diff options
Diffstat (limited to 'libraries/irrlicht-1.8/source/Irrlicht/jpeglib/jutils.c')
-rw-r--r-- | libraries/irrlicht-1.8/source/Irrlicht/jpeglib/jutils.c | 227 |
1 files changed, 0 insertions, 227 deletions
diff --git a/libraries/irrlicht-1.8/source/Irrlicht/jpeglib/jutils.c b/libraries/irrlicht-1.8/source/Irrlicht/jpeglib/jutils.c deleted file mode 100644 index 5b16b6d..0000000 --- a/libraries/irrlicht-1.8/source/Irrlicht/jpeglib/jutils.c +++ /dev/null | |||
@@ -1,227 +0,0 @@ | |||
1 | /* | ||
2 | * jutils.c | ||
3 | * | ||
4 | * Copyright (C) 1991-1996, Thomas G. Lane. | ||
5 | * Modified 2009-2011 by Guido Vollbeding. | ||
6 | * This file is part of the Independent JPEG Group's software. | ||
7 | * For conditions of distribution and use, see the accompanying README file. | ||
8 | * | ||
9 | * This file contains tables and miscellaneous utility routines needed | ||
10 | * for both compression and decompression. | ||
11 | * Note we prefix all global names with "j" to minimize conflicts with | ||
12 | * a surrounding application. | ||
13 | */ | ||
14 | |||
15 | #define JPEG_INTERNALS | ||
16 | #include "jinclude.h" | ||
17 | #include "jpeglib.h" | ||
18 | |||
19 | |||
20 | /* | ||
21 | * jpeg_zigzag_order[i] is the zigzag-order position of the i'th element | ||
22 | * of a DCT block read in natural order (left to right, top to bottom). | ||
23 | */ | ||
24 | |||
25 | #if 0 /* This table is not actually needed in v6a */ | ||
26 | |||
27 | const int jpeg_zigzag_order[DCTSIZE2] = { | ||
28 | 0, 1, 5, 6, 14, 15, 27, 28, | ||
29 | 2, 4, 7, 13, 16, 26, 29, 42, | ||
30 | 3, 8, 12, 17, 25, 30, 41, 43, | ||
31 | 9, 11, 18, 24, 31, 40, 44, 53, | ||
32 | 10, 19, 23, 32, 39, 45, 52, 54, | ||
33 | 20, 22, 33, 38, 46, 51, 55, 60, | ||
34 | 21, 34, 37, 47, 50, 56, 59, 61, | ||
35 | 35, 36, 48, 49, 57, 58, 62, 63 | ||
36 | }; | ||
37 | |||
38 | #endif | ||
39 | |||
40 | /* | ||
41 | * jpeg_natural_order[i] is the natural-order position of the i'th element | ||
42 | * of zigzag order. | ||
43 | * | ||
44 | * When reading corrupted data, the Huffman decoders could attempt | ||
45 | * to reference an entry beyond the end of this array (if the decoded | ||
46 | * zero run length reaches past the end of the block). To prevent | ||
47 | * wild stores without adding an inner-loop test, we put some extra | ||
48 | * "63"s after the real entries. This will cause the extra coefficient | ||
49 | * to be stored in location 63 of the block, not somewhere random. | ||
50 | * The worst case would be a run-length of 15, which means we need 16 | ||
51 | * fake entries. | ||
52 | */ | ||
53 | |||
54 | const int jpeg_natural_order[DCTSIZE2+16] = { | ||
55 | 0, 1, 8, 16, 9, 2, 3, 10, | ||
56 | 17, 24, 32, 25, 18, 11, 4, 5, | ||
57 | 12, 19, 26, 33, 40, 48, 41, 34, | ||
58 | 27, 20, 13, 6, 7, 14, 21, 28, | ||
59 | 35, 42, 49, 56, 57, 50, 43, 36, | ||
60 | 29, 22, 15, 23, 30, 37, 44, 51, | ||
61 | 58, 59, 52, 45, 38, 31, 39, 46, | ||
62 | 53, 60, 61, 54, 47, 55, 62, 63, | ||
63 | 63, 63, 63, 63, 63, 63, 63, 63, /* extra entries for safety in decoder */ | ||
64 | 63, 63, 63, 63, 63, 63, 63, 63 | ||
65 | }; | ||
66 | |||
67 | const int jpeg_natural_order7[7*7+16] = { | ||
68 | 0, 1, 8, 16, 9, 2, 3, 10, | ||
69 | 17, 24, 32, 25, 18, 11, 4, 5, | ||
70 | 12, 19, 26, 33, 40, 48, 41, 34, | ||
71 | 27, 20, 13, 6, 14, 21, 28, 35, | ||
72 | 42, 49, 50, 43, 36, 29, 22, 30, | ||
73 | 37, 44, 51, 52, 45, 38, 46, 53, | ||
74 | 54, | ||
75 | 63, 63, 63, 63, 63, 63, 63, 63, /* extra entries for safety in decoder */ | ||
76 | 63, 63, 63, 63, 63, 63, 63, 63 | ||
77 | }; | ||
78 | |||
79 | const int jpeg_natural_order6[6*6+16] = { | ||
80 | 0, 1, 8, 16, 9, 2, 3, 10, | ||
81 | 17, 24, 32, 25, 18, 11, 4, 5, | ||
82 | 12, 19, 26, 33, 40, 41, 34, 27, | ||
83 | 20, 13, 21, 28, 35, 42, 43, 36, | ||
84 | 29, 37, 44, 45, | ||
85 | 63, 63, 63, 63, 63, 63, 63, 63, /* extra entries for safety in decoder */ | ||
86 | 63, 63, 63, 63, 63, 63, 63, 63 | ||
87 | }; | ||
88 | |||
89 | const int jpeg_natural_order5[5*5+16] = { | ||
90 | 0, 1, 8, 16, 9, 2, 3, 10, | ||
91 | 17, 24, 32, 25, 18, 11, 4, 12, | ||
92 | 19, 26, 33, 34, 27, 20, 28, 35, | ||
93 | 36, | ||
94 | 63, 63, 63, 63, 63, 63, 63, 63, /* extra entries for safety in decoder */ | ||
95 | 63, 63, 63, 63, 63, 63, 63, 63 | ||
96 | }; | ||
97 | |||
98 | const int jpeg_natural_order4[4*4+16] = { | ||
99 | 0, 1, 8, 16, 9, 2, 3, 10, | ||
100 | 17, 24, 25, 18, 11, 19, 26, 27, | ||
101 | 63, 63, 63, 63, 63, 63, 63, 63, /* extra entries for safety in decoder */ | ||
102 | 63, 63, 63, 63, 63, 63, 63, 63 | ||
103 | }; | ||
104 | |||
105 | const int jpeg_natural_order3[3*3+16] = { | ||
106 | 0, 1, 8, 16, 9, 2, 10, 17, | ||
107 | 18, | ||
108 | 63, 63, 63, 63, 63, 63, 63, 63, /* extra entries for safety in decoder */ | ||
109 | 63, 63, 63, 63, 63, 63, 63, 63 | ||
110 | }; | ||
111 | |||
112 | const int jpeg_natural_order2[2*2+16] = { | ||
113 | 0, 1, 8, 9, | ||
114 | 63, 63, 63, 63, 63, 63, 63, 63, /* extra entries for safety in decoder */ | ||
115 | 63, 63, 63, 63, 63, 63, 63, 63 | ||
116 | }; | ||
117 | |||
118 | |||
119 | /* | ||
120 | * Arithmetic utilities | ||
121 | */ | ||
122 | |||
123 | GLOBAL(long) | ||
124 | jdiv_round_up (long a, long b) | ||
125 | /* Compute a/b rounded up to next integer, ie, ceil(a/b) */ | ||
126 | /* Assumes a >= 0, b > 0 */ | ||
127 | { | ||
128 | return (a + b - 1L) / b; | ||
129 | } | ||
130 | |||
131 | |||
132 | GLOBAL(long) | ||
133 | jround_up (long a, long b) | ||
134 | /* Compute a rounded up to next multiple of b, ie, ceil(a/b)*b */ | ||
135 | /* Assumes a >= 0, b > 0 */ | ||
136 | { | ||
137 | a += b - 1L; | ||
138 | return a - (a % b); | ||
139 | } | ||
140 | |||
141 | |||
142 | /* On normal machines we can apply MEMCOPY() and MEMZERO() to sample arrays | ||
143 | * and coefficient-block arrays. This won't work on 80x86 because the arrays | ||
144 | * are FAR and we're assuming a small-pointer memory model. However, some | ||
145 | * DOS compilers provide far-pointer versions of memcpy() and memset() even | ||
146 | * in the small-model libraries. These will be used if USE_FMEM is defined. | ||
147 | * Otherwise, the routines below do it the hard way. (The performance cost | ||
148 | * is not all that great, because these routines aren't very heavily used.) | ||
149 | */ | ||
150 | |||
151 | #ifndef NEED_FAR_POINTERS /* normal case, same as regular macro */ | ||
152 | #define FMEMCOPY(dest,src,size) MEMCOPY(dest,src,size) | ||
153 | #else /* 80x86 case, define if we can */ | ||
154 | #ifdef USE_FMEM | ||
155 | #define FMEMCOPY(dest,src,size) _fmemcpy((void FAR *)(dest), (const void FAR *)(src), (size_t)(size)) | ||
156 | #else | ||
157 | /* This function is for use by the FMEMZERO macro defined in jpegint.h. | ||
158 | * Do not call this function directly, use the FMEMZERO macro instead. | ||
159 | */ | ||
160 | GLOBAL(void) | ||
161 | jzero_far (void FAR * target, size_t bytestozero) | ||
162 | /* Zero out a chunk of FAR memory. */ | ||
163 | /* This might be sample-array data, block-array data, or alloc_large data. */ | ||
164 | { | ||
165 | register char FAR * ptr = (char FAR *) target; | ||
166 | register size_t count; | ||
167 | |||
168 | for (count = bytestozero; count > 0; count--) { | ||
169 | *ptr++ = 0; | ||
170 | } | ||
171 | } | ||
172 | #endif | ||
173 | #endif | ||
174 | |||
175 | |||
176 | GLOBAL(void) | ||
177 | jcopy_sample_rows (JSAMPARRAY input_array, int source_row, | ||
178 | JSAMPARRAY output_array, int dest_row, | ||
179 | int num_rows, JDIMENSION num_cols) | ||
180 | /* Copy some rows of samples from one place to another. | ||
181 | * num_rows rows are copied from input_array[source_row++] | ||
182 | * to output_array[dest_row++]; these areas may overlap for duplication. | ||
183 | * The source and destination arrays must be at least as wide as num_cols. | ||
184 | */ | ||
185 | { | ||
186 | register JSAMPROW inptr, outptr; | ||
187 | #ifdef FMEMCOPY | ||
188 | register size_t count = (size_t) (num_cols * SIZEOF(JSAMPLE)); | ||
189 | #else | ||
190 | register JDIMENSION count; | ||
191 | #endif | ||
192 | register int row; | ||
193 | |||
194 | input_array += source_row; | ||
195 | output_array += dest_row; | ||
196 | |||
197 | for (row = num_rows; row > 0; row--) { | ||
198 | inptr = *input_array++; | ||
199 | outptr = *output_array++; | ||
200 | #ifdef FMEMCOPY | ||
201 | FMEMCOPY(outptr, inptr, count); | ||
202 | #else | ||
203 | for (count = num_cols; count > 0; count--) | ||
204 | *outptr++ = *inptr++; /* needn't bother with GETJSAMPLE() here */ | ||
205 | #endif | ||
206 | } | ||
207 | } | ||
208 | |||
209 | |||
210 | GLOBAL(void) | ||
211 | jcopy_block_row (JBLOCKROW input_row, JBLOCKROW output_row, | ||
212 | JDIMENSION num_blocks) | ||
213 | /* Copy a row of coefficient blocks from one place to another. */ | ||
214 | { | ||
215 | #ifdef FMEMCOPY | ||
216 | FMEMCOPY(output_row, input_row, num_blocks * (DCTSIZE2 * SIZEOF(JCOEF))); | ||
217 | #else | ||
218 | register JCOEFPTR inptr, outptr; | ||
219 | register long count; | ||
220 | |||
221 | inptr = (JCOEFPTR) input_row; | ||
222 | outptr = (JCOEFPTR) output_row; | ||
223 | for (count = (long) num_blocks * DCTSIZE2; count > 0; count--) { | ||
224 | *outptr++ = *inptr++; | ||
225 | } | ||
226 | #endif | ||
227 | } | ||