | lwzx TAB:RB, TMP2, TMP1
1012 | b <2
1013 |
1014 |.ffunc_2 setmetatable
1015 | // Fast path: no mt for table yet and not clearing the mt.
1016 | evmergehi TMP0, TAB:CARG1, TAB:CARG2
1017 | checktab TMP0
1018 | checkanyfail ->fff_fallback
1019 | lwz TAB:TMP1, TAB:CARG1->metatable
1020 | cmplwi TAB:TMP1, 0
1021 | lbz TMP3, TAB:CARG1->marked
1022 | bne ->fff_fallback
1023 | andi. TMP0, TMP3, LJ_GC_BLACK // isblack(table)
1024 | stw TAB:CARG2, TAB:CARG1->metatable
1025 | beq ->fff_restv
1026 | barrierback TAB:CARG1, TMP3, TMP0
1027 | b ->fff_restv
1028 |
1029 |.ffunc rawget
1030 | cmplwi NARGS8:RC, 16
1031 | evldd CARG2, 0(BASE)
1032 | blt ->fff_fallback
1033 | checktab CARG2
1034 | la CARG3, 8(BASE)
1035 | checkfail ->fff_fallback
1036 | mr CARG1, L
1037 | bl extern lj_tab_get // (lua_State *L, GCtab *t, cTValue *key)
1038 | // Returns cTValue *.
1039 | evldd CRET1, 0(CRET1)
1040 | b ->fff_restv
1041 |
1042 |//-- Base library: conversions ------------------------------------------
1043 |
1044 |.ffunc tonumber
1045 | // Only handles the number case inline (without a base argument).
1046 | cmplwi NARGS8:RC, 8
1047 | evldd CARG1, 0(BASE)
1048 | bne ->fff_fallback // Exactly one argument.
1049 | checknum CARG1
1050 | checkok ->fff_restv
1051 | b ->fff_fallback
1052 |
1053 |.ffunc_1 tostring
1054 | // Only handles the string or number case inline.
1055 | checkstr CARG1
1056 | // A __tostring method in the string base metatable is ignored.
1057 | checkok ->fff_restv // String key?
1058 | // Handle numbers inline, unless a number base metatable is present.
1059 | lwz TMP0, DISPATCH_GL(gcroot[GCROOT_BASEMT_NUM])(DISPATCH)
1060 | checknum CARG1
1061 | cmplwi cr1, TMP0, 0
1062 | stw BASE, L->base // Add frame since C call can throw.
1063 | crand 4*cr0+eq, 4*cr0+lt, 4*cr1+eq
1064 | stw PC, SAVE_PC // Redundant (but a defined value).
1065 | bne ->fff_fallback
1066 | ffgccheck
1067 | mr CARG1, L
1068 | mr CARG2, BASE
1069 | bl extern lj_str_fromnum // (lua_State *L, lua_Number *np)
1070 | // Returns GCstr *.
1071 | evmergelo STR:CRET1, TISSTR, STR:CRET1
1072 | b ->fff_restv
1073 |
1074 |//-- Base library: iterators -------------------------------------------
1075 |
1076 |.ffunc next
1077 | cmplwi NARGS8:RC, 8
1078 | evldd CARG2, 0(BASE)
1079 | blt ->fff_fallback
1080 | evstddx TISNIL, BASE, NARGS8:RC // Set missing 2nd arg to nil.
1081 | checktab TAB:CARG2
1082 | lwz PC, FRAME_PC(BASE)
1083 | checkfail ->fff_fallback
1084 | stw BASE, L->base // Add frame since C call can throw.
1085 | mr CARG1, L
1086 | stw BASE, L->top // Dummy frame length is ok.
1087 | la CARG3, 8(BASE)
1088 | stw PC, SAVE_PC
1089 | bl extern lj_tab_next // (lua_State *L, GCtab *t, TValue *key)
1090 | // Returns 0 at end of traversal.
1091 | cmplwi CRET1, 0
1092 | evmr CRET1, TISNIL
1093 | beq ->fff_restv // End of traversal: return nil.
1094 | evldd TMP0, 8(BASE) // Copy key and value to results.
1095 | la RA, -8(BASE)
1096 | evldd TMP1, 16(BASE)
1097 | evstdd TMP0, 0(RA)
1098 | li RD, (2+1)*8
1099 | evstdd TMP1, 8(RA)
1100 | b ->fff_res
1101 |
1102 |.ffunc_1 pairs
1103 | checktab TAB:CARG1
1104 | lwz PC, FRAME_PC(BASE)
1105 | checkfail ->fff_fallback
1106#ifdef LUAJIT_ENABLE_LUA52COMPAT
1107 | lwz TAB:TMP2, TAB:CARG1->metatable
1108 | evldd CFUNC:TMP0, CFUNC:RB->upvalue[0]
1109 | cmplwi TAB:TMP2, 0
1110 | la RA, -8(BASE)
1111 | bne ->fff_fallback
1112#else
1113 | evldd CFUNC:TMP0, CFUNC:RB->upvalue[0]
1114 | la RA, -8(BASE)
1115#endif
1116 | evstdd TISNIL, 8(BASE)
1117 | li RD, (3+1)*8
1118 | evstdd CFUNC:TMP0, 0(RA)
1119 | b ->fff_res
1120 |
1121 |.ffunc_2 ipairs_aux
1122 | checktab TAB:CARG1
1123 | lwz PC, FRAME_PC(BASE)
1124 | checkfail ->fff_fallback
1125 | checknum CARG2
1126 | lus TMP3, 0x3ff0
1127 | checkfail ->fff_fallback
1128 | efdctsi TMP2, CARG2
1129 | lwz TMP0, TAB:CARG1->asize
1130 | evmergelo TMP3, TMP3, ZERO
1131 | lwz TMP1, TAB:CARG1->array
1132 | efdadd CARG2, CARG2, TMP3
1133 | addi TMP2, TMP2, 1
1134 | la RA, -8(BASE)
1135 | cmplw TMP0, TMP2
1136 | slwi TMP3, TMP2, 3
1137 | evstdd CARG2, 0(RA)
1138 | ble >2 // Not in array part?
1139 | evlddx TMP1, TMP1, TMP3
1140 |1:
1141 | checknil TMP1
1142 | li RD, (0+1)*8
1143 | checkok ->fff_res // End of iteration, return 0 results.
1144 | li RD, (2+1)*8
1145 | evstdd TMP1, 8(RA)
1146 | b ->fff_res
1147 |2: // Check for empty hash part first. Otherwise call C function.
1148 | lwz TMP0, TAB:CARG1->hmask
1149 | cmplwi TMP0, 0
1150 | li RD, (0+1)*8
1151 | beq ->fff_res
1152 | mr CARG2, TMP2
1153 | bl extern lj_tab_getinth // (GCtab *t, int32_t key)
1154 | // Returns cTValue * or NULL.
1155 | cmplwi CRET1, 0
1156 | li RD, (0+1)*8
1157 | beq ->fff_res
1158 | evldd TMP1, 0(CRET1)
1159 | b <1
1160 |
1161 |.ffunc_1 ipairs
1162 | checktab TAB:CARG1
1163 | lwz PC, FRAME_PC(BASE)
1164 | checkfail ->fff_fallback
1165#ifdef LUAJIT_ENABLE_LUA52COMPAT
1166 | lwz TAB:TMP2, TAB:CARG1->metatable
1167 | evldd CFUNC:TMP0, CFUNC:RB->upvalue[0]
1168 | cmplwi TAB:TMP2, 0
1169 | la RA, -8(BASE)
1170 | bne ->fff_fallback
1171#else
1172 | evldd CFUNC:TMP0, CFUNC:RB->upvalue[0]
1173 | la RA, -8(BASE)
1174#endif
1175 | evsplati TMP1, 0
1176 | li RD, (3+1)*8
1177 | evstdd TMP1, 8(BASE)
1178 | evstdd CFUNC:TMP0, 0(RA)
1179 | b ->fff_res
1180 |
1181 |//-- Base library: catch errors ----------------------------------------
1182 |
1183 |.ffunc pcall
1184 | cmplwi NARGS8:RC, 8
1185 | lbz TMP3, DISPATCH_GL(hookmask)(DISPATCH)
1186 | blt ->fff_fallback
1187 | mr TMP2, BASE
1188 | la BASE, 8(BASE)
1189 | // Remember active hook before pcall.
1190 | rlwinm TMP3, TMP3, 32-HOOK_ACTIVE_SHIFT, 31, 31
1191 | subi NARGS8:RC, NARGS8:RC, 8
1192 | addi PC, TMP3, 8+FRAME_PCALL
1193 | b ->vm_call_dispatch
1194 |
1195 |.ffunc_2 xpcall
1196 | lbz TMP3, DISPATCH_GL(hookmask)(DISPATCH)
1197 | mr TMP2, BASE
1198 | checkfunc CARG2 // Traceback must be a function.
1199 | checkfail ->fff_fallback
1200 | la BASE, 16(BASE)
1201 | // Remember active hook before pcall.
1202 | rlwinm TMP3, TMP3, 32-HOOK_ACTIVE_SHIFT, 31, 31
1203 | evstdd CARG2, 0(TMP2) // Swap function and traceback.
1204 | subi NARGS8:RC, NARGS8:RC, 16
1205 | evstdd CARG1, 8(TMP2)
1206 | addi PC, TMP3, 16+FRAME_PCALL
1207 | b ->vm_call_dispatch
1208 |
1209 |//-- Coroutine library --------------------------------------------------
1210 |
1211 |.macro coroutine_resume_wrap, resume
1212 |.if resume
1213 |.ffunc_1 coroutine_resume
1214 | evmergehi TMP0, L:CARG1, L:CARG1
1215 |.else
1216 |.ffunc coroutine_wrap_aux
1217 | lwz L:CARG1, CFUNC:RB->upvalue[0].gcr
1218 |.endif
1219 |.if resume
1220 | cmpwi TMP0, LJ_TTHREAD
1221 | bne ->fff_fallback
1222 |.endif
1223 | lbz TMP0, L:CARG1->status
1224 | lwz TMP1, L:CARG1->cframe
1225 | lwz CARG2, L:CARG1->top
1226 | cmplwi cr0, TMP0, LUA_YIELD
1227 | lwz TMP2, L:CARG1->base
1228 | cmplwi cr1, TMP1, 0
1229 | lwz TMP0, L:CARG1->maxstack
1230 | cmplw cr7, CARG2, TMP2
1231 | lwz PC, FRAME_PC(BASE)
1232 | crorc 4*cr6+lt, 4*cr0+gt, 4*cr1+eq // st>LUA_YIELD || cframe!=0
1233 | add TMP2, CARG2, NARGS8:RC
1234 | crandc 4*cr6+gt, 4*cr7+eq, 4*cr0+eq // base==top && st!=LUA_YIELD
1235 | cmplw cr1, TMP2, TMP0
1236 | cror 4*cr6+lt, 4*cr6+lt, 4*cr6+gt
1237 | stw PC, SAVE_PC
1238 | cror 4*cr6+lt, 4*cr6+lt, 4*cr1+gt // cond1 || cond2 || stackov
1239 | stw BASE, L->base
1240 | blt cr6, ->fff_fallback
1241 |1:
1242 |.if resume
1243 | addi BASE, BASE, 8 // Keep resumed thread in stack for GC.
1244 | subi NARGS8:RC, NARGS8:RC, 8
1245 | subi TMP2, TMP2, 8
1246 |.endif
1247 | stw TMP2, L:CARG1->top
1248 | li TMP1, 0
1249 | stw BASE, L->top
1250 |2: // Move args to coroutine.
1251 | cmpw TMP1, NARGS8:RC
1252 | evlddx TMP0, BASE, TMP1
1253 | beq >3
1254 | evstddx TMP0, CARG2, TMP1
1255 | addi TMP1, TMP1, 8
1256 | b <2
1257 |3:
1258 | li CARG3, 0
1259 | mr L:SAVE0, L:CARG1
1260 | li CARG4, 0
1261 | bl ->vm_resume // (lua_State *L, TValue *base, 0, 0)
1262 | // Returns thread status.
1263 |4:
1264 | lwz TMP2, L:SAVE0->base
1265 | cmplwi CRET1, LUA_YIELD
1266 | lwz TMP3, L:SAVE0->top
1267 | li_vmstate INTERP
1268 | lwz BASE, L->base
1269 | st_vmstate
1270 | bgt >8
1271 | sub RD, TMP3, TMP2
1272 | lwz TMP0, L->maxstack
1273 | cmplwi RD, 0
1274 | add TMP1, BASE, RD
1275 | beq >6 // No results?
1276 | cmplw TMP1, TMP0
1277 | li TMP1, 0
1278 | bgt >9 // Need to grow stack?
1279 |
1280 | subi TMP3, RD, 8
1281 | stw TMP2, L:SAVE0->top // Clear coroutine stack.
1282 |5: // Move results from coroutine.
1283 | cmplw TMP1, TMP3
1284 | evlddx TMP0, TMP2, TMP1
1285 | evstddx TMP0, BASE, TMP1
1286 | addi TMP1, TMP1, 8
1287 | bne <5
1288 |6:
1289 | andi. TMP0, PC, FRAME_TYPE
1290 |.if resume
1291 | li TMP1, LJ_TTRUE
1292 | la RA, -8(BASE)
1293 | stw TMP1, -8(BASE) // Prepend true to results.
1294 | addi RD, RD, 16
1295 |.else
1296 | mr RA, BASE
1297 | addi RD, RD, 8
1298 |.endif
1299 |7:
1300 | stw PC, SAVE_PC
1301 | mr MULTRES, RD
1302 | beq ->BC_RET_Z
1303 | b ->vm_return
1304 |
1305 |8: // Coroutine returned with error (at co->top-1).
1306 |.if resume
1307 | andi. TMP0, PC, FRAME_TYPE
1308 | la TMP3, -8(TMP3)
1309 | li TMP1, LJ_TFALSE
1310 | evldd TMP0, 0(TMP3)
1311 | stw TMP3, L:SAVE0->top // Remove error from coroutine stack.
1312 | li RD, (2+1)*8
1313 | stw TMP1, -8(BASE) // Prepend false to results.
1314 | la RA, -8(BASE)
1315 | evstdd TMP0, 0(BASE) // Copy error message.
1316 | b <7
1317 |.else
1318 | mr CARG1, L
1319 | mr CARG2, L:SAVE0
1320 | bl extern lj_ffh_coroutine_wrap_err // (lua_State *L, lua_State *co)
1321 |.endif
1322 |
1323 |9: // Handle stack expansion on return from yield.
1324 | mr CARG1, L
1325 | srwi CARG2, RD, 3
1326 | bl extern lj_state_growstack // (lua_State *L, int n)
1327 | li CRET1, 0
1328 | b <4
1329 |.endmacro
1330 |
1331 | coroutine_resume_wrap 1 // coroutine.resume
1332 | coroutine_resume_wrap 0 // coroutine.wrap
1333 |
1334 |.ffunc coroutine_yield
1335 | lwz TMP0, L->cframe
1336 | add TMP1, BASE, NARGS8:RC
1337 | stw BASE, L->base
1338 | andi. TMP0, TMP0, CFRAME_RESUME
1339 | stw TMP1, L->top
1340 | li CRET1, LUA_YIELD
1341 | beq ->fff_fallback
1342 | stw ZERO, L->cframe
1343 | stb CRET1, L->status
1344 | b ->vm_leave_unw
1345 |
1346 |//-- Math library -------------------------------------------------------
1347 |
1348 |.ffunc_n math_abs
1349 | efdabs CRET1, CARG1
1350 | // Fallthrough.
1351 |
1352 |->fff_restv:
1353 | // CRET1 = TValue result.
1354 | lwz PC, FRAME_PC(BASE)
1355 | la RA, -8(BASE)
1356 | evstdd CRET1, 0(RA)
1357 |->fff_res1:
1358 | // RA = results, PC = return.
1359 | li RD, (1+1)*8
1360 |->fff_res:
1361 | // RA = results, RD = (nresults+1)*8, PC = return.
1362 | andi. TMP0, PC, FRAME_TYPE
1363 | mr MULTRES, RD
1364 | bne ->vm_return
1365 | lwz INS, -4(PC)
1366 | decode_RB8 RB, INS
1367 |5:
1368 | cmplw RB, RD // More results expected?
1369 | decode_RA8 TMP0, INS
1370 | bgt >6
1371 | ins_next1
1372 | // Adjust BASE. KBASE is assumed to be set for the calling frame.
1373 | sub BASE, RA, TMP0
1374 | ins_next2
1375 |
1376 |6: // Fill up results with nil.
1377 | subi TMP1, RD, 8
1378 | addi RD, RD, 8
1379 | evstddx TISNIL, RA, TMP1
1380 | b <5
1381 |
1382 |.macro math_extern, func
1383 | .ffunc math_ .. func
1384 | cmplwi NARGS8:RC, 8
1385 | evldd CARG2, 0(BASE)
1386 | blt ->fff_fallback
1387 | checknum CARG2
1388 | evmergehi CARG1, CARG2, CARG2
1389 | checkfail ->fff_fallback
1390 | bl extern func
1391 | evmergelo CRET1, CRET1, CRET2
1392 | b ->fff_restv
1393 |.endmacro
1394 |
1395 |.macro math_extern2, func
1396 | .ffunc math_ .. func
1397 | cmplwi NARGS8:RC, 16
1398 | evldd CARG2, 0(BASE)
1399 | evldd CARG4, 8(BASE)
1400 | blt ->fff_fallback
1401 | evmergehi CARG1, CARG4, CARG2
1402 | checknum CARG1
1403 | evmergehi CARG3, CARG4, CARG4
1404 | checkanyfail ->fff_fallback
1405 | bl extern func
1406 | evmergelo CRET1, CRET1, CRET2
1407 | b ->fff_restv
1408 |.endmacro
1409 |
1410 |.macro math_round, func
1411 | .ffunc math_ .. func
1412 | cmplwi NARGS8:RC, 8
1413 | evldd CARG2, 0(BASE)
1414 | blt ->fff_fallback
1415 | checknum CARG2
1416 | evmergehi CARG1, CARG2, CARG2
1417 | checkfail ->fff_fallback
1418 | lwz PC, FRAME_PC(BASE)
1419 | bl ->vm_..func.._hilo;
1420 | la RA, -8(BASE)
1421 | evstdd CRET2, 0(RA)
1422 | b ->fff_res1
1423 |.endmacro
1424 |
1425 | math_round floor
1426 | math_round ceil
1427 |
1428 | math_extern sqrt
1429 | math_extern log
1430 | math_extern log10
1431 | math_extern exp
1432 | math_extern sin
1433 | math_extern cos
1434 | math_extern tan
1435 | math_extern asin
1436 | math_extern acos
1437 | math_extern atan
1438 | math_extern sinh
1439 | math_extern cosh
1440 | math_extern tanh
1441 | math_extern2 pow
1442 | math_extern2 atan2
1443 | math_extern2 fmod
1444 |
1445 |->ff_math_deg:
1446 |.ffunc_n math_rad
1447 | evldd CARG2, CFUNC:RB->upvalue[0]
1448 | efdmul CRET1, CARG1, CARG2
1449 | b ->fff_restv
1450 |
1451 |.ffunc math_ldexp
1452 | cmplwi NARGS8:RC, 16
1453 | evldd CARG2, 0(BASE)
1454 | evldd CARG4, 8(BASE)
1455 | blt ->fff_fallback
1456 | evmergehi CARG1, CARG4, CARG2
1457 | checknum CARG1
1458 | checkanyfail ->fff_fallback
1459 | efdctsi CARG3, CARG4
1460 | bl extern ldexp
1461 | evmergelo CRET1, CRET1, CRET2
1462 | b ->fff_restv
1463 |
1464 |.ffunc math_frexp
1465 | cmplwi NARGS8:RC, 8
1466 | evldd CARG2, 0(BASE)
1467 | blt ->fff_fallback
1468 | checknum CARG2
1469 | evmergehi CARG1, CARG2, CARG2
1470 | checkfail ->fff_fallback
1471 | la CARG3, DISPATCH_GL(tmptv)(DISPATCH)
1472 | lwz PC, FRAME_PC(BASE)
1473 | bl extern frexp
1474 | lwz TMP1, DISPATCH_GL(tmptv)(DISPATCH)
1475 | evmergelo CRET1, CRET1, CRET2
1476 | efdcfsi CRET2, TMP1
1477 | la RA, -8(BASE)
1478 | evstdd CRET1, 0(RA)
1479 | li RD, (2+1)*8
1480 | evstdd CRET2, 8(RA)
1481 | b ->fff_res
1482 |
1483 |.ffunc math_modf
1484 | cmplwi NARGS8:RC, 8
1485 | evldd CARG2, 0(BASE)
1486 | blt ->fff_fallback
1487 | checknum CARG2
1488 | evmergehi CARG1, CARG2, CARG2
1489 | checkfail ->fff_fallback
1490 | la CARG3, -8(BASE)
1491 | lwz PC, FRAME_PC(BASE)
1492 | bl extern modf
1493 | evmergelo CRET1, CRET1, CRET2
1494 | la RA, -8(BASE)
1495 | evstdd CRET1, 0(BASE)
1496 | li RD, (2+1)*8
1497 | b ->fff_res
1498 |
1499 |.macro math_minmax, name, cmpop
1500 | .ffunc_1 name
1501 | checknum CARG1
1502 | li TMP1, 8
1503 | checkfail ->fff_fallback
1504 |1:
1505 | evlddx CARG2, BASE, TMP1
1506 | cmplw cr1, TMP1, NARGS8:RC
1507 | checknum CARG2
1508 | bge cr1, ->fff_restv // Ok, since CRET1 = CARG1.
1509 | checkfail ->fff_fallback
1510 | cmpop CARG2, CARG1
1511 | addi TMP1, TMP1, 8
1512 | crmove 4*cr0+lt, 4*cr0+gt
1513 | evsel CARG1, CARG2, CARG1
1514 | b <1
1515 |.endmacro
1516 |
1517 | math_minmax math_min, efdtstlt
1518 | math_minmax math_max, efdtstgt
1519 |
1520 |//-- String library -----------------------------------------------------
1521 |
1522 |.ffunc_1 string_len
1523 | checkstr STR:CARG1
1524 | checkfail ->fff_fallback
1525 | lwz TMP0, STR:CARG1->len
1526 | efdcfsi CRET1, TMP0
1527 | b ->fff_restv
1528 |
1529 |.ffunc string_byte // Only handle the 1-arg case here.
1530 | cmplwi NARGS8:RC, 8
1531 | evldd STR:CARG1, 0(BASE)
1532 | bne ->fff_fallback // Need exactly 1 argument.
1533 | checkstr STR:CARG1
1534 | la RA, -8(BASE)
1535 | checkfail ->fff_fallback
1536 | lwz TMP0, STR:CARG1->len
1537 | li RD, (0+1)*8
1538 | lbz TMP1, STR:CARG1[1] // Access is always ok (NUL at end).
1539 | li TMP2, (1+1)*8
1540 | cmplwi TMP0, 0
1541 | lwz PC, FRAME_PC(BASE)
1542 | efdcfsi CRET1, TMP1
1543 | iseleq RD, RD, TMP2
1544 | evstdd CRET1, 0(RA)
1545 | b ->fff_res
1546 |
1547 |.ffunc string_char // Only handle the 1-arg case here.
1548 | ffgccheck
1549 | cmplwi NARGS8:RC, 8
1550 | evldd CARG1, 0(BASE)
1551 | bne ->fff_fallback // Exactly 1 argument.
1552 | checknum CARG1
1553 | la CARG2, DISPATCH_GL(tmptv)(DISPATCH)
1554 | checkfail ->fff_fallback
1555 | efdctsiz TMP0, CARG1
1556 | li CARG3, 1
1557 | cmplwi TMP0, 255
1558 | stb TMP0, 0(CARG2)
1559 | bgt ->fff_fallback
1560 |->fff_newstr:
1561 | mr CARG1, L
1562 | stw BASE, L->base
1563 | stw PC, SAVE_PC
1564 | bl extern lj_str_new // (lua_State *L, char *str, size_t l)
1565 | // Returns GCstr *.
1566 | lwz BASE, L->base
1567 | evmergelo STR:CRET1, TISSTR, STR:CRET1
1568 | b ->fff_restv
1569 |
1570 |.ffunc string_sub
1571 | ffgccheck
1572 | cmplwi NARGS8:RC, 16
1573 | evldd CARG3, 16(BASE)
1574 | evldd STR:CARG1, 0(BASE)
1575 | blt ->fff_fallback
1576 | evldd CARG2, 8(BASE)
1577 | li TMP2, -1
1578 | beq >1
1579 | checknum CARG3
1580 | checkfail ->fff_fallback
1581 | efdctsiz TMP2, CARG3
1582 |1:
1583 | checknum CARG2
1584 | checkfail ->fff_fallback
1585 | checkstr STR:CARG1
1586 | efdctsiz TMP1, CARG2
1587 | checkfail ->fff_fallback
1588 | lwz TMP0, STR:CARG1->len
1589 | cmplw TMP0, TMP2 // len < end? (unsigned compare)
1590 | add TMP3, TMP2, TMP0
1591 | blt >5
1592 |2:
1593 | cmpwi TMP1, 0 // start <= 0?
1594 | add TMP3, TMP1, TMP0
1595 | ble >7
1596 |3:
1597 | sub. CARG3, TMP2, TMP1
1598 | addi CARG2, STR:CARG1, #STR-1
1599 | addi CARG3, CARG3, 1
1600 | add CARG2, CARG2, TMP1
1601 | isellt CARG3, r0, CARG3
1602 | b ->fff_newstr
1603 |
1604 |5: // Negative end or overflow.
1605 | cmpw TMP0, TMP2
1606 | addi TMP3, TMP3, 1
1607 | iselgt TMP2, TMP3, TMP0 // end = end > len ? len : end+len+1
1608 | b <2
1609 |
1610 |7: // Negative start or underflow.
1611 | cmpwi cr1, TMP3, 0
1612 | iseleq TMP1, r0, TMP3
1613 | isel TMP1, r0, TMP1, 4*cr1+lt
1614 | addi TMP1, TMP1, 1 // start = 1 + (start ? start+len : 0)
1615 | b <3
1616 |
1617 |.ffunc string_rep // Only handle the 1-char case inline.
1618 | ffgccheck
1619 | cmplwi NARGS8:RC, 16
1620 | evldd CARG1, 0(BASE)
1621 | evldd CARG2, 8(BASE)
1622 | blt ->fff_fallback
1623 | checknum CARG2
1624 | checkfail ->fff_fallback
1625 | checkstr STR:CARG1
1626 | efdctsiz CARG3, CARG2
1627 | checkfail ->fff_fallback
1628 | lwz TMP0, STR:CARG1->len
1629 | cmpwi CARG3, 0
1630 | lwz TMP1, DISPATCH_GL(tmpbuf.sz)(DISPATCH)
1631 | ble >2 // Count <= 0? (or non-int)
1632 | cmplwi TMP0, 1
1633 | subi TMP2, CARG3, 1
1634 | blt >2 // Zero length string?
1635 | cmplw cr1, TMP1, CARG3
1636 | bne ->fff_fallback // Fallback for > 1-char strings.
1637 | lbz TMP0, STR:CARG1[1]
1638 | lwz CARG2, DISPATCH_GL(tmpbuf.buf)(DISPATCH)
1639 | blt cr1, ->fff_fallback
1640 |1: // Fill buffer with char. Yes, this is suboptimal code (do you care?).
1641 | cmplwi TMP2, 0
1642 | stbx TMP0, CARG2, TMP2
1643 | subi TMP2, TMP2, 1
1644 | bne <1
1645 | b ->fff_newstr
1646 |2: // Return empty string.
1647 | la STR:CRET1, DISPATCH_GL(strempty)(DISPATCH)
1648 | evmergelo CRET1, TISSTR, STR:CRET1
1649 | b ->fff_restv
1650 |
1651 |.ffunc string_reverse
1652 | ffgccheck
1653 | cmplwi NARGS8:RC, 8
1654 | evldd CARG1, 0(BASE)
1655 | blt ->fff_fallback
1656 | checkstr STR:CARG1
1657 | lwz TMP1, DISPATCH_GL(tmpbuf.sz)(DISPATCH)
1658 | checkfail ->fff_fallback
1659 | lwz CARG3, STR:CARG1->len
1660 | la CARG1, #STR(STR:CARG1)
1661 | lwz CARG2, DISPATCH_GL(tmpbuf.buf)(DISPATCH)
1662 | li TMP2, 0
1663 | cmplw TMP1, CARG3
1664 | subi TMP3, CARG3, 1
1665 | blt ->fff_fallback
1666 |1: // Reverse string copy.
1667 | cmpwi TMP3, 0
1668 | lbzx TMP1, CARG1, TMP2
1669 | blt ->fff_newstr
1670 | stbx TMP1, CARG2, TMP3
1671 | subi TMP3, TMP3, 1
1672 | addi TMP2, TMP2, 1
1673 | b <1
1674 |
1675 |.macro ffstring_case, name, lo
1676 | .ffunc name
1677 | ffgccheck
1678 | cmplwi NARGS8:RC, 8
1679 | evldd CARG1, 0(BASE)
1680 | blt ->fff_fallback
1681 | checkstr STR:CARG1
1682 | lwz TMP1, DISPATCH_GL(tmpbuf.sz)(DISPATCH)
1683 | checkfail ->fff_fallback
1684 | lwz CARG3, STR:CARG1->len
1685 | la CARG1, #STR(STR:CARG1)
1686 | lwz CARG2, DISPATCH_GL(tmpbuf.buf)(DISPATCH)
1687 | cmplw TMP1, CARG3
1688 | li TMP2, 0
1689 | blt ->fff_fallback
1690 |1: // ASCII case conversion.
1691 | cmplw TMP2, CARG3
1692 | lbzx TMP1, CARG1, TMP2
1693 | bge ->fff_newstr
1694 | subi TMP0, TMP1, lo
1695 | xori TMP3, TMP1, 0x20
1696 | cmplwi TMP0, 26
1697 | isellt TMP1, TMP3, TMP1
1698 | stbx TMP1, CARG2, TMP2
1699 | addi TMP2, TMP2, 1
1700 | b <1
1701 |.endmacro
1702 |
1703 |ffstring_case string_lower, 65
1704 |ffstring_case string_upper, 97
1705 |
1706 |//-- Table library ------------------------------------------------------
1707 |
1708 |.ffunc_1 table_getn
1709 | checktab CARG1
1710 | checkfail ->fff_fallback
1711 | bl extern lj_tab_len // (GCtab *t)
1712 | // Returns uint32_t (but less than 2^31).
1713 | efdcfsi CRET1, CRET1
1714 | b ->fff_restv
1715 |
1716 |//-- Bit library --------------------------------------------------------
1717 |
1718 |.macro .ffunc_bit, name
1719 | .ffunc_n bit_..name
1720 | efdadd CARG1, CARG1, TOBIT
1721 |.endmacro
1722 |
1723 |.ffunc_bit tobit
1724 |->fff_resbit:
1725 | efdcfsi CRET1, CARG1
1726 | b ->fff_restv
1727 |
1728 |.macro .ffunc_bit_op, name, ins
1729 | .ffunc_bit name
1730 | li TMP1, 8
1731 |1:
1732 | evlddx CARG2, BASE, TMP1
1733 | cmplw cr1, TMP1, NARGS8:RC
1734 | checknum CARG2
1735 | bge cr1, ->fff_resbit
1736 | checkfail ->fff_fallback
1737 | efdadd CARG2, CARG2, TOBIT
1738 | ins CARG1, CARG1, CARG2
1739 | addi TMP1, TMP1, 8
1740 | b <1
1741 |.endmacro
1742 |
1743 |.ffunc_bit_op band, and
1744 |.ffunc_bit_op bor, or
1745 |.ffunc_bit_op bxor, xor
1746 |
1747 |.ffunc_bit bswap
1748 | rotlwi TMP0, CARG1, 8
1749 | rlwimi TMP0, CARG1, 24, 0, 7
1750 | rlwimi TMP0, CARG1, 24, 16, 23
1751 | efdcfsi CRET1, TMP0
1752 | b ->fff_restv
1753 |
1754 |.ffunc_bit bnot
1755 | not TMP0, CARG1
1756 | efdcfsi CRET1, TMP0
1757 | b ->fff_restv
1758 |
1759 |.macro .ffunc_bit_sh, name, ins, shmod
1760 | .ffunc_nn bit_..name
1761 | efdadd CARG2, CARG2, TOBIT
1762 | efdadd CARG1, CARG1, TOBIT
1763 |.if shmod == 1
1764 | rlwinm CARG2, CARG2, 0, 27, 31
1765 |.elif shmod == 2
1766 | neg CARG2, CARG2
1767 |.endif
1768 | ins TMP0, CARG1, CARG2
1769 | efdcfsi CRET1, TMP0
1770 | b ->fff_restv
1771 |.endmacro
1772 |
1773 |.ffunc_bit_sh lshift, slw, 1
1774 |.ffunc_bit_sh rshift, srw, 1
1775 |.ffunc_bit_sh arshift, sraw, 1
1776 |.ffunc_bit_sh rol, rotlw, 0
1777 |.ffunc_bit_sh ror, rotlw, 2
1778 |
1779 |//-----------------------------------------------------------------------
1780 |
1781 |->fff_fallback: // Call fast function fallback handler.
1782 | // BASE = new base, RB = CFUNC, RC = nargs*8
1783 | lwz TMP3, CFUNC:RB->f
1784 | add TMP1, BASE, NARGS8:RC
1785 | lwz PC, FRAME_PC(BASE) // Fallback may overwrite PC.
1786 | addi TMP0, TMP1, 8*LUA_MINSTACK
1787 | lwz TMP2, L->maxstack
1788 | stw PC, SAVE_PC // Redundant (but a defined value).
1789 | cmplw TMP0, TMP2
1790 | stw BASE, L->base
1791 | stw TMP1, L->top
1792 | mr CARG1, L
1793 | bgt >5 // Need to grow stack.
1794 | mtctr TMP3
1795 | bctrl // (lua_State *L)
1796 | // Either throws an error, or recovers and returns -1, 0 or nresults+1.
1797 | lwz BASE, L->base
1798 | cmpwi CRET1, 0
1799 | slwi RD, CRET1, 3
1800 | la RA, -8(BASE)
1801 | bgt ->fff_res // Returned nresults+1?
1802 |1: // Returned 0 or -1: retry fast path.
1803 | lwz TMP0, L->top
1804 | lwz LFUNC:RB, FRAME_FUNC(BASE)
1805 | sub NARGS8:RC, TMP0, BASE
1806 | bne ->vm_call_tail // Returned -1?
1807 | ins_callt // Returned 0: retry fast path.
1808 |
1809 |// Reconstruct previous base for vmeta_call during tailcall.
1810 |->vm_call_tail:
1811 | andi. TMP0, PC, FRAME_TYPE
1812 | rlwinm TMP1, PC, 0, 0, 28
1813 | bne >3
1814 | lwz INS, -4(PC)
1815 | decode_RA8 TMP1, INS
1816 |3:
1817 | sub TMP2, BASE, TMP1
1818 | b ->vm_call_dispatch // Resolve again for tailcall.
1819 |
1820 |5: // Grow stack for fallback handler.
1821 | li CARG2, LUA_MINSTACK
1822 | bl extern lj_state_growstack // (lua_State *L, int n)
1823 | lwz BASE, L->base
1824 | cmpw TMP0, TMP0 // Set 4*cr0+eq to force retry.
1825 | b <1
1826 |
1827 |->fff_gcstep: // Call GC step function.
1828 | // BASE = new base, RC = nargs*8
1829 | mflr SAVE0
1830 | stw BASE, L->base
1831 | add TMP0, BASE, NARGS8:RC
1832 | stw PC, SAVE_PC // Redundant (but a defined value).
1833 | stw TMP0, L->top
1834 | mr CARG1, L
1835 | bl extern lj_gc_step // (lua_State *L)
1836 | lwz BASE, L->base
1837 | mtlr SAVE0
1838 | lwz TMP0, L->top
1839 | sub NARGS8:RC, TMP0, BASE
1840 | lwz CFUNC:RB, FRAME_FUNC(BASE)
1841 | blr
1842 |
1843 |//-----------------------------------------------------------------------
1844 |//-- Special dispatch targets -------------------------------------------
1845 |//-----------------------------------------------------------------------
1846 |
1847 |->vm_record: // Dispatch target for recording phase.
1848#if LJ_HASJIT
1849 | NYI
1850#endif
1851 |
1852 |->vm_rethook: // Dispatch target for return hooks.
1853 | lbz TMP3, DISPATCH_GL(hookmask)(DISPATCH)
1854 | andi. TMP0, TMP3, HOOK_ACTIVE // Hook already active?
1855 | beq >1
1856 |5: // Re-dispatch to static ins.
1857 | addi TMP1, TMP1, GG_DISP2STATIC // Assumes decode_OP4 TMP1, INS.
1858 | lwzx TMP0, DISPATCH, TMP1
1859 | mtctr TMP0
1860 | bctr
1861 |
1862 |->vm_inshook: // Dispatch target for instr/line hooks.
1863 | lbz TMP3, DISPATCH_GL(hookmask)(DISPATCH)
1864 | lwz TMP2, DISPATCH_GL(hookcount)(DISPATCH)
1865 | andi. TMP0, TMP3, HOOK_ACTIVE // Hook already active?
1866 | rlwinm TMP0, TMP3, 31-LUA_HOOKLINE, 31, 0
1867 | bne <5
1868 |
1869 | cmpwi cr1, TMP0, 0
1870 | addic. TMP2, TMP2, -1
1871 | beq cr1, <5
1872 | stw TMP2, DISPATCH_GL(hookcount)(DISPATCH)
1873 | beq >1
1874 | bge cr1, <5
1875 |1:
1876 | mr CARG1, L
1877 | stw MULTRES, SAVE_MULTRES
1878 | mr CARG2, PC
1879 | stw BASE, L->base
1880 | // SAVE_PC must hold the _previous_ PC. The callee updates it with PC.
1881 | bl extern lj_dispatch_ins // (lua_State *L, const BCIns *pc)
1882 |3:
1883 | lwz BASE, L->base
1884 |4: // Re-dispatch to static ins.
1885 | lwz INS, -4(PC)
1886 | decode_OP4 TMP1, INS
1887 | decode_RB8 RB, INS
1888 | addi TMP1, TMP1, GG_DISP2STATIC
1889 | decode_RD8 RD, INS
1890 | lwzx TMP0, DISPATCH, TMP1
1891 | decode_RA8 RA, INS
1892 | decode_RC8 RC, INS
1893 | mtctr TMP0
1894 | bctr
1895 |
1896 |->cont_hook: // Continue from hook yield.
1897 | addi PC, PC, 4
1898 | lwz MULTRES, -20(RB) // Restore MULTRES for *M ins.
1899 | b <4
1900 |
1901 |->vm_hotloop: // Hot loop counter underflow.
1902#if LJ_HASJIT
1903 | NYI
1904#endif
1905 |
1906 |->vm_callhook: // Dispatch target for call hooks.
1907 | mr CARG2, PC
1908#if LJ_HASJIT
1909 | b >1
1910#endif
1911 |
1912 |->vm_hotcall: // Hot call counter underflow.
1913#if LJ_HASJIT
1914 | ori CARG2, PC, 1
1915 |1:
1916#endif
1917 | add TMP0, BASE, RC
1918 | stw PC, SAVE_PC
1919 | mr CARG1, L
1920 | stw BASE, L->base
1921 | sub RA, RA, BASE
1922 | stw TMP0, L->top
1923 | bl extern lj_dispatch_call // (lua_State *L, const BCIns *pc)
1924 | // Returns ASMFunction.
1925 | lwz BASE, L->base
1926 | lwz TMP0, L->top
1927 | stw ZERO, SAVE_PC // Invalidate for subsequent line hook.
1928 | sub NARGS8:RC, TMP0, BASE
1929 | add RA, BASE, RA
1930 | lwz LFUNC:RB, FRAME_FUNC(BASE)
1931 | mtctr CRET1
1932 | bctr
1933 |
1934 |//-----------------------------------------------------------------------
1935 |//-- Trace exit handler -------------------------------------------------
1936 |//-----------------------------------------------------------------------
1937 |
1938 |->vm_exit_handler:
1939#if LJ_HASJIT
1940 | NYI
1941#endif
1942 |->vm_exit_interp:
1943#if LJ_HASJIT
1944 | NYI
1945#endif
1946 |
1947 |//-----------------------------------------------------------------------
1948 |//-- Math helper functions ----------------------------------------------
1949 |//-----------------------------------------------------------------------
1950 |
1951 |// FP value rounding. Called by math.floor/math.ceil fast functions
1952 |// and from JIT code.
1953 |//
1954 |// This can be inlined if the CPU has the frin/friz/frip/frim instructions.
1955 |// The alternative hard-float approaches have a deep dependency chain.
1956 |// The resulting latency is at least 3x-7x the double-precision FP latency
1957 |// (e500v2: 6cy, e600: 5cy, Cell: 10cy) or around 20-70 cycles.
1958 |//
1959 |// The soft-float approach is tedious, but much faster (e500v2: ~11cy/~6cy).
1960 |// However it relies on a fast way to transfer the FP value to GPRs
1961 |// (e500v2: 0cy for lo-word, 1cy for hi-word).
1962 |//
1963 |.macro vm_round, name, mode
1964 | // Used temporaries: TMP0, TMP1, TMP2, TMP3.
1965 |->name.._efd: // Input: CARG2, output: CRET2
1966 | evmergehi CARG1, CARG2, CARG2
1967 |->name.._hilo:
1968 | // Input: CARG1 (hi), CARG2 (hi, lo), output: CRET2
1969 | rlwinm TMP2, CARG1, 12, 21, 31
1970 | addic. TMP2, TMP2, -1023 // exp = exponent(x) - 1023
1971 | li TMP1, -1
1972 | cmplwi cr1, TMP2, 51 // 0 <= exp <= 51?
1973 | subfic TMP0, TMP2, 52
1974 | bgt cr1, >1
1975 | lus TMP3, 0xfff0
1976 | slw TMP0, TMP1, TMP0 // lomask = -1 << (52-exp)
1977 | sraw TMP1, TMP3, TMP2 // himask = (int32_t)0xfff00000 >> exp
1978 |.if mode == 2 // trunc(x):
1979 | evmergelo TMP0, TMP1, TMP0
1980 | evand CRET2, CARG2, TMP0 // hi &= himask, lo &= lomask
1981 |.else
1982 | andc TMP2, CARG2, TMP0
1983 | andc TMP3, CARG1, TMP1
1984 | or TMP2, TMP2, TMP3 // ztest = (hi&~himask) | (lo&~lomask)
1985 | srawi TMP3, CARG1, 31 // signmask = (int32_t)hi >> 31
1986 |.if mode == 0 // floor(x):
1987 | and. TMP2, TMP2, TMP3 // iszero = ((ztest & signmask) == 0)
1988 |.else // ceil(x):
1989 | andc. TMP2, TMP2, TMP3 // iszero = ((ztest & ~signmask) == 0)
1990 |.endif
1991 | and CARG2, CARG2, TMP0 // lo &= lomask
1992 | and CARG1, CARG1, TMP1 // hi &= himask
1993 | subc TMP0, CARG2, TMP0
1994 | iseleq TMP0, CARG2, TMP0 // lo = iszero ? lo : lo-lomask
1995 | sube TMP1, CARG1, TMP1
1996 | iseleq TMP1, CARG1, TMP1 // hi = iszero ? hi : hi-himask+carry
1997 | evmergelo CRET2, TMP1, TMP0
1998 |.endif
1999 | blr
2000 |1:
2001 | bgtlr // Already done if >=2^52, +-inf or nan.
2002 |.if mode == 2 // trunc(x):
2003 | rlwinm TMP1, CARG1, 0, 0, 0 // hi = sign(x)
2004 | li TMP0, 0
2005 | evmergelo CRET2, TMP1, TMP0
2006 |.else
2007 | rlwinm TMP2, CARG1, 0, 1, 31
2008 | srawi TMP0, CARG1, 31 // signmask = (int32_t)hi >> 31
2009 | or TMP2, TMP2, CARG2 // ztest = abs(hi) | lo
2010 | lus TMP1, 0x3ff0
2011 |.if mode == 0 // floor(x):
2012 | and. TMP2, TMP2, TMP0 // iszero = ((ztest & signmask) == 0)
2013 |.else // ceil(x):
2014 | andc. TMP2, TMP2, TMP0 // iszero = ((ztest & ~signmask) == 0)
2015 |.endif
2016 | li TMP0, 0
2017 | iseleq TMP1, r0, TMP1
2018 | rlwimi CARG1, TMP1, 0, 1, 31 // hi = sign(x) | (iszero ? 0.0 : 1.0)
2019 | evmergelo CRET2, CARG1, TMP0
2020 |.endif
2021 | blr
2022 |.endmacro
2023 |
2024 |->vm_floor:
2025 | mflr CARG3
2026 | bl ->vm_floor_hilo
2027 | mtlr CARG3
2028 | evmergehi CRET1, CRET2, CRET2
2029 | blr
2030 |
2031 | vm_round vm_floor, 0
2032 | vm_round vm_ceil, 1
2033#if LJ_HASJIT
2034 | vm_round vm_trunc, 2
2035#else
2036 |->vm_trunc_efd:
2037 |->vm_trunc_hilo:
2038#endif
2039 |
2040 |// Callable from C: double lj_vm_foldarith(double x, double y, int op)
2041 |// Compute x op y for basic arithmetic operators (+ - * / % ^ and unary -)
2042 |// and basic math functions. ORDER ARITH
2043 |->vm_foldarith:
2044 | evmergelo CARG2, CARG1, CARG2
2045 | cmplwi CARG5, 1
2046 | evmergelo CARG4, CARG3, CARG4
2047 | beq >1; bgt >2
2048 | efdadd CRET2, CARG2, CARG4; evmergehi CRET1, CRET2, CRET2; blr
2049 |1:
2050 | efdsub CRET2, CARG2, CARG4; evmergehi CRET1, CRET2, CRET2; blr
2051 |2:
2052 | cmplwi CARG5, 3; beq >1; bgt >2
2053 | efdmul CRET2, CARG2, CARG4; evmergehi CRET1, CRET2, CRET2; blr
2054 |1:
2055 | efddiv CRET2, CARG2, CARG4; evmergehi CRET1, CRET2, CRET2; blr
2056 |2:
2057 | cmplwi CARG5, 5; beq >1; bgt >2
2058 | evmr CARG3, CARG2; efddiv CRET2, CARG2, CARG4; evmr RB, CARG4
2059 | mflr RC; bl ->vm_floor_efd; mtlr RC
2060 | efdmul CRET2, CRET2, RB; efdsub CRET2, CARG3, CRET2
2061 | evmergehi CRET1, CRET2, CRET2; blr
2062 |1:
2063 | b extern pow
2064 |2:
2065 | cmplwi CARG5, 7; beq >1; bgt >2
2066 | xoris CARG1, CARG1, 0x8000; blr
2067 |1:
2068 | rlwinm CARG1, CARG1, 0, 1, 31; blr
2069 |2:
2070 | NYI // Other operations only needed by JIT compiler.
2071 |
2072 |//-----------------------------------------------------------------------
2073 |//-- Miscellaneous functions --------------------------------------------
2074 |//-----------------------------------------------------------------------
2075 |
2076 |//-----------------------------------------------------------------------
2077 |//-- FFI helper functions -----------------------------------------------
2078 |//-----------------------------------------------------------------------
2079 |
2080 |->vm_ffi_call:
2081#if LJ_HASFFI
2082 | NYI
2083#endif
2084 |
2085 |//-----------------------------------------------------------------------
2086}
2087
2088/* Generate the code for a single instruction. */
2089static void build_ins(BuildCtx *ctx, BCOp op, int defop)
2090{
2091 int vk = 0;
2092 |=>defop:
2093
2094 switch (op) {
2095
2096 /* -- Comparison ops ---------------------------------------------------- */
2097
2098 /* Remember: all ops branch for a true comparison, fall through otherwise. */
2099
2100 case BC_ISLT: case BC_ISGE: case BC_ISLE: case BC_ISGT:
2101 | // RA = src1*8, RD = src2*8, JMP with RD = target
2102 | evlddx TMP0, BASE, RA
2103 | addi PC, PC, 4
2104 | evlddx TMP1, BASE, RD
2105 | addis TMP3, PC, -(BCBIAS_J*4 >> 16)
2106 | lwz TMP2, -4(PC)
2107 | evmergehi RB, TMP0, TMP1
2108 | decode_RD4 TMP2, TMP2
2109 | checknum RB
2110 | add TMP2, TMP2, TMP3
2111 | checkanyfail ->vmeta_comp
2112 | efdcmplt TMP0, TMP1
2113 if (op == BC_ISLE || op == BC_ISGT) {
2114 | efdcmpeq cr1, TMP0, TMP1
2115 | cror 4*cr0+gt, 4*cr0+gt, 4*cr1+gt
2116 }
2117 if (op == BC_ISLT || op == BC_ISLE) {
2118 | iselgt PC, TMP2, PC
2119 } else {
2120 | iselgt PC, PC, TMP2
2121 }
2122 | ins_next
2123 break;
2124
2125 case BC_ISEQV: case BC_ISNEV:
2126 vk = op == BC_ISEQV;
2127 | // RA = src1*8, RD = src2*8, JMP with RD = target
2128 | evlddx CARG2, BASE, RA
2129 | addi PC, PC, 4
2130 | evlddx CARG3, BASE, RD
2131 | addis TMP3, PC, -(BCBIAS_J*4 >> 16)
2132 | lwz TMP2, -4(PC)
2133 | evmergehi RB, CARG2, CARG3
2134 | decode_RD4 TMP2, TMP2
2135 | checknum RB
2136 | add TMP2, TMP2, TMP3
2137 | checkanyfail >5
2138 | efdcmpeq CARG2, CARG3
2139 if (vk) {
2140 | iselgt PC, TMP2, PC
2141 } else {
2142 | iselgt PC, PC, TMP2
2143 }
2144 |1:
2145 | ins_next
2146 |
2147 |5: // Either or both types are not numbers.
2148 | evcmpeq CARG2, CARG3
2149 | not TMP3, RB
2150 | cmplwi cr1, TMP3, ~LJ_TISPRI // Primitive?
2151 | crorc 4*cr7+lt, 4*cr0+so, 4*cr0+lt // 1: Same tv or different type.
2152 | cmplwi cr6, TMP3, ~LJ_TISTABUD // Table or userdata?
2153 | crandc 4*cr7+gt, 4*cr0+lt, 4*cr1+gt // 2: Same type and primitive.
2154 | mr SAVE0, PC
2155 if (vk) {
2156 | isel PC, TMP2, PC, 4*cr7+gt
2157 } else {
2158 | isel TMP2, PC, TMP2, 4*cr7+gt
2159 }
2160 | cror 4*cr7+lt, 4*cr7+lt, 4*cr7+gt // 1 or 2.
2161 if (vk) {
2162 | isel PC, TMP2, PC, 4*cr0+so
2163 } else {
2164 | isel PC, PC, TMP2, 4*cr0+so
2165 }
2166 | blt cr7, <1 // Done if 1 or 2.
2167 | blt cr6, <1 // Done if not tab/ud.
2168 |
2169 | // Different tables or userdatas. Need to check __eq metamethod.
2170 | // Field metatable must be at same offset for GCtab and GCudata!
2171 | lwz TAB:TMP2, TAB:CARG2->metatable
2172 | li CARG4, 1-vk // ne = 0 or 1.
2173 | cmplwi TAB:TMP2, 0
2174 | beq <1 // No metatable?
2175 | lbz TMP2, TAB:TMP2->nomm
2176 | andi. TMP2, TMP2, 1<<MM_eq
2177 | bne <1 // Or 'no __eq' flag set?
2178 | mr PC, SAVE0 // Restore old PC.
2179 | b ->vmeta_equal // Handle __eq metamethod.
2180 break;
2181
2182 case BC_ISEQS: case BC_ISNES:
2183 vk = op == BC_ISEQS;
2184 | // RA = src*8, RD = str_const*8 (~), JMP with RD = target
2185 | evlddx TMP0, BASE, RA
2186 | srwi RD, RD, 1
2187 | lwz INS, 0(PC)
2188 | subfic RD, RD, -4
2189 | addi PC, PC, 4
2190 | lwzx STR:TMP1, KBASE, RD // KBASE-4-str_const*4
2191 | addis TMP3, PC, -(BCBIAS_J*4 >> 16)
2192 | decode_RD4 TMP2, INS
2193 | evmergelo STR:TMP1, TISSTR, STR:TMP1
2194 | add TMP2, TMP2, TMP3
2195 | evcmpeq TMP0, STR:TMP1
2196 if (vk) {
2197 | isel PC, TMP2, PC, 4*cr0+so
2198 } else {
2199 | isel PC, PC, TMP2, 4*cr0+so
2200 }
2201 | ins_next
2202 break;
2203
2204 case BC_ISEQN: case BC_ISNEN:
2205 vk = op == BC_ISEQN;
2206 | // RA = src*8, RD = num_const*8, JMP with RD = target
2207 | evlddx TMP0, BASE, RA
2208 | addi PC, PC, 4
2209 | evlddx TMP1, KBASE, RD
2210 | addis TMP3, PC, -(BCBIAS_J*4 >> 16)
2211 | lwz INS, -4(PC)
2212 | checknum TMP0
2213 | checkfail >5
2214 | efdcmpeq TMP0, TMP1
2215 |1:
2216 | decode_RD4 TMP2, INS
2217 | add TMP2, TMP2, TMP3
2218 if (vk) {
2219 | iselgt PC, TMP2, PC
2220 |5:
2221 } else {
2222 | iselgt PC, PC, TMP2
2223 }
2224 |3:
2225 | ins_next
2226 if (!vk) {
2227 |5:
2228 | decode_RD4 TMP2, INS
2229 | add PC, TMP2, TMP3
2230 | b <3
2231 }
2232 break;
2233
2234 case BC_ISEQP: case BC_ISNEP:
2235 vk = op == BC_ISEQP;
2236 | // RA = src*8, RD = primitive_type*8 (~), JMP with RD = target
2237 | lwzx TMP0, BASE, RA
2238 | srwi TMP1, RD, 3
2239 | lwz INS, 0(PC)
2240 | addi PC, PC, 4
2241 | not TMP1, TMP1
2242 | addis TMP3, PC, -(BCBIAS_J*4 >> 16)
2243 | cmplw TMP0, TMP1
2244 | decode_RD4 TMP2, INS
2245 | add TMP2, TMP2, TMP3
2246 if (vk) {
2247 | iseleq PC, TMP2, PC
2248 } else {
2249 | iseleq PC, PC, TMP2
2250 }
2251 | ins_next
2252 break;
2253
2254 /* -- Unary test and copy ops ------------------------------------------- */
2255
2256 case BC_ISTC: case BC_ISFC: case BC_IST: case BC_ISF:
2257 | // RA = dst*8 or unused, RD = src*8, JMP with RD = target
2258 | evlddx TMP0, BASE, RD
2259 | evaddw TMP1, TISNIL, TISNIL // Synthesize LJ_TFALSE.
2260 | lwz INS, 0(PC)
2261 | evcmpltu TMP0, TMP1
2262 | addi PC, PC, 4
2263 if (op == BC_IST || op == BC_ISF) {
2264 | addis TMP3, PC, -(BCBIAS_J*4 >> 16)
2265 | decode_RD4 TMP2, INS
2266 | add TMP2, TMP2, TMP3
2267 if (op == BC_IST) {
2268 | isellt PC, TMP2, PC
2269 } else {
2270 | isellt PC, PC, TMP2
2271 }
2272 } else {
2273 if (op == BC_ISTC) {
2274 | checkfail >1
2275 } else {
2276 | checkok >1
2277 }
2278 | addis PC, PC, -(BCBIAS_J*4 >> 16)
2279 | decode_RD4 TMP2, INS
2280 | evstddx TMP0, BASE, RA
2281 | add PC, PC, TMP2
2282 |1:
2283 }
2284 | ins_next
2285 break;
2286
2287 /* -- Unary ops --------------------------------------------------------- */
2288
2289 case BC_MOV:
2290 | // RA = dst*8, RD = src*8
2291 | ins_next1
2292 | evlddx TMP0, BASE, RD
2293 | evstddx TMP0, BASE, RA
2294 | ins_next2
2295 break;
2296 case BC_NOT:
2297 | // RA = dst*8, RD = src*8
2298 | ins_next1
2299 | lwzx TMP0, BASE, RD
2300 | subfic TMP1, TMP0, LJ_TTRUE
2301 | adde TMP0, TMP0, TMP1
2302 | stwx TMP0, BASE, RA
2303 | ins_next2
2304 break;
2305 case BC_UNM:
2306 | // RA = dst*8, RD = src*8
2307 | evlddx TMP0, BASE, RD
2308 | checknum TMP0
2309 | checkfail ->vmeta_unm
2310 | efdneg TMP0, TMP0
2311 | ins_next1
2312 | evstddx TMP0, BASE, RA
2313 | ins_next2
2314 break;
2315 case BC_LEN:
2316 | // RA = dst*8, RD = src*8
2317 | evlddx CARG1, BASE, RD
2318 | checkstr CARG1
2319 | checkfail >2
2320 | lwz CRET1, STR:CARG1->len
2321 |1:
2322 | ins_next1
2323 | efdcfsi TMP0, CRET1
2324 | evstddx TMP0, BASE, RA
2325 | ins_next2
2326 |2:
2327 | checktab CARG1
2328 | checkfail ->vmeta_len
2329#ifdef LUAJIT_ENABLE_LUA52COMPAT
2330 | lwz TAB:TMP2, TAB:CARG1->metatable
2331 | cmplwi TAB:TMP2, 0
2332 | bne >9
2333 |3:
2334#endif
2335 |->BC_LEN_Z:
2336 | bl extern lj_tab_len // (GCtab *t)
2337 | // Returns uint32_t (but less than 2^31).
2338 | b <1
2339#ifdef LUAJIT_ENABLE_LUA52COMPAT
2340 |9:
2341 | lbz TMP0, TAB:TMP2->nomm
2342 | andi. TMP0, TMP0, 1<<MM_len
2343 | bne <3 // 'no __len' flag set: done.
2344 | b ->vmeta_len
2345#endif
2346 break;
2347
2348 /* -- Binary ops -------------------------------------------------------- */
2349
2350 |.macro ins_arithpre, t0, t1
2351 | // RA = dst*8, RB = src1*8, RC = src2*8 | num_const*8
2352 ||vk = ((int)op - BC_ADDVN) / (BC_ADDNV-BC_ADDVN);
2353 ||switch (vk) {
2354 ||case 0:
2355 | evlddx t0, BASE, RB
2356 | checknum t0
2357 | evlddx t1, KBASE, RC
2358 | checkfail ->vmeta_arith_vn
2359 || break;
2360 ||case 1:
2361 | evlddx t1, BASE, RB
2362 | checknum t1
2363 | evlddx t0, KBASE, RC
2364 | checkfail ->vmeta_arith_nv
2365 || break;
2366 ||default:
2367 | evlddx t0, BASE, RB
2368 | evlddx t1, BASE, RC
2369 | evmergehi TMP2, t0, t1
2370 | checknum TMP2
2371 | checkanyfail ->vmeta_arith_vv
2372 || break;
2373 ||}
2374 |.endmacro
2375 |
2376 |.macro ins_arith, ins
2377 | ins_arithpre TMP0, TMP1
2378 | ins_next1
2379 | ins TMP0, TMP0, TMP1
2380 | evstddx TMP0, BASE, RA
2381 | ins_next2
2382 |.endmacro
2383
2384 case BC_ADDVN: case BC_ADDNV: case BC_ADDVV:
2385 | ins_arith efdadd
2386 break;
2387 case BC_SUBVN: case BC_SUBNV: case BC_SUBVV:
2388 | ins_arith efdsub
2389 break;
2390 case BC_MULVN: case BC_MULNV: case BC_MULVV:
2391 | ins_arith efdmul
2392 break;
2393 case BC_DIVVN: case BC_DIVNV: case BC_DIVVV:
2394 | ins_arith efddiv
2395 break;
2396 case BC_MODVN:
2397 | ins_arithpre RD, SAVE0
2398 |->BC_MODVN_Z:
2399 | efddiv CARG2, RD, SAVE0
2400 | bl ->vm_floor_efd // floor(b/c)
2401 | efdmul TMP0, CRET2, SAVE0
2402 | ins_next1
2403 | efdsub TMP0, RD, TMP0 // b - floor(b/c)*c
2404 | evstddx TMP0, BASE, RA
2405 | ins_next2
2406 break;
2407 case BC_MODNV: case BC_MODVV:
2408 | ins_arithpre RD, SAVE0
2409 | b ->BC_MODVN_Z // Avoid 3 copies. It's slow anyway.
2410 break;
2411 case BC_POW:
2412 | evlddx CARG2, BASE, RB
2413 | evlddx CARG4, BASE, RC
2414 | evmergehi CARG1, CARG4, CARG2
2415 | checknum CARG1
2416 | evmergehi CARG3, CARG4, CARG4
2417 | checkanyfail ->vmeta_arith_vv
2418 | bl extern pow
2419 | evmergelo CRET2, CRET1, CRET2
2420 | evstddx CRET2, BASE, RA
2421 | ins_next
2422 break;
2423
2424 case BC_CAT:
2425 | // RA = dst*8, RB = src_start*8, RC = src_end*8
2426 | sub CARG3, RC, RB
2427 | stw BASE, L->base
2428 | add CARG2, BASE, RC
2429 | mr SAVE0, RB
2430 |->BC_CAT_Z:
2431 | stw PC, SAVE_PC
2432 | mr CARG1, L
2433 | srwi CARG3, CARG3, 3
2434 | bl extern lj_meta_cat // (lua_State *L, TValue *top, int left)
2435 | // Returns NULL (finished) or TValue * (metamethod).
2436 | cmplwi CRET1, 0
2437 | lwz BASE, L->base
2438 | bne ->vmeta_binop
2439 | evlddx TMP0, BASE, SAVE0 // Copy result from RB to RA.
2440 | evstddx TMP0, BASE, RA
2441 | ins_next
2442 break;
2443
2444 /* -- Constant ops ------------------------------------------------------ */
2445
2446 case BC_KSTR:
2447 | // RA = dst*8, RD = str_const*8 (~)
2448 | ins_next1
2449 | srwi TMP1, RD, 1
2450 | subfic TMP1, TMP1, -4
2451 | lwzx TMP0, KBASE, TMP1 // KBASE-4-str_const*4
2452 | evmergelo TMP0, TISSTR, TMP0
2453 | evstddx TMP0, BASE, RA
2454 | ins_next2
2455 break;
2456 case BC_KCDATA:
2457#if LJ_HASFFI
2458 | // RA = dst*8, RD = cdata_const*8 (~)
2459 | ins_next1
2460 | srwi TMP1, RD, 1
2461 | subfic TMP1, TMP1, -4
2462 | lwzx TMP0, KBASE, TMP1 // KBASE-4-cdata_const*4
2463 | li TMP2, LJ_TCDATA
2464 | evmergelo TMP0, TMP2, TMP0
2465 | evstddx TMP0, BASE, RA
2466 | ins_next2
2467#endif
2468 break;
2469 case BC_KSHORT:
2470 | // RA = dst*8, RD = int16_literal*8
2471 | srwi TMP1, RD, 3
2472 | extsh TMP1, TMP1
2473 | ins_next1
2474 | efdcfsi TMP0, TMP1
2475 | evstddx TMP0, BASE, RA
2476 | ins_next2
2477 break;
2478 case BC_KNUM:
2479 | // RA = dst*8, RD = num_const*8
2480 | evlddx TMP0, KBASE, RD
2481 | ins_next1
2482 | evstddx TMP0, BASE, RA
2483 | ins_next2
2484 break;
2485 case BC_KPRI:
2486 | // RA = dst*8, RD = primitive_type*8 (~)
2487 | srwi TMP1, RD, 3
2488 | not TMP0, TMP1
2489 | ins_next1
2490 | stwx TMP0, BASE, RA
2491 | ins_next2
2492 break;
2493 case BC_KNIL:
2494 | // RA = base*8, RD = end*8
2495 | evstddx TISNIL, BASE, RA
2496 | addi RA, RA, 8
2497 |1:
2498 | evstddx TISNIL, BASE, RA
2499 | cmpw RA, RD
2500 | addi RA, RA, 8
2501 | blt <1
2502 | ins_next_
2503 break;
2504
2505 /* -- Upvalue and function ops ------------------------------------------ */
2506
2507 case BC_UGET:
2508 | // RA = dst*8, RD = uvnum*8
2509 | ins_next1
2510 | lwz LFUNC:RB, FRAME_FUNC(BASE)
2511 | srwi RD, RD, 1
2512 | addi RD, RD, offsetof(GCfuncL, uvptr)
2513 | lwzx UPVAL:RB, LFUNC:RB, RD
2514 | lwz TMP1, UPVAL:RB->v
2515 | evldd TMP0, 0(TMP1)
2516 | evstddx TMP0, BASE, RA
2517 | ins_next2
2518 break;
2519 case BC_USETV:
2520 | // RA = uvnum*8, RD = src*8
2521 | lwz LFUNC:RB, FRAME_FUNC(BASE)
2522 | srwi RA, RA, 1
2523 | addi RA, RA, offsetof(GCfuncL, uvptr)
2524 | evlddx TMP1, BASE, RD
2525 | lwzx UPVAL:RB, LFUNC:RB, RA
2526 | lbz TMP3, UPVAL:RB->marked
2527 | lwz CARG2, UPVAL:RB->v
2528 | andi. TMP3, TMP3, LJ_GC_BLACK // isblack(uv)
2529 | lbz TMP0, UPVAL:RB->closed
2530 | evmergehi TMP2, TMP1, TMP1
2531 | evstdd TMP1, 0(CARG2)
2532 | cmplwi cr1, TMP0, 0
2533 | cror 4*cr0+eq, 4*cr0+eq, 4*cr1+eq
2534 | subi TMP2, TMP2, (LJ_TISNUM+1)
2535 | bne >2 // Upvalue is closed and black?
2536 |1:
2537 | ins_next
2538 |
2539 |2: // Check if new value is collectable.
2540 | cmplwi TMP2, LJ_TISGCV - (LJ_TISNUM+1)
2541 | bge <1 // tvisgcv(v)
2542 | lbz TMP3, GCOBJ:TMP1->gch.marked
2543 | andi. TMP3, TMP3, LJ_GC_WHITES // iswhite(v)
2544 | la CARG1, GG_DISP2G(DISPATCH)
2545 | // Crossed a write barrier. Move the barrier forward.
2546 | beq <1
2547 | bl extern lj_gc_barrieruv // (global_State *g, TValue *tv)
2548 | b <1
2549 break;
2550 case BC_USETS:
2551 | // RA = uvnum*8, RD = str_const*8 (~)
2552 | lwz LFUNC:RB, FRAME_FUNC(BASE)
2553 | srwi TMP1, RD, 1
2554 | srwi RA, RA, 1
2555 | subfic TMP1, TMP1, -4
2556 | addi RA, RA, offsetof(GCfuncL, uvptr)
2557 | lwzx STR:TMP1, KBASE, TMP1 // KBASE-4-str_const*4
2558 | lwzx UPVAL:RB, LFUNC:RB, RA
2559 | evmergelo STR:TMP1, TISSTR, STR:TMP1
2560 | lbz TMP3, UPVAL:RB->marked
2561 | lwz CARG2, UPVAL:RB->v
2562 | andi. TMP3, TMP3, LJ_GC_BLACK // isblack(uv)
2563 | lbz TMP3, STR:TMP1->marked
2564 | lbz TMP2, UPVAL:RB->closed
2565 | evstdd STR:TMP1, 0(CARG2)
2566 | bne >2
2567 |1:
2568 | ins_next
2569 |
2570 |2: // Check if string is white and ensure upvalue is closed.
2571 | andi. TMP3, TMP3, LJ_GC_WHITES // iswhite(str)
2572 | cmplwi cr1, TMP2, 0
2573 | cror 4*cr0+eq, 4*cr0+eq, 4*cr1+eq
2574 | la CARG1, GG_DISP2G(DISPATCH)
2575 | // Crossed a write barrier. Move the barrier forward.
2576 | beq <1
2577 | bl extern lj_gc_barrieruv // (global_State *g, TValue *tv)
2578 | b <1
2579 break;
2580 case BC_USETN:
2581 | // RA = uvnum*8, RD = num_const*8
2582 | ins_next1
2583 | lwz LFUNC:RB, FRAME_FUNC(BASE)
2584 | srwi RA, RA, 1
2585 | addi RA, RA, offsetof(GCfuncL, uvptr)
2586 | evlddx TMP0, KBASE, RD
2587 | lwzx UPVAL:RB, LFUNC:RB, RA
2588 | lwz TMP1, UPVAL:RB->v
2589 | evstdd TMP0, 0(TMP1)
2590 | ins_next2
2591 break;
2592 case BC_USETP:
2593 | // RA = uvnum*8, RD = primitive_type*8 (~)
2594 | ins_next1
2595 | lwz LFUNC:RB, FRAME_FUNC(BASE)
2596 | srwi RA, RA, 1
2597 | addi RA, RA, offsetof(GCfuncL, uvptr)
2598 | srwi TMP0, RD, 3
2599 | lwzx UPVAL:RB, LFUNC:RB, RA
2600 | not TMP0, TMP0
2601 | lwz TMP1, UPVAL:RB->v
2602 | stw TMP0, 0(TMP1)
2603 | ins_next2
2604 break;
2605
2606 case BC_UCLO:
2607 | // RA = level*8, RD = target
2608 | lwz TMP1, L->openupval
2609 | branch_RD // Do this first since RD is not saved.
2610 | stw BASE, L->base
2611 | cmplwi TMP1, 0
2612 | mr CARG1, L
2613 | beq >1
2614 | add CARG2, BASE, RA
2615 | bl extern lj_func_closeuv // (lua_State *L, TValue *level)
2616 | lwz BASE, L->base
2617 |1:
2618 | ins_next
2619 break;
2620
2621 case BC_FNEW:
2622 | // RA = dst*8, RD = proto_const*8 (~) (holding function prototype)
2623 | srwi TMP1, RD, 1
2624 | stw BASE, L->base
2625 | subfic TMP1, TMP1, -4
2626 | stw PC, SAVE_PC
2627 | lwzx CARG2, KBASE, TMP1 // KBASE-4-tab_const*4
2628 | mr CARG1, L
2629 | lwz CARG3, FRAME_FUNC(BASE)
2630 | // (lua_State *L, GCproto *pt, GCfuncL *parent)
2631 | bl extern lj_func_newL_gc
2632 | // Returns GCfuncL *.
2633 | lwz BASE, L->base
2634 | evmergelo LFUNC:CRET1, TISFUNC, LFUNC:CRET1
2635 | evstddx LFUNC:CRET1, BASE, RA
2636 | ins_next
2637 break;
2638
2639 /* -- Table ops --------------------------------------------------------- */
2640
2641 case BC_TNEW:
2642 case BC_TDUP:
2643 | // RA = dst*8, RD = (hbits|asize)*8 | tab_const*8 (~)
2644 | lwz TMP0, DISPATCH_GL(gc.total)(DISPATCH)
2645 | mr CARG1, L
2646 | lwz TMP1, DISPATCH_GL(gc.threshold)(DISPATCH)
2647 | stw BASE, L->base
2648 | cmplw TMP0, TMP1
2649 | stw PC, SAVE_PC
2650 | bge >5
2651 |1:
2652 if (op == BC_TNEW) {
2653 | rlwinm CARG2, RD, 29, 21, 31
2654 | rlwinm CARG3, RD, 18, 27, 31
2655 | cmpwi CARG2, 0x7ff
2656 | li TMP1, 0x801
2657 | iseleq CARG2, TMP1, CARG2
2658 | bl extern lj_tab_new // (lua_State *L, int32_t asize, uint32_t hbits)
2659 | // Returns Table *.
2660 } else {
2661 | srwi TMP1, RD, 1
2662 | subfic TMP1, TMP1, -4
2663 | lwzx CARG2, KBASE, TMP1 // KBASE-4-tab_const*4
2664 | bl extern lj_tab_dup // (lua_State *L, Table *kt)
2665 | // Returns Table *.
2666 }
2667 | lwz BASE, L->base
2668 | evmergelo TAB:CRET1, TISTAB, TAB:CRET1
2669 | evstddx TAB:CRET1, BASE, RA
2670 | ins_next
2671 |5:
2672 | mr SAVE0, RD
2673 | bl extern lj_gc_step_fixtop // (lua_State *L)
2674 | mr RD, SAVE0
2675 | mr CARG1, L
2676 | b <1
2677 break;
2678
2679 case BC_GGET:
2680 | // RA = dst*8, RD = str_const*8 (~)
2681 case BC_GSET:
2682 | // RA = src*8, RD = str_const*8 (~)
2683 | lwz LFUNC:TMP2, FRAME_FUNC(BASE)
2684 | srwi TMP1, RD, 1
2685 | lwz TAB:RB, LFUNC:TMP2->env
2686 | subfic TMP1, TMP1, -4
2687 | lwzx STR:RC, KBASE, TMP1 // KBASE-4-str_const*4
2688 if (op == BC_GGET) {
2689 | b ->BC_TGETS_Z
2690 } else {
2691 | b ->BC_TSETS_Z
2692 }
2693 break;
2694
2695 case BC_TGETV:
2696 | // RA = dst*8, RB = table*8, RC = key*8
2697 | evlddx TAB:RB, BASE, RB
2698 | evlddx RC, BASE, RC
2699 | checktab TAB:RB
2700 | checkfail ->vmeta_tgetv
2701 | checknum RC
2702 | checkfail >5
2703 | // Convert number key to integer
2704 | efdctsi TMP2, RC
2705 | lwz TMP0, TAB:RB->asize
2706 | efdcfsi TMP1, TMP2
2707 | cmplw cr0, TMP0, TMP2
2708 | efdcmpeq cr1, RC, TMP1
2709 | lwz TMP1, TAB:RB->array
2710 | crand 4*cr0+gt, 4*cr0+gt, 4*cr1+gt
2711 | slwi TMP2, TMP2, 3
2712 | ble ->vmeta_tgetv // Integer key and in array part?
2713 | evlddx TMP1, TMP1, TMP2
2714 | checknil TMP1
2715 | checkok >2
2716 |1:
2717 | evstddx TMP1, BASE, RA
2718 | ins_next
2719 |
2720 |2: // Check for __index if table value is nil.
2721 | lwz TAB:TMP2, TAB:RB->metatable
2722 | cmplwi TAB:TMP2, 0
2723 | beq <1 // No metatable: done.
2724 | lbz TMP0, TAB:TMP2->nomm
2725 | andi. TMP0, TMP0, 1<<MM_index
2726 | bne <1 // 'no __index' flag set: done.
2727 | b ->vmeta_tgetv
2728 |
2729 |5:
2730 | checkstr STR:RC // String key?
2731 | checkok ->BC_TGETS_Z
2732 | b ->vmeta_tgetv
2733 break;
2734 case BC_TGETS:
2735 | // RA = dst*8, RB = table*8, RC = str_const*8 (~)
2736 | evlddx TAB:RB, BASE, RB
2737 | srwi TMP1, RC, 1
2738 | checktab TAB:RB
2739 | subfic TMP1, TMP1, -4
2740 | lwzx STR:RC, KBASE, TMP1 // KBASE-4-str_const*4
2741 | checkfail ->vmeta_tgets1
2742 |->BC_TGETS_Z:
2743 | // TAB:RB = GCtab *, STR:RC = GCstr *, RA = dst*8
2744 | lwz TMP0, TAB:RB->hmask
2745 | lwz TMP1, STR:RC->hash
2746 | lwz NODE:TMP2, TAB:RB->node
2747 | evmergelo STR:RC, TISSTR, STR:RC
2748 | and TMP1, TMP1, TMP0 // idx = str->hash & tab->hmask
2749 | slwi TMP0, TMP1, 5
2750 | slwi TMP1, TMP1, 3
2751 | sub TMP1, TMP0, TMP1
2752 | add NODE:TMP2, NODE:TMP2, TMP1 // node = tab->node + (idx*32-idx*8)
2753 |1:
2754 | evldd TMP0, NODE:TMP2->key
2755 | evldd TMP1, NODE:TMP2->val
2756 | evcmpeq TMP0, STR:RC
2757 | checkanyfail >4
2758 | checknil TMP1
2759 | checkok >5 // Key found, but nil value?
2760 |3:
2761 | evstddx TMP1, BASE, RA
2762 | ins_next
2763 |
2764 |4: // Follow hash chain.
2765 | lwz NODE:TMP2, NODE:TMP2->next
2766 | cmplwi NODE:TMP2, 0
2767 | bne <1
2768 | // End of hash chain: key not found, nil result.
2769 | evmr TMP1, TISNIL
2770 |
2771 |5: // Check for __index if table value is nil.
2772 | lwz TAB:TMP2, TAB:RB->metatable
2773 | cmplwi TAB:TMP2, 0
2774 | beq <3 // No metatable: done.
2775 | lbz TMP0, TAB:TMP2->nomm
2776 | andi. TMP0, TMP0, 1<<MM_index
2777 | bne <3 // 'no __index' flag set: done.
2778 | b ->vmeta_tgets
2779 break;
2780 case BC_TGETB:
2781 | // RA = dst*8, RB = table*8, RC = index*8
2782 | evlddx TAB:RB, BASE, RB
2783 | srwi TMP0, RC, 3
2784 | checktab TAB:RB
2785 | checkfail ->vmeta_tgetb
2786 | lwz TMP1, TAB:RB->asize
2787 | lwz TMP2, TAB:RB->array
2788 | cmplw TMP0, TMP1
2789 | bge ->vmeta_tgetb
2790 | evlddx TMP1, TMP2, RC
2791 | checknil TMP1
2792 | checkok >5
2793 |1:
2794 | ins_next1
2795 | evstddx TMP1, BASE, RA
2796 | ins_next2
2797 |
2798 |5: // Check for __index if table value is nil.
2799 | lwz TAB:TMP2, TAB:RB->metatable
2800 | cmplwi TAB:TMP2, 0
2801 | beq <1 // No metatable: done.
2802 | lbz TMP2, TAB:TMP2->nomm
2803 | andi. TMP2, TMP2, 1<<MM_index
2804 | bne <1 // 'no __index' flag set: done.
2805 | b ->vmeta_tgetb // Caveat: preserve TMP0!
2806 break;
2807
2808 case BC_TSETV:
2809 | // RA = src*8, RB = table*8, RC = key*8
2810 | evlddx TAB:RB, BASE, RB
2811 | evlddx RC, BASE, RC
2812 | checktab TAB:RB
2813 | checkfail ->vmeta_tsetv
2814 | checknum RC
2815 | checkfail >5
2816 | // Convert number key to integer
2817 | efdctsi TMP2, RC
2818 | evlddx SAVE0, BASE, RA
2819 | lwz TMP0, TAB:RB->asize
2820 | efdcfsi TMP1, TMP2
2821 | cmplw cr0, TMP0, TMP2
2822 | efdcmpeq cr1, RC, TMP1
2823 | lwz TMP1, TAB:RB->array
2824 | crand 4*cr0+gt, 4*cr0+gt, 4*cr1+gt
2825 | slwi TMP0, TMP2, 3
2826 | ble ->vmeta_tsetv // Integer key and in array part?
2827 | lbz TMP3, TAB:RB->marked
2828 | evlddx TMP2, TMP1, TMP0
2829 | checknil TMP2
2830 | checkok >3
2831 |1:
2832 | andi. TMP2, TMP3, LJ_GC_BLACK // isblack(table)
2833 | evstddx SAVE0, TMP1, TMP0
2834 | bne >7
2835 |2:
2836 | ins_next
2837 |
2838 |3: // Check for __newindex if previous value is nil.
2839 | lwz TAB:TMP2, TAB:RB->metatable
2840 | cmplwi TAB:TMP2, 0
2841 | beq <1 // No metatable: done.
2842 | lbz TMP2, TAB:TMP2->nomm
2843 | andi. TMP2, TMP2, 1<<MM_newindex
2844 | bne <1 // 'no __newindex' flag set: done.
2845 | b ->vmeta_tsetv
2846 |
2847 |5:
2848 | checkstr STR:RC // String key?
2849 | checkok ->BC_TSETS_Z
2850 | b ->vmeta_tsetv
2851 |
2852 |7: // Possible table write barrier for the value. Skip valiswhite check.
2853 | barrierback TAB:RB, TMP3, TMP0
2854 | b <2
2855 break;
2856 case BC_TSETS:
2857 | // RA = src*8, RB = table*8, RC = str_const*8 (~)
2858 | evlddx TAB:RB, BASE, RB
2859 | srwi TMP1, RC, 1
2860 | checktab TAB:RB
2861 | subfic TMP1, TMP1, -4
2862 | lwzx STR:RC, KBASE, TMP1 // KBASE-4-str_const*4
2863 | checkfail ->vmeta_tsets1
2864 |->BC_TSETS_Z:
2865 | // TAB:RB = GCtab *, STR:RC = GCstr *, RA = src*8
2866 | lwz TMP0, TAB:RB->hmask
2867 | lwz TMP1, STR:RC->hash
2868 | lwz NODE:TMP2, TAB:RB->node
2869 | evmergelo STR:RC, TISSTR, STR:RC
2870 | stb ZERO, TAB:RB->nomm // Clear metamethod cache.
2871 | and TMP1, TMP1, TMP0 // idx = str->hash & tab->hmask
2872 | evlddx SAVE0, BASE, RA
2873 | slwi TMP0, TMP1, 5
2874 | slwi TMP1, TMP1, 3
2875 | sub TMP1, TMP0, TMP1
2876 | lbz TMP3, TAB:RB->marked
2877 | add NODE:TMP2, NODE:TMP2, TMP1 // node = tab->node + (idx*32-idx*8)
2878 |1:
2879 | evldd TMP0, NODE:TMP2->key
2880 | evldd TMP1, NODE:TMP2->val
2881 | evcmpeq TMP0, STR:RC
2882 | checkanyfail >5
2883 | checknil TMP1
2884 | checkok >4 // Key found, but nil value?
2885 |2:
2886 | andi. TMP0, TMP3, LJ_GC_BLACK // isblack(table)
2887 | evstdd SAVE0, NODE:TMP2->val
2888 | bne >7
2889 |3:
2890 | ins_next
2891 |
2892 |4: // Check for __newindex if previous value is nil.
2893 | lwz TAB:TMP1, TAB:RB->metatable
2894 | cmplwi TAB:TMP1, 0
2895 | beq <2 // No metatable: done.
2896 | lbz TMP0, TAB:TMP1->nomm
2897 | andi. TMP0, TMP0, 1<<MM_newindex
2898 | bne <2 // 'no __newindex' flag set: done.
2899 | b ->vmeta_tsets
2900 |
2901 |5: // Follow hash chain.
2902 | lwz NODE:TMP2, NODE:TMP2->next
2903 | cmplwi NODE:TMP2, 0
2904 | bne <1
2905 | // End of hash chain: key not found, add a new one.
2906 |
2907 | // But check for __newindex first.
2908 | lwz TAB:TMP1, TAB:RB->metatable
2909 | la CARG3, DISPATCH_GL(tmptv)(DISPATCH)
2910 | stw PC, SAVE_PC
2911 | mr CARG1, L
2912 | cmplwi TAB:TMP1, 0
2913 | stw BASE, L->base
2914 | beq >6 // No metatable: continue.
2915 | lbz TMP0, TAB:TMP1->nomm
2916 | andi. TMP0, TMP0, 1<<MM_newindex
2917 | beq ->vmeta_tsets // 'no __newindex' flag NOT set: check.
2918 |6:
2919 | mr CARG2, TAB:RB
2920 | evstdd STR:RC, 0(CARG3)
2921 | bl extern lj_tab_newkey // (lua_State *L, GCtab *t, TValue *k)
2922 | // Returns TValue *.
2923 | lwz BASE, L->base
2924 | evstdd SAVE0, 0(CRET1)
2925 | b <3 // No 2nd write barrier needed.
2926 |
2927 |7: // Possible table write barrier for the value. Skip valiswhite check.
2928 | barrierback TAB:RB, TMP3, TMP0
2929 | b <3
2930 break;
2931 case BC_TSETB:
2932 | // RA = src*8, RB = table*8, RC = index*8
2933 | evlddx TAB:RB, BASE, RB
2934 | srwi TMP0, RC, 3
2935 | checktab TAB:RB
2936 | checkfail ->vmeta_tsetb
2937 | lwz TMP1, TAB:RB->asize
2938 | lwz TMP2, TAB:RB->array
2939 | lbz TMP3, TAB:RB->marked
2940 | cmplw TMP0, TMP1
2941 | evlddx SAVE0, BASE, RA
2942 | bge ->vmeta_tsetb
2943 | evlddx TMP1, TMP2, RC
2944 | checknil TMP1
2945 | checkok >5
2946 |1:
2947 | andi. TMP0, TMP3, LJ_GC_BLACK // isblack(table)
2948 | evstddx SAVE0, TMP2, RC
2949 | bne >7
2950 |2:
2951 | ins_next
2952 |
2953 |5: // Check for __newindex if previous value is nil.
2954 | lwz TAB:TMP1, TAB:RB->metatable
2955 | cmplwi TAB:TMP1, 0
2956 | beq <1 // No metatable: done.
2957 | lbz TMP1, TAB:TMP1->nomm
2958 | andi. TMP1, TMP1, 1<<MM_newindex
2959 | bne <1 // 'no __newindex' flag set: done.
2960 | b ->vmeta_tsetb // Caveat: preserve TMP0!
2961 |
2962 |7: // Possible table write barrier for the value. Skip valiswhite check.
2963 | barrierback TAB:RB, TMP3, TMP0
2964 | b <2
2965 break;
2966
2967 case BC_TSETM:
2968 | // RA = base*8 (table at base-1), RD = num_const*8 (start index)
2969 | add RA, BASE, RA
2970 |1:
2971 | add TMP3, KBASE, RD
2972 | lwz TAB:CARG2, -4(RA) // Guaranteed to be a table.
2973 | addic. TMP0, MULTRES, -8
2974 | lwz TMP3, 4(TMP3) // Integer constant is in lo-word.
2975 | srwi CARG3, TMP0, 3
2976 | beq >4 // Nothing to copy?
2977 | add CARG3, CARG3, TMP3
2978 | lwz TMP2, TAB:CARG2->asize
2979 | slwi TMP1, TMP3, 3
2980 | lbz TMP3, TAB:CARG2->marked
2981 | cmplw CARG3, TMP2
2982 | add TMP2, RA, TMP0
2983 | lwz TMP0, TAB:CARG2->array
2984 | bgt >5
2985 | add TMP1, TMP1, TMP0
2986 | andi. TMP0, TMP3, LJ_GC_BLACK // isblack(table)
2987 |3: // Copy result slots to table.
2988 | evldd TMP0, 0(RA)
2989 | addi RA, RA, 8
2990 | cmpw cr1, RA, TMP2
2991 | evstdd TMP0, 0(TMP1)
2992 | addi TMP1, TMP1, 8
2993 | blt cr1, <3
2994 | bne >7
2995 |4:
2996 | ins_next
2997 |
2998 |5: // Need to resize array part.
2999 | stw BASE, L->base
3000 | mr CARG1, L
3001 | stw PC, SAVE_PC
3002 | mr SAVE0, RD
3003 | bl extern lj_tab_reasize // (lua_State *L, GCtab *t, int nasize)
3004 | // Must not reallocate the stack.
3005 | mr RD, SAVE0
3006 | b <1
3007 |
3008 |7: // Possible table write barrier for any value. Skip valiswhite check.
3009 | barrierback TAB:CARG2, TMP3, TMP0
3010 | b <4
3011 break;
3012
3013 /* -- Calls and vararg handling ----------------------------------------- */
3014
3015 case BC_CALLM:
3016 | // RA = base*8, (RB = (nresults+1)*8,) RC = extra_nargs*8
3017 | add NARGS8:RC, NARGS8:RC, MULTRES
3018 | // Fall through. Assumes BC_CALL follows.
3019 break;
3020 case BC_CALL:
3021 | // RA = base*8, (RB = (nresults+1)*8,) RC = (nargs+1)*8
3022 | evlddx LFUNC:RB, BASE, RA
3023 | mr TMP2, BASE
3024 | add BASE, BASE, RA
3025 | subi NARGS8:RC, NARGS8:RC, 8
3026 | checkfunc LFUNC:RB
3027 | addi BASE, BASE, 8
3028 | checkfail ->vmeta_call
3029 | ins_call
3030 break;
3031
3032 case BC_CALLMT:
3033 | // RA = base*8, (RB = 0,) RC = extra_nargs*8
3034 | add NARGS8:RC, NARGS8:RC, MULTRES
3035 | // Fall through. Assumes BC_CALLT follows.
3036 break;
3037 case BC_CALLT:
3038 | // RA = base*8, (RB = 0,) RC = (nargs+1)*8
3039 | evlddx LFUNC:RB, BASE, RA
3040 | add RA, BASE, RA
3041 | lwz TMP1, FRAME_PC(BASE)
3042 | subi NARGS8:RC, NARGS8:RC, 8
3043 | checkfunc LFUNC:RB
3044 | addi RA, RA, 8
3045 | checkfail ->vmeta_callt
3046 |->BC_CALLT_Z:
3047 | andi. TMP0, TMP1, FRAME_TYPE // Caveat: preserve cr0 until the crand.
3048 | lbz TMP3, LFUNC:RB->ffid
3049 | xori TMP2, TMP1, FRAME_VARG
3050 | cmplwi cr1, NARGS8:RC, 0
3051 | bne >7
3052 |1:
3053 | stw LFUNC:RB, FRAME_FUNC(BASE) // Copy function down, but keep PC.
3054 | li TMP2, 0
3055 | cmplwi cr7, TMP3, 1 // (> FF_C) Calling a fast function?
3056 | beq cr1, >3
3057 |2:
3058 | addi TMP3, TMP2, 8
3059 | evlddx TMP0, RA, TMP2
3060 | cmplw cr1, TMP3, NARGS8:RC
3061 | evstddx TMP0, BASE, TMP2
3062 | mr TMP2, TMP3
3063 | bne cr1, <2
3064 |3:
3065 | crand 4*cr0+eq, 4*cr0+eq, 4*cr7+gt
3066 | beq >5
3067 |4:
3068 | ins_callt
3069 |
3070 |5: // Tailcall to a fast function with a Lua frame below.
3071 | lwz INS, -4(TMP1)
3072 | decode_RA8 RA, INS
3073 | sub TMP1, BASE, RA
3074 | lwz LFUNC:TMP1, FRAME_FUNC-8(TMP1)
3075 | lwz TMP1, LFUNC:TMP1->pc
3076 | lwz KBASE, PC2PROTO(k)(TMP1) // Need to prepare KBASE.
3077 | b <4
3078 |
3079 |7: // Tailcall from a vararg function.
3080 | andi. TMP0, TMP2, FRAME_TYPEP
3081 | bne <1 // Vararg frame below?
3082 | sub BASE, BASE, TMP2 // Relocate BASE down.
3083 | lwz TMP1, FRAME_PC(BASE)
3084 | andi. TMP0, TMP1, FRAME_TYPE
3085 | b <1
3086 break;
3087
3088 case BC_ITERC:
3089 | // RA = base*8, (RB = (nresults+1)*8, RC = (nargs+1)*8 ((2+1)*8))
3090 | subi RA, RA, 24 // evldd doesn't support neg. offsets.
3091 | mr TMP2, BASE
3092 | evlddx LFUNC:RB, BASE, RA
3093 | add BASE, BASE, RA
3094 | evldd TMP0, 8(BASE)
3095 | evldd TMP1, 16(BASE)
3096 | evstdd LFUNC:RB, 24(BASE) // Copy callable.
3097 | checkfunc LFUNC:RB
3098 | evstdd TMP0, 32(BASE) // Copy state.
3099 | li NARGS8:RC, 16 // Iterators get 2 arguments.
3100 | evstdd TMP1, 40(BASE) // Copy control var.
3101 | addi BASE, BASE, 32
3102 | checkfail ->vmeta_call
3103 | ins_call
3104 break;
3105
3106 case BC_ITERN:
3107 | // RA = base*8, (RB = (nresults+1)*8, RC = (nargs+1)*8 (2+1)*8)
3108#if LJ_HASJIT
3109 | // NYI: add hotloop, record BC_ITERN.
3110#endif
3111 | add RA, BASE, RA
3112 | lwz TAB:RB, -12(RA)
3113 | lwz RC, -4(RA) // Get index from control var.
3114 | lwz TMP0, TAB:RB->asize
3115 | lwz TMP1, TAB:RB->array
3116 | addi PC, PC, 4
3117 |1: // Traverse array part.
3118 | cmplw RC, TMP0
3119 | slwi TMP3, RC, 3
3120 | bge >5 // Index points after array part?
3121 | evlddx TMP2, TMP1, TMP3
3122 | checknil TMP2
3123 | lwz INS, -4(PC)
3124 | checkok >4
3125 | efdcfsi TMP0, RC
3126 | addi RC, RC, 1
3127 | addis TMP3, PC, -(BCBIAS_J*4 >> 16)
3128 | evstdd TMP2, 8(RA)
3129 | decode_RD4 TMP1, INS
3130 | stw RC, -4(RA) // Update control var.
3131 | add PC, TMP1, TMP3
3132 | evstdd TMP0, 0(RA)
3133 |3:
3134 | ins_next
3135 |
3136 |4: // Skip holes in array part.
3137 | addi RC, RC, 1
3138 | b <1
3139 |
3140 |5: // Traverse hash part.
3141 | lwz TMP1, TAB:RB->hmask
3142 | sub RC, RC, TMP0
3143 | lwz TMP2, TAB:RB->node
3144 |6:
3145 | cmplw RC, TMP1 // End of iteration? Branch to ITERL+1.
3146 | slwi TMP3, RC, 5
3147 | bgt <3
3148 | slwi RB, RC, 3
3149 | sub TMP3, TMP3, RB
3150 | evlddx RB, TMP2, TMP3
3151 | add NODE:TMP3, TMP2, TMP3
3152 | checknil RB
3153 | lwz INS, -4(PC)
3154 | checkok >7
3155 | evldd TMP3, NODE:TMP3->key
3156 | addis TMP2, PC, -(BCBIAS_J*4 >> 16)
3157 | evstdd RB, 8(RA)
3158 | add RC, RC, TMP0
3159 | decode_RD4 TMP1, INS
3160 | evstdd TMP3, 0(RA)
3161 | addi RC, RC, 1
3162 | add PC, TMP1, TMP2
3163 | stw RC, -4(RA) // Update control var.
3164 | b <3
3165 |
3166 |7: // Skip holes in hash part.
3167 | addi RC, RC, 1
3168 | b <6
3169 break;
3170
3171 case BC_ISNEXT:
3172 | // RA = base*8, RD = target (points to ITERN)
3173 | add RA, BASE, RA
3174 | li TMP2, -24
3175 | evlddx CFUNC:TMP1, RA, TMP2
3176 | lwz TMP2, -16(RA)
3177 | lwz TMP3, -8(RA)
3178 | evmergehi TMP0, CFUNC:TMP1, CFUNC:TMP1
3179 | cmpwi cr0, TMP2, LJ_TTAB
3180 | cmpwi cr1, TMP0, LJ_TFUNC
3181 | cmpwi cr6, TMP3, LJ_TNIL
3182 | bne cr1, >5
3183 | lbz TMP1, CFUNC:TMP1->ffid
3184 | crand 4*cr0+eq, 4*cr0+eq, 4*cr6+eq
3185 | cmpwi cr7, TMP1, FF_next_N
3186 | srwi TMP0, RD, 1
3187 | crand 4*cr0+eq, 4*cr0+eq, 4*cr7+eq
3188 | add TMP3, PC, TMP0
3189 | bne cr0, >5
3190 | stw ZERO, -4(RA) // Initialize control var.
3191 | addis PC, TMP3, -(BCBIAS_J*4 >> 16)
3192 |1:
3193 | ins_next
3194 |5: // Despecialize bytecode if any of the checks fail.
3195 | li TMP0, BC_JMP
3196 | li TMP1, BC_ITERC
3197 | stb TMP0, -1(PC)
3198 | addis PC, TMP3, -(BCBIAS_J*4 >> 16)
3199 | stb TMP1, 3(PC)
3200 | b <1
3201 break;
3202
3203 case BC_VARG:
3204 | // RA = base*8, RB = (nresults+1)*8, RC = numparams*8
3205 | lwz TMP0, FRAME_PC(BASE)
3206 | add RC, BASE, RC
3207 | add RA, BASE, RA
3208 | addi RC, RC, FRAME_VARG
3209 | add TMP2, RA, RB
3210 | subi TMP3, BASE, 8 // TMP3 = vtop
3211 | sub RC, RC, TMP0 // RC = vbase
3212 | // Note: RC may now be even _above_ BASE if nargs was < numparams.
3213 | cmplwi cr1, RB, 0
3214 | sub. TMP1, TMP3, RC
3215 | beq cr1, >5 // Copy all varargs?
3216 | subi TMP2, TMP2, 16
3217 | ble >2 // No vararg slots?
3218 |1: // Copy vararg slots to destination slots.
3219 | evldd TMP0, 0(RC)
3220 | addi RC, RC, 8
3221 | evstdd TMP0, 0(RA)
3222 | cmplw RA, TMP2
3223 | cmplw cr1, RC, TMP3
3224 | bge >3 // All destination slots filled?
3225 | addi RA, RA, 8
3226 | blt cr1, <1 // More vararg slots?
3227 |2: // Fill up remainder with nil.
3228 | evstdd TISNIL, 0(RA)
3229 | cmplw RA, TMP2
3230 | addi RA, RA, 8
3231 | blt <2
3232 |3:
3233 | ins_next
3234 |
3235 |5: // Copy all varargs.
3236 | lwz TMP0, L->maxstack
3237 | li MULTRES, 8 // MULTRES = (0+1)*8
3238 | ble <3 // No vararg slots?
3239 | add TMP2, RA, TMP1
3240 | cmplw TMP2, TMP0
3241 | addi MULTRES, TMP1, 8
3242 | bgt >7
3243 |6:
3244 | evldd TMP0, 0(RC)
3245 | addi RC, RC, 8
3246 | evstdd TMP0, 0(RA)
3247 | cmplw RC, TMP3
3248 | addi RA, RA, 8
3249 | blt <6 // More vararg slots?
3250 | b <3
3251 |
3252 |7: // Grow stack for varargs.
3253 | mr CARG1, L
3254 | stw RA, L->top
3255 | sub SAVE0, RC, BASE // Need delta, because BASE may change.
3256 | stw BASE, L->base
3257 | sub RA, RA, BASE
3258 | stw PC, SAVE_PC
3259 | srwi CARG2, TMP1, 3
3260 | bl extern lj_state_growstack // (lua_State *L, int n)
3261 | lwz BASE, L->base
3262 | add RA, BASE, RA
3263 | add RC, BASE, SAVE0
3264 | subi TMP3, BASE, 8
3265 | b <6
3266 break;
3267
3268 /* -- Returns ----------------------------------------------------------- */
3269
3270 case BC_RETM:
3271 | // RA = results*8, RD = extra_nresults*8
3272 | add RD, RD, MULTRES // MULTRES >= 8, so RD >= 8.
3273 | // Fall through. Assumes BC_RET follows.
3274 break;
3275
3276 case BC_RET:
3277 | // RA = results*8, RD = (nresults+1)*8
3278 | lwz PC, FRAME_PC(BASE)
3279 | add RA, BASE, RA
3280 | mr MULTRES, RD
3281 |1:
3282 | andi. TMP0, PC, FRAME_TYPE
3283 | xori TMP1, PC, FRAME_VARG
3284 | bne ->BC_RETV_Z
3285 |
3286 |->BC_RET_Z:
3287 | // BASE = base, RA = resultptr, RD = (nresults+1)*8, PC = return
3288 | lwz INS, -4(PC)
3289 | cmpwi RD, 8
3290 | subi TMP2, BASE, 8
3291 | subi RC, RD, 8
3292 | decode_RB8 RB, INS
3293 | beq >3
3294 | li TMP1, 0
3295 |2:
3296 | addi TMP3, TMP1, 8
3297 | evlddx TMP0, RA, TMP1
3298 | cmpw TMP3, RC
3299 | evstddx TMP0, TMP2, TMP1
3300 | beq >3
3301 | addi TMP1, TMP3, 8
3302 | evlddx TMP0, RA, TMP3
3303 | cmpw TMP1, RC
3304 | evstddx TMP0, TMP2, TMP3
3305 | bne <2
3306 |3:
3307 |5:
3308 | cmplw RB, RD
3309 | decode_RA8 RA, INS
3310 | bgt >6
3311 | sub BASE, TMP2, RA
3312 | lwz LFUNC:TMP1, FRAME_FUNC(BASE)
3313 | ins_next1
3314 | lwz TMP1, LFUNC:TMP1->pc
3315 | lwz KBASE, PC2PROTO(k)(TMP1)
3316 | ins_next2
3317 |
3318 |6: // Fill up results with nil.
3319 | subi TMP1, RD, 8
3320 | addi RD, RD, 8
3321 | evstddx TISNIL, TMP2, TMP1
3322 | b <5
3323 |
3324 |->BC_RETV_Z: // Non-standard return case.
3325 | andi. TMP2, TMP1, FRAME_TYPEP
3326 | bne ->vm_return
3327 | // Return from vararg function: relocate BASE down.
3328 | sub BASE, BASE, TMP1
3329 | lwz PC, FRAME_PC(BASE)
3330 | b <1
3331 break;
3332
3333 case BC_RET0: case BC_RET1:
3334 | // RA = results*8, RD = (nresults+1)*8
3335 | lwz PC, FRAME_PC(BASE)
3336 | add RA, BASE, RA
3337 | mr MULTRES, RD
3338 | andi. TMP0, PC, FRAME_TYPE
3339 | xori TMP1, PC, FRAME_VARG
3340 | bne ->BC_RETV_Z
3341 |
3342 | lwz INS, -4(PC)
3343 | subi TMP2, BASE, 8
3344 | decode_RB8 RB, INS
3345 if (op == BC_RET1) {
3346 | evldd TMP0, 0(RA)
3347 | evstdd TMP0, 0(TMP2)
3348 }
3349 |5:
3350 | cmplw RB, RD
3351 | decode_RA8 RA, INS
3352 | bgt >6
3353 | sub BASE, TMP2, RA
3354 | lwz LFUNC:TMP1, FRAME_FUNC(BASE)
3355 | ins_next1
3356 | lwz TMP1, LFUNC:TMP1->pc
3357 | lwz KBASE, PC2PROTO(k)(TMP1)
3358 | ins_next2
3359 |
3360 |6: // Fill up results with nil.
3361 | subi TMP1, RD, 8
3362 | addi RD, RD, 8
3363 | evstddx TISNIL, TMP2, TMP1
3364 | b <5
3365 break;
3366
3367 /* -- Loops and branches ------------------------------------------------ */
3368
3369 case BC_FORL:
3370#if LJ_HASJIT
3371 | hotloop
3372#endif
3373 | // Fall through. Assumes BC_IFORL follows.
3374 break;
3375
3376 case BC_JFORI:
3377 case BC_JFORL:
3378#if !LJ_HASJIT
3379 break;
3380#endif
3381 case BC_FORI:
3382 case BC_IFORL:
3383 | // RA = base*8, RD = target (after end of loop or start of loop)
3384 vk = (op == BC_IFORL || op == BC_JFORL);
3385 | add RA, BASE, RA
3386 | evldd TMP1, FORL_IDX*8(RA)
3387 | evldd TMP3, FORL_STEP*8(RA)
3388 | evldd TMP2, FORL_STOP*8(RA)
3389 if (!vk) {
3390 | evcmpgtu cr0, TMP1, TISNUM
3391 | evcmpgtu cr7, TMP3, TISNUM
3392 | evcmpgtu cr1, TMP2, TISNUM
3393 | cror 4*cr0+lt, 4*cr0+lt, 4*cr7+lt
3394 | cror 4*cr0+lt, 4*cr0+lt, 4*cr1+lt
3395 | blt ->vmeta_for
3396 }
3397 if (vk) {
3398 | efdadd TMP1, TMP1, TMP3
3399 | evstdd TMP1, FORL_IDX*8(RA)
3400 }
3401 | evcmpgts TMP3, TISNIL
3402 | evstdd TMP1, FORL_EXT*8(RA)
3403 | bge >2
3404 | efdcmpgt TMP1, TMP2
3405 |1:
3406 if (op != BC_JFORL) {
3407 | srwi RD, RD, 1
3408 | add RD, PC, RD
3409 if (op == BC_JFORI) {
3410 | addis PC, RD, -(BCBIAS_J*4 >> 16)
3411 } else {
3412 | addis RD, RD, -(BCBIAS_J*4 >> 16)
3413 }
3414 }
3415 if (op == BC_FORI) {
3416 | iselgt PC, RD, PC
3417 } else if (op == BC_IFORL) {
3418 | iselgt PC, PC, RD
3419 } else {
3420 | ble =>BC_JLOOP
3421 }
3422 | ins_next
3423 |2:
3424 | efdcmpgt TMP2, TMP1
3425 | b <1
3426 break;
3427
3428 case BC_ITERL:
3429#if LJ_HASJIT
3430 | hotloop
3431#endif
3432 | // Fall through. Assumes BC_IITERL follows.
3433 break;
3434
3435 case BC_JITERL:
3436#if !LJ_HASJIT
3437 break;
3438#endif
3439 case BC_IITERL:
3440 | // RA = base*8, RD = target
3441 | evlddx TMP1, BASE, RA
3442 | subi RA, RA, 8
3443 | checknil TMP1
3444 | checkok >1 // Stop if iterator returned nil.
3445 if (op == BC_JITERL) {
3446 | NYI
3447 } else {
3448 | branch_RD // Otherwise save control var + branch.
3449 | evstddx TMP1, BASE, RA
3450 }
3451 |1:
3452 | ins_next
3453 break;
3454
3455 case BC_LOOP:
3456 | // RA = base*8, RD = target (loop extent)
3457 | // Note: RA/RD is only used by trace recorder to determine scope/extent
3458 | // This opcode does NOT jump, it's only purpose is to detect a hot loop.
3459#if LJ_HASJIT
3460 | hotloop
3461#endif
3462 | // Fall through. Assumes BC_ILOOP follows.
3463 break;
3464
3465 case BC_ILOOP:
3466 | // RA = base*8, RD = target (loop extent)
3467 | ins_next
3468 break;
3469
3470 case BC_JLOOP:
3471#if LJ_HASJIT
3472 | NYI
3473#endif
3474 break;
3475
3476 case BC_JMP:
3477 | // RA = base*8 (only used by trace recorder), RD = target
3478 | branch_RD
3479 | ins_next
3480 break;
3481
3482 /* -- Function headers -------------------------------------------------- */
3483
3484 case BC_FUNCF:
3485#if LJ_HASJIT
3486 | hotcall
3487#endif
3488 case BC_FUNCV: /* NYI: compiled vararg functions. */
3489 | // Fall through. Assumes BC_IFUNCF/BC_IFUNCV follow.
3490 break;
3491
3492 case BC_JFUNCF:
3493#if !LJ_HASJIT
3494 break;
3495#endif
3496 case BC_IFUNCF:
3497 | // BASE = new base, RA = BASE+framesize*8, RB = LFUNC, RC = nargs*8
3498 | lwz TMP2, L->maxstack
3499 | lbz TMP1, -4+PC2PROTO(numparams)(PC)
3500 | lwz KBASE, -4+PC2PROTO(k)(PC)
3501 | cmplw RA, TMP2
3502 | slwi TMP1, TMP1, 3
3503 | bgt ->vm_growstack_l
3504 | ins_next1
3505 |2:
3506 | cmplw NARGS8:RC, TMP1 // Check for missing parameters.
3507 | ble >3
3508 if (op == BC_JFUNCF) {
3509 | NYI
3510 } else {
3511 | ins_next2
3512 }
3513 |
3514 |3: // Clear missing parameters.
3515 | evstddx TISNIL, BASE, NARGS8:RC
3516 | addi NARGS8:RC, NARGS8:RC, 8
3517 | b <2
3518 break;
3519
3520 case BC_JFUNCV:
3521#if !LJ_HASJIT
3522 break;
3523#endif
3524 | NYI // NYI: compiled vararg functions
3525 break; /* NYI: compiled vararg functions. */
3526
3527 case BC_IFUNCV:
3528 | // BASE = new base, RA = BASE+framesize*8, RB = LFUNC, RC = nargs*8
3529 | lwz TMP2, L->maxstack
3530 | add TMP1, BASE, RC
3531 | add TMP0, RA, RC
3532 | stw LFUNC:RB, 4(TMP1) // Store copy of LFUNC.
3533 | addi TMP3, RC, 8+FRAME_VARG
3534 | lwz KBASE, -4+PC2PROTO(k)(PC)
3535 | cmplw TMP0, TMP2
3536 | stw TMP3, 0(TMP1) // Store delta + FRAME_VARG.
3537 | bge ->vm_growstack_l
3538 | lbz TMP2, -4+PC2PROTO(numparams)(PC)
3539 | mr RA, BASE
3540 | mr RC, TMP1
3541 | ins_next1
3542 | cmpwi TMP2, 0
3543 | addi BASE, TMP1, 8
3544 | beq >3
3545 |1:
3546 | cmplw RA, RC // Less args than parameters?
3547 | evldd TMP0, 0(RA)
3548 | bge >4
3549 | evstdd TISNIL, 0(RA) // Clear old fixarg slot (help the GC).
3550 | addi RA, RA, 8
3551 |2:
3552 | addic. TMP2, TMP2, -1
3553 | evstdd TMP0, 8(TMP1)
3554 | addi TMP1, TMP1, 8
3555 | bne <1
3556 |3:
3557 | ins_next2
3558 |
3559 |4: // Clear missing parameters.
3560 | evmr TMP0, TISNIL
3561 | b <2
3562 break;
3563
3564 case BC_FUNCC:
3565 case BC_FUNCCW:
3566 | // BASE = new base, RA = BASE+framesize*8, RB = CFUNC, RC = nargs*8
3567 if (op == BC_FUNCC) {
3568 | lwz TMP3, CFUNC:RB->f
3569 } else {
3570 | lwz TMP3, DISPATCH_GL(wrapf)(DISPATCH)
3571 }
3572 | add TMP1, RA, NARGS8:RC
3573 | lwz TMP2, L->maxstack
3574 | add RC, BASE, NARGS8:RC
3575 | stw BASE, L->base
3576 | cmplw TMP1, TMP2
3577 | stw RC, L->top
3578 | li_vmstate C
3579 | mtctr TMP3
3580 if (op == BC_FUNCCW) {
3581 | lwz CARG2, CFUNC:RB->f
3582 }
3583 | mr CARG1, L
3584 | bgt ->vm_growstack_c // Need to grow stack.
3585 | st_vmstate
3586 | bctrl // (lua_State *L [, lua_CFunction f])
3587 | // Returns nresults.
3588 | lwz TMP1, L->top
3589 | slwi RD, CRET1, 3
3590 | lwz BASE, L->base
3591 | li_vmstate INTERP
3592 | lwz PC, FRAME_PC(BASE) // Fetch PC of caller.
3593 | sub RA, TMP1, RD // RA = L->top - nresults*8
3594 | st_vmstate
3595 | b ->vm_returnc
3596 break;
3597
3598 /* ---------------------------------------------------------------------- */
3599
3600 default:
3601 fprintf(stderr, "Error: undefined opcode BC_%s\n", bc_names[op]);
3602 exit(2);
3603 break;
3604 }
3605}
3606
3607static int build_backend(BuildCtx *ctx)
3608{
3609 int op;
3610
3611 dasm_growpc(Dst, BC__MAX);
3612
3613 build_subroutines(ctx);
3614
3615 |.code_op
3616 for (op = 0; op < BC__MAX; op++)
3617 build_ins(ctx, (BCOp)op, op);
3618
3619 return BC__MAX;
3620}
3621
3622/* Emit pseudo frame-info for all assembler functions. */
3623static void emit_asm_debug(BuildCtx *ctx)
3624{
3625 int i;
3626 switch (ctx->mode) {
3627 case BUILD_elfasm:
3628 fprintf(ctx->fp, "\t.section .debug_frame,\"\",@progbits\n");
3629 fprintf(ctx->fp,
3630 ".Lframe0:\n"
3631 "\t.long .LECIE0-.LSCIE0\n"
3632 ".LSCIE0:\n"
3633 "\t.long 0xffffffff\n"
3634 "\t.byte 0x1\n"
3635 "\t.string \"\"\n"
3636 "\t.uleb128 0x1\n"
3637 "\t.sleb128 -4\n"
3638 "\t.byte 65\n"
3639 "\t.byte 0xc\n\t.uleb128 1\n\t.uleb128 0\n"
3640 "\t.align 2\n"
3641 ".LECIE0:\n\n");
3642 fprintf(ctx->fp,
3643 ".LSFDE0:\n"
3644 "\t.long .LEFDE0-.LASFDE0\n"
3645 ".LASFDE0:\n"
3646 "\t.long .Lframe0\n"
3647 "\t.long .Lbegin\n"
3648 "\t.long %d\n"
3649 "\t.byte 0xe\n\t.uleb128 %d\n"
3650 "\t.byte 0x11\n\t.uleb128 65\n\t.sleb128 -1\n"
3651 "\t.byte 0x5\n\t.uleb128 70\n\t.sleb128 37\n",
3652 (int)ctx->codesz, CFRAME_SIZE);
3653 for (i = 14; i <= 31; i++)
3654 fprintf(ctx->fp,
3655 "\t.byte %d\n\t.uleb128 %d\n"
3656 "\t.byte 5\n\t.uleb128 %d\n\t.uleb128 %d\n",
3657 0x80+i, 1+2*(31-i), 1200+i, 2+2*(31-i));
3658 fprintf(ctx->fp,
3659 "\t.align 2\n"
3660 ".LEFDE0:\n\n");
3661 fprintf(ctx->fp, "\t.section .eh_frame,\"a\",@progbits\n");
3662 fprintf(ctx->fp,
3663 ".Lframe1:\n"
3664 "\t.long .LECIE1-.LSCIE1\n"
3665 ".LSCIE1:\n"
3666 "\t.long 0\n"
3667 "\t.byte 0x1\n"
3668 "\t.string \"zPR\"\n"
3669 "\t.uleb128 0x1\n"
3670 "\t.sleb128 -4\n"
3671 "\t.byte 65\n"
3672 "\t.uleb128 6\n" /* augmentation length */
3673 "\t.byte 0x1b\n" /* pcrel|sdata4 */
3674 "\t.long lj_err_unwind_dwarf-.\n"
3675 "\t.byte 0x1b\n" /* pcrel|sdata4 */
3676 "\t.byte 0xc\n\t.uleb128 1\n\t.uleb128 0\n"
3677 "\t.align 2\n"
3678 ".LECIE1:\n\n");
3679 fprintf(ctx->fp,
3680 ".LSFDE1:\n"
3681 "\t.long .LEFDE1-.LASFDE1\n"
3682 ".LASFDE1:\n"
3683 "\t.long .LASFDE1-.Lframe1\n"
3684 "\t.long .Lbegin-.\n"
3685 "\t.long %d\n"
3686 "\t.uleb128 0\n" /* augmentation length */
3687 "\t.byte 0xe\n\t.uleb128 %d\n"
3688 "\t.byte 0x11\n\t.uleb128 65\n\t.sleb128 -1\n"
3689 "\t.byte 0x5\n\t.uleb128 70\n\t.sleb128 37\n",
3690 (int)ctx->codesz, CFRAME_SIZE);
3691 for (i = 14; i <= 31; i++)
3692 fprintf(ctx->fp,
3693 "\t.byte %d\n\t.uleb128 %d\n"
3694 "\t.byte 5\n\t.uleb128 %d\n\t.uleb128 %d\n",
3695 0x80+i, 1+2*(31-i), 1200+i, 2+2*(31-i));
3696 fprintf(ctx->fp,
3697 "\t.align 2\n"
3698 ".LEFDE1:\n\n");
3699 break;
3700 default:
3701 break;
3702 }
3703}
3704