diff options
Diffstat (limited to 'libraries/irrlicht-1.8/source/Irrlicht/jpeglib/jdhuff.c')
-rw-r--r-- | libraries/irrlicht-1.8/source/Irrlicht/jpeglib/jdhuff.c | 3082 |
1 files changed, 1541 insertions, 1541 deletions
diff --git a/libraries/irrlicht-1.8/source/Irrlicht/jpeglib/jdhuff.c b/libraries/irrlicht-1.8/source/Irrlicht/jpeglib/jdhuff.c index 9694117..06f92fe 100644 --- a/libraries/irrlicht-1.8/source/Irrlicht/jpeglib/jdhuff.c +++ b/libraries/irrlicht-1.8/source/Irrlicht/jpeglib/jdhuff.c | |||
@@ -1,1541 +1,1541 @@ | |||
1 | /* | 1 | /* |
2 | * jdhuff.c | 2 | * jdhuff.c |
3 | * | 3 | * |
4 | * Copyright (C) 1991-1997, Thomas G. Lane. | 4 | * Copyright (C) 1991-1997, Thomas G. Lane. |
5 | * Modified 2006-2009 by Guido Vollbeding. | 5 | * Modified 2006-2009 by Guido Vollbeding. |
6 | * This file is part of the Independent JPEG Group's software. | 6 | * This file is part of the Independent JPEG Group's software. |
7 | * For conditions of distribution and use, see the accompanying README file. | 7 | * For conditions of distribution and use, see the accompanying README file. |
8 | * | 8 | * |
9 | * This file contains Huffman entropy decoding routines. | 9 | * This file contains Huffman entropy decoding routines. |
10 | * Both sequential and progressive modes are supported in this single module. | 10 | * Both sequential and progressive modes are supported in this single module. |
11 | * | 11 | * |
12 | * Much of the complexity here has to do with supporting input suspension. | 12 | * Much of the complexity here has to do with supporting input suspension. |
13 | * If the data source module demands suspension, we want to be able to back | 13 | * If the data source module demands suspension, we want to be able to back |
14 | * up to the start of the current MCU. To do this, we copy state variables | 14 | * up to the start of the current MCU. To do this, we copy state variables |
15 | * into local working storage, and update them back to the permanent | 15 | * into local working storage, and update them back to the permanent |
16 | * storage only upon successful completion of an MCU. | 16 | * storage only upon successful completion of an MCU. |
17 | */ | 17 | */ |
18 | 18 | ||
19 | #define JPEG_INTERNALS | 19 | #define JPEG_INTERNALS |
20 | #include "jinclude.h" | 20 | #include "jinclude.h" |
21 | #include "jpeglib.h" | 21 | #include "jpeglib.h" |
22 | 22 | ||
23 | 23 | ||
24 | /* Derived data constructed for each Huffman table */ | 24 | /* Derived data constructed for each Huffman table */ |
25 | 25 | ||
26 | #define HUFF_LOOKAHEAD 8 /* # of bits of lookahead */ | 26 | #define HUFF_LOOKAHEAD 8 /* # of bits of lookahead */ |
27 | 27 | ||
28 | typedef struct { | 28 | typedef struct { |
29 | /* Basic tables: (element [0] of each array is unused) */ | 29 | /* Basic tables: (element [0] of each array is unused) */ |
30 | INT32 maxcode[18]; /* largest code of length k (-1 if none) */ | 30 | INT32 maxcode[18]; /* largest code of length k (-1 if none) */ |
31 | /* (maxcode[17] is a sentinel to ensure jpeg_huff_decode terminates) */ | 31 | /* (maxcode[17] is a sentinel to ensure jpeg_huff_decode terminates) */ |
32 | INT32 valoffset[17]; /* huffval[] offset for codes of length k */ | 32 | INT32 valoffset[17]; /* huffval[] offset for codes of length k */ |
33 | /* valoffset[k] = huffval[] index of 1st symbol of code length k, less | 33 | /* valoffset[k] = huffval[] index of 1st symbol of code length k, less |
34 | * the smallest code of length k; so given a code of length k, the | 34 | * the smallest code of length k; so given a code of length k, the |
35 | * corresponding symbol is huffval[code + valoffset[k]] | 35 | * corresponding symbol is huffval[code + valoffset[k]] |
36 | */ | 36 | */ |
37 | 37 | ||
38 | /* Link to public Huffman table (needed only in jpeg_huff_decode) */ | 38 | /* Link to public Huffman table (needed only in jpeg_huff_decode) */ |
39 | JHUFF_TBL *pub; | 39 | JHUFF_TBL *pub; |
40 | 40 | ||
41 | /* Lookahead tables: indexed by the next HUFF_LOOKAHEAD bits of | 41 | /* Lookahead tables: indexed by the next HUFF_LOOKAHEAD bits of |
42 | * the input data stream. If the next Huffman code is no more | 42 | * the input data stream. If the next Huffman code is no more |
43 | * than HUFF_LOOKAHEAD bits long, we can obtain its length and | 43 | * than HUFF_LOOKAHEAD bits long, we can obtain its length and |
44 | * the corresponding symbol directly from these tables. | 44 | * the corresponding symbol directly from these tables. |
45 | */ | 45 | */ |
46 | int look_nbits[1<<HUFF_LOOKAHEAD]; /* # bits, or 0 if too long */ | 46 | int look_nbits[1<<HUFF_LOOKAHEAD]; /* # bits, or 0 if too long */ |
47 | UINT8 look_sym[1<<HUFF_LOOKAHEAD]; /* symbol, or unused */ | 47 | UINT8 look_sym[1<<HUFF_LOOKAHEAD]; /* symbol, or unused */ |
48 | } d_derived_tbl; | 48 | } d_derived_tbl; |
49 | 49 | ||
50 | 50 | ||
51 | /* | 51 | /* |
52 | * Fetching the next N bits from the input stream is a time-critical operation | 52 | * Fetching the next N bits from the input stream is a time-critical operation |
53 | * for the Huffman decoders. We implement it with a combination of inline | 53 | * for the Huffman decoders. We implement it with a combination of inline |
54 | * macros and out-of-line subroutines. Note that N (the number of bits | 54 | * macros and out-of-line subroutines. Note that N (the number of bits |
55 | * demanded at one time) never exceeds 15 for JPEG use. | 55 | * demanded at one time) never exceeds 15 for JPEG use. |
56 | * | 56 | * |
57 | * We read source bytes into get_buffer and dole out bits as needed. | 57 | * We read source bytes into get_buffer and dole out bits as needed. |
58 | * If get_buffer already contains enough bits, they are fetched in-line | 58 | * If get_buffer already contains enough bits, they are fetched in-line |
59 | * by the macros CHECK_BIT_BUFFER and GET_BITS. When there aren't enough | 59 | * by the macros CHECK_BIT_BUFFER and GET_BITS. When there aren't enough |
60 | * bits, jpeg_fill_bit_buffer is called; it will attempt to fill get_buffer | 60 | * bits, jpeg_fill_bit_buffer is called; it will attempt to fill get_buffer |
61 | * as full as possible (not just to the number of bits needed; this | 61 | * as full as possible (not just to the number of bits needed; this |
62 | * prefetching reduces the overhead cost of calling jpeg_fill_bit_buffer). | 62 | * prefetching reduces the overhead cost of calling jpeg_fill_bit_buffer). |
63 | * Note that jpeg_fill_bit_buffer may return FALSE to indicate suspension. | 63 | * Note that jpeg_fill_bit_buffer may return FALSE to indicate suspension. |
64 | * On TRUE return, jpeg_fill_bit_buffer guarantees that get_buffer contains | 64 | * On TRUE return, jpeg_fill_bit_buffer guarantees that get_buffer contains |
65 | * at least the requested number of bits --- dummy zeroes are inserted if | 65 | * at least the requested number of bits --- dummy zeroes are inserted if |
66 | * necessary. | 66 | * necessary. |
67 | */ | 67 | */ |
68 | 68 | ||
69 | typedef INT32 bit_buf_type; /* type of bit-extraction buffer */ | 69 | typedef INT32 bit_buf_type; /* type of bit-extraction buffer */ |
70 | #define BIT_BUF_SIZE 32 /* size of buffer in bits */ | 70 | #define BIT_BUF_SIZE 32 /* size of buffer in bits */ |
71 | 71 | ||
72 | /* If long is > 32 bits on your machine, and shifting/masking longs is | 72 | /* If long is > 32 bits on your machine, and shifting/masking longs is |
73 | * reasonably fast, making bit_buf_type be long and setting BIT_BUF_SIZE | 73 | * reasonably fast, making bit_buf_type be long and setting BIT_BUF_SIZE |
74 | * appropriately should be a win. Unfortunately we can't define the size | 74 | * appropriately should be a win. Unfortunately we can't define the size |
75 | * with something like #define BIT_BUF_SIZE (sizeof(bit_buf_type)*8) | 75 | * with something like #define BIT_BUF_SIZE (sizeof(bit_buf_type)*8) |
76 | * because not all machines measure sizeof in 8-bit bytes. | 76 | * because not all machines measure sizeof in 8-bit bytes. |
77 | */ | 77 | */ |
78 | 78 | ||
79 | typedef struct { /* Bitreading state saved across MCUs */ | 79 | typedef struct { /* Bitreading state saved across MCUs */ |
80 | bit_buf_type get_buffer; /* current bit-extraction buffer */ | 80 | bit_buf_type get_buffer; /* current bit-extraction buffer */ |
81 | int bits_left; /* # of unused bits in it */ | 81 | int bits_left; /* # of unused bits in it */ |
82 | } bitread_perm_state; | 82 | } bitread_perm_state; |
83 | 83 | ||
84 | typedef struct { /* Bitreading working state within an MCU */ | 84 | typedef struct { /* Bitreading working state within an MCU */ |
85 | /* Current data source location */ | 85 | /* Current data source location */ |
86 | /* We need a copy, rather than munging the original, in case of suspension */ | 86 | /* We need a copy, rather than munging the original, in case of suspension */ |
87 | const JOCTET * next_input_byte; /* => next byte to read from source */ | 87 | const JOCTET * next_input_byte; /* => next byte to read from source */ |
88 | size_t bytes_in_buffer; /* # of bytes remaining in source buffer */ | 88 | size_t bytes_in_buffer; /* # of bytes remaining in source buffer */ |
89 | /* Bit input buffer --- note these values are kept in register variables, | 89 | /* Bit input buffer --- note these values are kept in register variables, |
90 | * not in this struct, inside the inner loops. | 90 | * not in this struct, inside the inner loops. |
91 | */ | 91 | */ |
92 | bit_buf_type get_buffer; /* current bit-extraction buffer */ | 92 | bit_buf_type get_buffer; /* current bit-extraction buffer */ |
93 | int bits_left; /* # of unused bits in it */ | 93 | int bits_left; /* # of unused bits in it */ |
94 | /* Pointer needed by jpeg_fill_bit_buffer. */ | 94 | /* Pointer needed by jpeg_fill_bit_buffer. */ |
95 | j_decompress_ptr cinfo; /* back link to decompress master record */ | 95 | j_decompress_ptr cinfo; /* back link to decompress master record */ |
96 | } bitread_working_state; | 96 | } bitread_working_state; |
97 | 97 | ||
98 | /* Macros to declare and load/save bitread local variables. */ | 98 | /* Macros to declare and load/save bitread local variables. */ |
99 | #define BITREAD_STATE_VARS \ | 99 | #define BITREAD_STATE_VARS \ |
100 | register bit_buf_type get_buffer; \ | 100 | register bit_buf_type get_buffer; \ |
101 | register int bits_left; \ | 101 | register int bits_left; \ |
102 | bitread_working_state br_state | 102 | bitread_working_state br_state |
103 | 103 | ||
104 | #define BITREAD_LOAD_STATE(cinfop,permstate) \ | 104 | #define BITREAD_LOAD_STATE(cinfop,permstate) \ |
105 | br_state.cinfo = cinfop; \ | 105 | br_state.cinfo = cinfop; \ |
106 | br_state.next_input_byte = cinfop->src->next_input_byte; \ | 106 | br_state.next_input_byte = cinfop->src->next_input_byte; \ |
107 | br_state.bytes_in_buffer = cinfop->src->bytes_in_buffer; \ | 107 | br_state.bytes_in_buffer = cinfop->src->bytes_in_buffer; \ |
108 | get_buffer = permstate.get_buffer; \ | 108 | get_buffer = permstate.get_buffer; \ |
109 | bits_left = permstate.bits_left; | 109 | bits_left = permstate.bits_left; |
110 | 110 | ||
111 | #define BITREAD_SAVE_STATE(cinfop,permstate) \ | 111 | #define BITREAD_SAVE_STATE(cinfop,permstate) \ |
112 | cinfop->src->next_input_byte = br_state.next_input_byte; \ | 112 | cinfop->src->next_input_byte = br_state.next_input_byte; \ |
113 | cinfop->src->bytes_in_buffer = br_state.bytes_in_buffer; \ | 113 | cinfop->src->bytes_in_buffer = br_state.bytes_in_buffer; \ |
114 | permstate.get_buffer = get_buffer; \ | 114 | permstate.get_buffer = get_buffer; \ |
115 | permstate.bits_left = bits_left | 115 | permstate.bits_left = bits_left |
116 | 116 | ||
117 | /* | 117 | /* |
118 | * These macros provide the in-line portion of bit fetching. | 118 | * These macros provide the in-line portion of bit fetching. |
119 | * Use CHECK_BIT_BUFFER to ensure there are N bits in get_buffer | 119 | * Use CHECK_BIT_BUFFER to ensure there are N bits in get_buffer |
120 | * before using GET_BITS, PEEK_BITS, or DROP_BITS. | 120 | * before using GET_BITS, PEEK_BITS, or DROP_BITS. |
121 | * The variables get_buffer and bits_left are assumed to be locals, | 121 | * The variables get_buffer and bits_left are assumed to be locals, |
122 | * but the state struct might not be (jpeg_huff_decode needs this). | 122 | * but the state struct might not be (jpeg_huff_decode needs this). |
123 | * CHECK_BIT_BUFFER(state,n,action); | 123 | * CHECK_BIT_BUFFER(state,n,action); |
124 | * Ensure there are N bits in get_buffer; if suspend, take action. | 124 | * Ensure there are N bits in get_buffer; if suspend, take action. |
125 | * val = GET_BITS(n); | 125 | * val = GET_BITS(n); |
126 | * Fetch next N bits. | 126 | * Fetch next N bits. |
127 | * val = PEEK_BITS(n); | 127 | * val = PEEK_BITS(n); |
128 | * Fetch next N bits without removing them from the buffer. | 128 | * Fetch next N bits without removing them from the buffer. |
129 | * DROP_BITS(n); | 129 | * DROP_BITS(n); |
130 | * Discard next N bits. | 130 | * Discard next N bits. |
131 | * The value N should be a simple variable, not an expression, because it | 131 | * The value N should be a simple variable, not an expression, because it |
132 | * is evaluated multiple times. | 132 | * is evaluated multiple times. |
133 | */ | 133 | */ |
134 | 134 | ||
135 | #define CHECK_BIT_BUFFER(state,nbits,action) \ | 135 | #define CHECK_BIT_BUFFER(state,nbits,action) \ |
136 | { if (bits_left < (nbits)) { \ | 136 | { if (bits_left < (nbits)) { \ |
137 | if (! jpeg_fill_bit_buffer(&(state),get_buffer,bits_left,nbits)) \ | 137 | if (! jpeg_fill_bit_buffer(&(state),get_buffer,bits_left,nbits)) \ |
138 | { action; } \ | 138 | { action; } \ |
139 | get_buffer = (state).get_buffer; bits_left = (state).bits_left; } } | 139 | get_buffer = (state).get_buffer; bits_left = (state).bits_left; } } |
140 | 140 | ||
141 | #define GET_BITS(nbits) \ | 141 | #define GET_BITS(nbits) \ |
142 | (((int) (get_buffer >> (bits_left -= (nbits)))) & BIT_MASK(nbits)) | 142 | (((int) (get_buffer >> (bits_left -= (nbits)))) & BIT_MASK(nbits)) |
143 | 143 | ||
144 | #define PEEK_BITS(nbits) \ | 144 | #define PEEK_BITS(nbits) \ |
145 | (((int) (get_buffer >> (bits_left - (nbits)))) & BIT_MASK(nbits)) | 145 | (((int) (get_buffer >> (bits_left - (nbits)))) & BIT_MASK(nbits)) |
146 | 146 | ||
147 | #define DROP_BITS(nbits) \ | 147 | #define DROP_BITS(nbits) \ |
148 | (bits_left -= (nbits)) | 148 | (bits_left -= (nbits)) |
149 | 149 | ||
150 | 150 | ||
151 | /* | 151 | /* |
152 | * Code for extracting next Huffman-coded symbol from input bit stream. | 152 | * Code for extracting next Huffman-coded symbol from input bit stream. |
153 | * Again, this is time-critical and we make the main paths be macros. | 153 | * Again, this is time-critical and we make the main paths be macros. |
154 | * | 154 | * |
155 | * We use a lookahead table to process codes of up to HUFF_LOOKAHEAD bits | 155 | * We use a lookahead table to process codes of up to HUFF_LOOKAHEAD bits |
156 | * without looping. Usually, more than 95% of the Huffman codes will be 8 | 156 | * without looping. Usually, more than 95% of the Huffman codes will be 8 |
157 | * or fewer bits long. The few overlength codes are handled with a loop, | 157 | * or fewer bits long. The few overlength codes are handled with a loop, |
158 | * which need not be inline code. | 158 | * which need not be inline code. |
159 | * | 159 | * |
160 | * Notes about the HUFF_DECODE macro: | 160 | * Notes about the HUFF_DECODE macro: |
161 | * 1. Near the end of the data segment, we may fail to get enough bits | 161 | * 1. Near the end of the data segment, we may fail to get enough bits |
162 | * for a lookahead. In that case, we do it the hard way. | 162 | * for a lookahead. In that case, we do it the hard way. |
163 | * 2. If the lookahead table contains no entry, the next code must be | 163 | * 2. If the lookahead table contains no entry, the next code must be |
164 | * more than HUFF_LOOKAHEAD bits long. | 164 | * more than HUFF_LOOKAHEAD bits long. |
165 | * 3. jpeg_huff_decode returns -1 if forced to suspend. | 165 | * 3. jpeg_huff_decode returns -1 if forced to suspend. |
166 | */ | 166 | */ |
167 | 167 | ||
168 | #define HUFF_DECODE(result,state,htbl,failaction,slowlabel) \ | 168 | #define HUFF_DECODE(result,state,htbl,failaction,slowlabel) \ |
169 | { register int nb, look; \ | 169 | { register int nb, look; \ |
170 | if (bits_left < HUFF_LOOKAHEAD) { \ | 170 | if (bits_left < HUFF_LOOKAHEAD) { \ |
171 | if (! jpeg_fill_bit_buffer(&state,get_buffer,bits_left, 0)) {failaction;} \ | 171 | if (! jpeg_fill_bit_buffer(&state,get_buffer,bits_left, 0)) {failaction;} \ |
172 | get_buffer = state.get_buffer; bits_left = state.bits_left; \ | 172 | get_buffer = state.get_buffer; bits_left = state.bits_left; \ |
173 | if (bits_left < HUFF_LOOKAHEAD) { \ | 173 | if (bits_left < HUFF_LOOKAHEAD) { \ |
174 | nb = 1; goto slowlabel; \ | 174 | nb = 1; goto slowlabel; \ |
175 | } \ | 175 | } \ |
176 | } \ | 176 | } \ |
177 | look = PEEK_BITS(HUFF_LOOKAHEAD); \ | 177 | look = PEEK_BITS(HUFF_LOOKAHEAD); \ |
178 | if ((nb = htbl->look_nbits[look]) != 0) { \ | 178 | if ((nb = htbl->look_nbits[look]) != 0) { \ |
179 | DROP_BITS(nb); \ | 179 | DROP_BITS(nb); \ |
180 | result = htbl->look_sym[look]; \ | 180 | result = htbl->look_sym[look]; \ |
181 | } else { \ | 181 | } else { \ |
182 | nb = HUFF_LOOKAHEAD+1; \ | 182 | nb = HUFF_LOOKAHEAD+1; \ |
183 | slowlabel: \ | 183 | slowlabel: \ |
184 | if ((result=jpeg_huff_decode(&state,get_buffer,bits_left,htbl,nb)) < 0) \ | 184 | if ((result=jpeg_huff_decode(&state,get_buffer,bits_left,htbl,nb)) < 0) \ |
185 | { failaction; } \ | 185 | { failaction; } \ |
186 | get_buffer = state.get_buffer; bits_left = state.bits_left; \ | 186 | get_buffer = state.get_buffer; bits_left = state.bits_left; \ |
187 | } \ | 187 | } \ |
188 | } | 188 | } |
189 | 189 | ||
190 | 190 | ||
191 | /* | 191 | /* |
192 | * Expanded entropy decoder object for Huffman decoding. | 192 | * Expanded entropy decoder object for Huffman decoding. |
193 | * | 193 | * |
194 | * The savable_state subrecord contains fields that change within an MCU, | 194 | * The savable_state subrecord contains fields that change within an MCU, |
195 | * but must not be updated permanently until we complete the MCU. | 195 | * but must not be updated permanently until we complete the MCU. |
196 | */ | 196 | */ |
197 | 197 | ||
198 | typedef struct { | 198 | typedef struct { |
199 | unsigned int EOBRUN; /* remaining EOBs in EOBRUN */ | 199 | unsigned int EOBRUN; /* remaining EOBs in EOBRUN */ |
200 | int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */ | 200 | int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */ |
201 | } savable_state; | 201 | } savable_state; |
202 | 202 | ||
203 | /* This macro is to work around compilers with missing or broken | 203 | /* This macro is to work around compilers with missing or broken |
204 | * structure assignment. You'll need to fix this code if you have | 204 | * structure assignment. You'll need to fix this code if you have |
205 | * such a compiler and you change MAX_COMPS_IN_SCAN. | 205 | * such a compiler and you change MAX_COMPS_IN_SCAN. |
206 | */ | 206 | */ |
207 | 207 | ||
208 | #ifndef NO_STRUCT_ASSIGN | 208 | #ifndef NO_STRUCT_ASSIGN |
209 | #define ASSIGN_STATE(dest,src) ((dest) = (src)) | 209 | #define ASSIGN_STATE(dest,src) ((dest) = (src)) |
210 | #else | 210 | #else |
211 | #if MAX_COMPS_IN_SCAN == 4 | 211 | #if MAX_COMPS_IN_SCAN == 4 |
212 | #define ASSIGN_STATE(dest,src) \ | 212 | #define ASSIGN_STATE(dest,src) \ |
213 | ((dest).EOBRUN = (src).EOBRUN, \ | 213 | ((dest).EOBRUN = (src).EOBRUN, \ |
214 | (dest).last_dc_val[0] = (src).last_dc_val[0], \ | 214 | (dest).last_dc_val[0] = (src).last_dc_val[0], \ |
215 | (dest).last_dc_val[1] = (src).last_dc_val[1], \ | 215 | (dest).last_dc_val[1] = (src).last_dc_val[1], \ |
216 | (dest).last_dc_val[2] = (src).last_dc_val[2], \ | 216 | (dest).last_dc_val[2] = (src).last_dc_val[2], \ |
217 | (dest).last_dc_val[3] = (src).last_dc_val[3]) | 217 | (dest).last_dc_val[3] = (src).last_dc_val[3]) |
218 | #endif | 218 | #endif |
219 | #endif | 219 | #endif |
220 | 220 | ||
221 | 221 | ||
222 | typedef struct { | 222 | typedef struct { |
223 | struct jpeg_entropy_decoder pub; /* public fields */ | 223 | struct jpeg_entropy_decoder pub; /* public fields */ |
224 | 224 | ||
225 | /* These fields are loaded into local variables at start of each MCU. | 225 | /* These fields are loaded into local variables at start of each MCU. |
226 | * In case of suspension, we exit WITHOUT updating them. | 226 | * In case of suspension, we exit WITHOUT updating them. |
227 | */ | 227 | */ |
228 | bitread_perm_state bitstate; /* Bit buffer at start of MCU */ | 228 | bitread_perm_state bitstate; /* Bit buffer at start of MCU */ |
229 | savable_state saved; /* Other state at start of MCU */ | 229 | savable_state saved; /* Other state at start of MCU */ |
230 | 230 | ||
231 | /* These fields are NOT loaded into local working state. */ | 231 | /* These fields are NOT loaded into local working state. */ |
232 | boolean insufficient_data; /* set TRUE after emitting warning */ | 232 | boolean insufficient_data; /* set TRUE after emitting warning */ |
233 | unsigned int restarts_to_go; /* MCUs left in this restart interval */ | 233 | unsigned int restarts_to_go; /* MCUs left in this restart interval */ |
234 | 234 | ||
235 | /* Following two fields used only in progressive mode */ | 235 | /* Following two fields used only in progressive mode */ |
236 | 236 | ||
237 | /* Pointers to derived tables (these workspaces have image lifespan) */ | 237 | /* Pointers to derived tables (these workspaces have image lifespan) */ |
238 | d_derived_tbl * derived_tbls[NUM_HUFF_TBLS]; | 238 | d_derived_tbl * derived_tbls[NUM_HUFF_TBLS]; |
239 | 239 | ||
240 | d_derived_tbl * ac_derived_tbl; /* active table during an AC scan */ | 240 | d_derived_tbl * ac_derived_tbl; /* active table during an AC scan */ |
241 | 241 | ||
242 | /* Following fields used only in sequential mode */ | 242 | /* Following fields used only in sequential mode */ |
243 | 243 | ||
244 | /* Pointers to derived tables (these workspaces have image lifespan) */ | 244 | /* Pointers to derived tables (these workspaces have image lifespan) */ |
245 | d_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS]; | 245 | d_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS]; |
246 | d_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS]; | 246 | d_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS]; |
247 | 247 | ||
248 | /* Precalculated info set up by start_pass for use in decode_mcu: */ | 248 | /* Precalculated info set up by start_pass for use in decode_mcu: */ |
249 | 249 | ||
250 | /* Pointers to derived tables to be used for each block within an MCU */ | 250 | /* Pointers to derived tables to be used for each block within an MCU */ |
251 | d_derived_tbl * dc_cur_tbls[D_MAX_BLOCKS_IN_MCU]; | 251 | d_derived_tbl * dc_cur_tbls[D_MAX_BLOCKS_IN_MCU]; |
252 | d_derived_tbl * ac_cur_tbls[D_MAX_BLOCKS_IN_MCU]; | 252 | d_derived_tbl * ac_cur_tbls[D_MAX_BLOCKS_IN_MCU]; |
253 | /* Whether we care about the DC and AC coefficient values for each block */ | 253 | /* Whether we care about the DC and AC coefficient values for each block */ |
254 | int coef_limit[D_MAX_BLOCKS_IN_MCU]; | 254 | int coef_limit[D_MAX_BLOCKS_IN_MCU]; |
255 | } huff_entropy_decoder; | 255 | } huff_entropy_decoder; |
256 | 256 | ||
257 | typedef huff_entropy_decoder * huff_entropy_ptr; | 257 | typedef huff_entropy_decoder * huff_entropy_ptr; |
258 | 258 | ||
259 | 259 | ||
260 | static const int jpeg_zigzag_order[8][8] = { | 260 | static const int jpeg_zigzag_order[8][8] = { |
261 | { 0, 1, 5, 6, 14, 15, 27, 28 }, | 261 | { 0, 1, 5, 6, 14, 15, 27, 28 }, |
262 | { 2, 4, 7, 13, 16, 26, 29, 42 }, | 262 | { 2, 4, 7, 13, 16, 26, 29, 42 }, |
263 | { 3, 8, 12, 17, 25, 30, 41, 43 }, | 263 | { 3, 8, 12, 17, 25, 30, 41, 43 }, |
264 | { 9, 11, 18, 24, 31, 40, 44, 53 }, | 264 | { 9, 11, 18, 24, 31, 40, 44, 53 }, |
265 | { 10, 19, 23, 32, 39, 45, 52, 54 }, | 265 | { 10, 19, 23, 32, 39, 45, 52, 54 }, |
266 | { 20, 22, 33, 38, 46, 51, 55, 60 }, | 266 | { 20, 22, 33, 38, 46, 51, 55, 60 }, |
267 | { 21, 34, 37, 47, 50, 56, 59, 61 }, | 267 | { 21, 34, 37, 47, 50, 56, 59, 61 }, |
268 | { 35, 36, 48, 49, 57, 58, 62, 63 } | 268 | { 35, 36, 48, 49, 57, 58, 62, 63 } |
269 | }; | 269 | }; |
270 | 270 | ||
271 | static const int jpeg_zigzag_order7[7][7] = { | 271 | static const int jpeg_zigzag_order7[7][7] = { |
272 | { 0, 1, 5, 6, 14, 15, 27 }, | 272 | { 0, 1, 5, 6, 14, 15, 27 }, |
273 | { 2, 4, 7, 13, 16, 26, 28 }, | 273 | { 2, 4, 7, 13, 16, 26, 28 }, |
274 | { 3, 8, 12, 17, 25, 29, 38 }, | 274 | { 3, 8, 12, 17, 25, 29, 38 }, |
275 | { 9, 11, 18, 24, 30, 37, 39 }, | 275 | { 9, 11, 18, 24, 30, 37, 39 }, |
276 | { 10, 19, 23, 31, 36, 40, 45 }, | 276 | { 10, 19, 23, 31, 36, 40, 45 }, |
277 | { 20, 22, 32, 35, 41, 44, 46 }, | 277 | { 20, 22, 32, 35, 41, 44, 46 }, |
278 | { 21, 33, 34, 42, 43, 47, 48 } | 278 | { 21, 33, 34, 42, 43, 47, 48 } |
279 | }; | 279 | }; |
280 | 280 | ||
281 | static const int jpeg_zigzag_order6[6][6] = { | 281 | static const int jpeg_zigzag_order6[6][6] = { |
282 | { 0, 1, 5, 6, 14, 15 }, | 282 | { 0, 1, 5, 6, 14, 15 }, |
283 | { 2, 4, 7, 13, 16, 25 }, | 283 | { 2, 4, 7, 13, 16, 25 }, |
284 | { 3, 8, 12, 17, 24, 26 }, | 284 | { 3, 8, 12, 17, 24, 26 }, |
285 | { 9, 11, 18, 23, 27, 32 }, | 285 | { 9, 11, 18, 23, 27, 32 }, |
286 | { 10, 19, 22, 28, 31, 33 }, | 286 | { 10, 19, 22, 28, 31, 33 }, |
287 | { 20, 21, 29, 30, 34, 35 } | 287 | { 20, 21, 29, 30, 34, 35 } |
288 | }; | 288 | }; |
289 | 289 | ||
290 | static const int jpeg_zigzag_order5[5][5] = { | 290 | static const int jpeg_zigzag_order5[5][5] = { |
291 | { 0, 1, 5, 6, 14 }, | 291 | { 0, 1, 5, 6, 14 }, |
292 | { 2, 4, 7, 13, 15 }, | 292 | { 2, 4, 7, 13, 15 }, |
293 | { 3, 8, 12, 16, 21 }, | 293 | { 3, 8, 12, 16, 21 }, |
294 | { 9, 11, 17, 20, 22 }, | 294 | { 9, 11, 17, 20, 22 }, |
295 | { 10, 18, 19, 23, 24 } | 295 | { 10, 18, 19, 23, 24 } |
296 | }; | 296 | }; |
297 | 297 | ||
298 | static const int jpeg_zigzag_order4[4][4] = { | 298 | static const int jpeg_zigzag_order4[4][4] = { |
299 | { 0, 1, 5, 6 }, | 299 | { 0, 1, 5, 6 }, |
300 | { 2, 4, 7, 12 }, | 300 | { 2, 4, 7, 12 }, |
301 | { 3, 8, 11, 13 }, | 301 | { 3, 8, 11, 13 }, |
302 | { 9, 10, 14, 15 } | 302 | { 9, 10, 14, 15 } |
303 | }; | 303 | }; |
304 | 304 | ||
305 | static const int jpeg_zigzag_order3[3][3] = { | 305 | static const int jpeg_zigzag_order3[3][3] = { |
306 | { 0, 1, 5 }, | 306 | { 0, 1, 5 }, |
307 | { 2, 4, 6 }, | 307 | { 2, 4, 6 }, |
308 | { 3, 7, 8 } | 308 | { 3, 7, 8 } |
309 | }; | 309 | }; |
310 | 310 | ||
311 | static const int jpeg_zigzag_order2[2][2] = { | 311 | static const int jpeg_zigzag_order2[2][2] = { |
312 | { 0, 1 }, | 312 | { 0, 1 }, |
313 | { 2, 3 } | 313 | { 2, 3 } |
314 | }; | 314 | }; |
315 | 315 | ||
316 | 316 | ||
317 | /* | 317 | /* |
318 | * Compute the derived values for a Huffman table. | 318 | * Compute the derived values for a Huffman table. |
319 | * This routine also performs some validation checks on the table. | 319 | * This routine also performs some validation checks on the table. |
320 | */ | 320 | */ |
321 | 321 | ||
322 | LOCAL(void) | 322 | LOCAL(void) |
323 | jpeg_make_d_derived_tbl (j_decompress_ptr cinfo, boolean isDC, int tblno, | 323 | jpeg_make_d_derived_tbl (j_decompress_ptr cinfo, boolean isDC, int tblno, |
324 | d_derived_tbl ** pdtbl) | 324 | d_derived_tbl ** pdtbl) |
325 | { | 325 | { |
326 | JHUFF_TBL *htbl; | 326 | JHUFF_TBL *htbl; |
327 | d_derived_tbl *dtbl; | 327 | d_derived_tbl *dtbl; |
328 | int p, i, l, si, numsymbols; | 328 | int p, i, l, si, numsymbols; |
329 | int lookbits, ctr; | 329 | int lookbits, ctr; |
330 | char huffsize[257]; | 330 | char huffsize[257]; |
331 | unsigned int huffcode[257]; | 331 | unsigned int huffcode[257]; |
332 | unsigned int code; | 332 | unsigned int code; |
333 | 333 | ||
334 | /* Note that huffsize[] and huffcode[] are filled in code-length order, | 334 | /* Note that huffsize[] and huffcode[] are filled in code-length order, |
335 | * paralleling the order of the symbols themselves in htbl->huffval[]. | 335 | * paralleling the order of the symbols themselves in htbl->huffval[]. |
336 | */ | 336 | */ |
337 | 337 | ||
338 | /* Find the input Huffman table */ | 338 | /* Find the input Huffman table */ |
339 | if (tblno < 0 || tblno >= NUM_HUFF_TBLS) | 339 | if (tblno < 0 || tblno >= NUM_HUFF_TBLS) |
340 | ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno); | 340 | ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno); |
341 | htbl = | 341 | htbl = |
342 | isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno]; | 342 | isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno]; |
343 | if (htbl == NULL) | 343 | if (htbl == NULL) |
344 | ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno); | 344 | ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno); |
345 | 345 | ||
346 | /* Allocate a workspace if we haven't already done so. */ | 346 | /* Allocate a workspace if we haven't already done so. */ |
347 | if (*pdtbl == NULL) | 347 | if (*pdtbl == NULL) |
348 | *pdtbl = (d_derived_tbl *) | 348 | *pdtbl = (d_derived_tbl *) |
349 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, | 349 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
350 | SIZEOF(d_derived_tbl)); | 350 | SIZEOF(d_derived_tbl)); |
351 | dtbl = *pdtbl; | 351 | dtbl = *pdtbl; |
352 | dtbl->pub = htbl; /* fill in back link */ | 352 | dtbl->pub = htbl; /* fill in back link */ |
353 | 353 | ||
354 | /* Figure C.1: make table of Huffman code length for each symbol */ | 354 | /* Figure C.1: make table of Huffman code length for each symbol */ |
355 | 355 | ||
356 | p = 0; | 356 | p = 0; |
357 | for (l = 1; l <= 16; l++) { | 357 | for (l = 1; l <= 16; l++) { |
358 | i = (int) htbl->bits[l]; | 358 | i = (int) htbl->bits[l]; |
359 | if (i < 0 || p + i > 256) /* protect against table overrun */ | 359 | if (i < 0 || p + i > 256) /* protect against table overrun */ |
360 | ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); | 360 | ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); |
361 | while (i--) | 361 | while (i--) |
362 | huffsize[p++] = (char) l; | 362 | huffsize[p++] = (char) l; |
363 | } | 363 | } |
364 | huffsize[p] = 0; | 364 | huffsize[p] = 0; |
365 | numsymbols = p; | 365 | numsymbols = p; |
366 | 366 | ||
367 | /* Figure C.2: generate the codes themselves */ | 367 | /* Figure C.2: generate the codes themselves */ |
368 | /* We also validate that the counts represent a legal Huffman code tree. */ | 368 | /* We also validate that the counts represent a legal Huffman code tree. */ |
369 | 369 | ||
370 | code = 0; | 370 | code = 0; |
371 | si = huffsize[0]; | 371 | si = huffsize[0]; |
372 | p = 0; | 372 | p = 0; |
373 | while (huffsize[p]) { | 373 | while (huffsize[p]) { |
374 | while (((int) huffsize[p]) == si) { | 374 | while (((int) huffsize[p]) == si) { |
375 | huffcode[p++] = code; | 375 | huffcode[p++] = code; |
376 | code++; | 376 | code++; |
377 | } | 377 | } |
378 | /* code is now 1 more than the last code used for codelength si; but | 378 | /* code is now 1 more than the last code used for codelength si; but |
379 | * it must still fit in si bits, since no code is allowed to be all ones. | 379 | * it must still fit in si bits, since no code is allowed to be all ones. |
380 | */ | 380 | */ |
381 | if (((INT32) code) >= (((INT32) 1) << si)) | 381 | if (((INT32) code) >= (((INT32) 1) << si)) |
382 | ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); | 382 | ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); |
383 | code <<= 1; | 383 | code <<= 1; |
384 | si++; | 384 | si++; |
385 | } | 385 | } |
386 | 386 | ||
387 | /* Figure F.15: generate decoding tables for bit-sequential decoding */ | 387 | /* Figure F.15: generate decoding tables for bit-sequential decoding */ |
388 | 388 | ||
389 | p = 0; | 389 | p = 0; |
390 | for (l = 1; l <= 16; l++) { | 390 | for (l = 1; l <= 16; l++) { |
391 | if (htbl->bits[l]) { | 391 | if (htbl->bits[l]) { |
392 | /* valoffset[l] = huffval[] index of 1st symbol of code length l, | 392 | /* valoffset[l] = huffval[] index of 1st symbol of code length l, |
393 | * minus the minimum code of length l | 393 | * minus the minimum code of length l |
394 | */ | 394 | */ |
395 | dtbl->valoffset[l] = (INT32) p - (INT32) huffcode[p]; | 395 | dtbl->valoffset[l] = (INT32) p - (INT32) huffcode[p]; |
396 | p += htbl->bits[l]; | 396 | p += htbl->bits[l]; |
397 | dtbl->maxcode[l] = huffcode[p-1]; /* maximum code of length l */ | 397 | dtbl->maxcode[l] = huffcode[p-1]; /* maximum code of length l */ |
398 | } else { | 398 | } else { |
399 | dtbl->maxcode[l] = -1; /* -1 if no codes of this length */ | 399 | dtbl->maxcode[l] = -1; /* -1 if no codes of this length */ |
400 | } | 400 | } |
401 | } | 401 | } |
402 | dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */ | 402 | dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */ |
403 | 403 | ||
404 | /* Compute lookahead tables to speed up decoding. | 404 | /* Compute lookahead tables to speed up decoding. |
405 | * First we set all the table entries to 0, indicating "too long"; | 405 | * First we set all the table entries to 0, indicating "too long"; |
406 | * then we iterate through the Huffman codes that are short enough and | 406 | * then we iterate through the Huffman codes that are short enough and |
407 | * fill in all the entries that correspond to bit sequences starting | 407 | * fill in all the entries that correspond to bit sequences starting |
408 | * with that code. | 408 | * with that code. |
409 | */ | 409 | */ |
410 | 410 | ||
411 | MEMZERO(dtbl->look_nbits, SIZEOF(dtbl->look_nbits)); | 411 | MEMZERO(dtbl->look_nbits, SIZEOF(dtbl->look_nbits)); |
412 | 412 | ||
413 | p = 0; | 413 | p = 0; |
414 | for (l = 1; l <= HUFF_LOOKAHEAD; l++) { | 414 | for (l = 1; l <= HUFF_LOOKAHEAD; l++) { |
415 | for (i = 1; i <= (int) htbl->bits[l]; i++, p++) { | 415 | for (i = 1; i <= (int) htbl->bits[l]; i++, p++) { |
416 | /* l = current code's length, p = its index in huffcode[] & huffval[]. */ | 416 | /* l = current code's length, p = its index in huffcode[] & huffval[]. */ |
417 | /* Generate left-justified code followed by all possible bit sequences */ | 417 | /* Generate left-justified code followed by all possible bit sequences */ |
418 | lookbits = huffcode[p] << (HUFF_LOOKAHEAD-l); | 418 | lookbits = huffcode[p] << (HUFF_LOOKAHEAD-l); |
419 | for (ctr = 1 << (HUFF_LOOKAHEAD-l); ctr > 0; ctr--) { | 419 | for (ctr = 1 << (HUFF_LOOKAHEAD-l); ctr > 0; ctr--) { |
420 | dtbl->look_nbits[lookbits] = l; | 420 | dtbl->look_nbits[lookbits] = l; |
421 | dtbl->look_sym[lookbits] = htbl->huffval[p]; | 421 | dtbl->look_sym[lookbits] = htbl->huffval[p]; |
422 | lookbits++; | 422 | lookbits++; |
423 | } | 423 | } |
424 | } | 424 | } |
425 | } | 425 | } |
426 | 426 | ||
427 | /* Validate symbols as being reasonable. | 427 | /* Validate symbols as being reasonable. |
428 | * For AC tables, we make no check, but accept all byte values 0..255. | 428 | * For AC tables, we make no check, but accept all byte values 0..255. |
429 | * For DC tables, we require the symbols to be in range 0..15. | 429 | * For DC tables, we require the symbols to be in range 0..15. |
430 | * (Tighter bounds could be applied depending on the data depth and mode, | 430 | * (Tighter bounds could be applied depending on the data depth and mode, |
431 | * but this is sufficient to ensure safe decoding.) | 431 | * but this is sufficient to ensure safe decoding.) |
432 | */ | 432 | */ |
433 | if (isDC) { | 433 | if (isDC) { |
434 | for (i = 0; i < numsymbols; i++) { | 434 | for (i = 0; i < numsymbols; i++) { |
435 | int sym = htbl->huffval[i]; | 435 | int sym = htbl->huffval[i]; |
436 | if (sym < 0 || sym > 15) | 436 | if (sym < 0 || sym > 15) |
437 | ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); | 437 | ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); |
438 | } | 438 | } |
439 | } | 439 | } |
440 | } | 440 | } |
441 | 441 | ||
442 | 442 | ||
443 | /* | 443 | /* |
444 | * Out-of-line code for bit fetching. | 444 | * Out-of-line code for bit fetching. |
445 | * Note: current values of get_buffer and bits_left are passed as parameters, | 445 | * Note: current values of get_buffer and bits_left are passed as parameters, |
446 | * but are returned in the corresponding fields of the state struct. | 446 | * but are returned in the corresponding fields of the state struct. |
447 | * | 447 | * |
448 | * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width | 448 | * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width |
449 | * of get_buffer to be used. (On machines with wider words, an even larger | 449 | * of get_buffer to be used. (On machines with wider words, an even larger |
450 | * buffer could be used.) However, on some machines 32-bit shifts are | 450 | * buffer could be used.) However, on some machines 32-bit shifts are |
451 | * quite slow and take time proportional to the number of places shifted. | 451 | * quite slow and take time proportional to the number of places shifted. |
452 | * (This is true with most PC compilers, for instance.) In this case it may | 452 | * (This is true with most PC compilers, for instance.) In this case it may |
453 | * be a win to set MIN_GET_BITS to the minimum value of 15. This reduces the | 453 | * be a win to set MIN_GET_BITS to the minimum value of 15. This reduces the |
454 | * average shift distance at the cost of more calls to jpeg_fill_bit_buffer. | 454 | * average shift distance at the cost of more calls to jpeg_fill_bit_buffer. |
455 | */ | 455 | */ |
456 | 456 | ||
457 | #ifdef SLOW_SHIFT_32 | 457 | #ifdef SLOW_SHIFT_32 |
458 | #define MIN_GET_BITS 15 /* minimum allowable value */ | 458 | #define MIN_GET_BITS 15 /* minimum allowable value */ |
459 | #else | 459 | #else |
460 | #define MIN_GET_BITS (BIT_BUF_SIZE-7) | 460 | #define MIN_GET_BITS (BIT_BUF_SIZE-7) |
461 | #endif | 461 | #endif |
462 | 462 | ||
463 | 463 | ||
464 | LOCAL(boolean) | 464 | LOCAL(boolean) |
465 | jpeg_fill_bit_buffer (bitread_working_state * state, | 465 | jpeg_fill_bit_buffer (bitread_working_state * state, |
466 | register bit_buf_type get_buffer, register int bits_left, | 466 | register bit_buf_type get_buffer, register int bits_left, |
467 | int nbits) | 467 | int nbits) |
468 | /* Load up the bit buffer to a depth of at least nbits */ | 468 | /* Load up the bit buffer to a depth of at least nbits */ |
469 | { | 469 | { |
470 | /* Copy heavily used state fields into locals (hopefully registers) */ | 470 | /* Copy heavily used state fields into locals (hopefully registers) */ |
471 | register const JOCTET * next_input_byte = state->next_input_byte; | 471 | register const JOCTET * next_input_byte = state->next_input_byte; |
472 | register size_t bytes_in_buffer = state->bytes_in_buffer; | 472 | register size_t bytes_in_buffer = state->bytes_in_buffer; |
473 | j_decompress_ptr cinfo = state->cinfo; | 473 | j_decompress_ptr cinfo = state->cinfo; |
474 | 474 | ||
475 | /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */ | 475 | /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */ |
476 | /* (It is assumed that no request will be for more than that many bits.) */ | 476 | /* (It is assumed that no request will be for more than that many bits.) */ |
477 | /* We fail to do so only if we hit a marker or are forced to suspend. */ | 477 | /* We fail to do so only if we hit a marker or are forced to suspend. */ |
478 | 478 | ||
479 | if (cinfo->unread_marker == 0) { /* cannot advance past a marker */ | 479 | if (cinfo->unread_marker == 0) { /* cannot advance past a marker */ |
480 | while (bits_left < MIN_GET_BITS) { | 480 | while (bits_left < MIN_GET_BITS) { |
481 | register int c; | 481 | register int c; |
482 | 482 | ||
483 | /* Attempt to read a byte */ | 483 | /* Attempt to read a byte */ |
484 | if (bytes_in_buffer == 0) { | 484 | if (bytes_in_buffer == 0) { |
485 | if (! (*cinfo->src->fill_input_buffer) (cinfo)) | 485 | if (! (*cinfo->src->fill_input_buffer) (cinfo)) |
486 | return FALSE; | 486 | return FALSE; |
487 | next_input_byte = cinfo->src->next_input_byte; | 487 | next_input_byte = cinfo->src->next_input_byte; |
488 | bytes_in_buffer = cinfo->src->bytes_in_buffer; | 488 | bytes_in_buffer = cinfo->src->bytes_in_buffer; |
489 | } | 489 | } |
490 | bytes_in_buffer--; | 490 | bytes_in_buffer--; |
491 | c = GETJOCTET(*next_input_byte++); | 491 | c = GETJOCTET(*next_input_byte++); |
492 | 492 | ||
493 | /* If it's 0xFF, check and discard stuffed zero byte */ | 493 | /* If it's 0xFF, check and discard stuffed zero byte */ |
494 | if (c == 0xFF) { | 494 | if (c == 0xFF) { |
495 | /* Loop here to discard any padding FF's on terminating marker, | 495 | /* Loop here to discard any padding FF's on terminating marker, |
496 | * so that we can save a valid unread_marker value. NOTE: we will | 496 | * so that we can save a valid unread_marker value. NOTE: we will |
497 | * accept multiple FF's followed by a 0 as meaning a single FF data | 497 | * accept multiple FF's followed by a 0 as meaning a single FF data |
498 | * byte. This data pattern is not valid according to the standard. | 498 | * byte. This data pattern is not valid according to the standard. |
499 | */ | 499 | */ |
500 | do { | 500 | do { |
501 | if (bytes_in_buffer == 0) { | 501 | if (bytes_in_buffer == 0) { |
502 | if (! (*cinfo->src->fill_input_buffer) (cinfo)) | 502 | if (! (*cinfo->src->fill_input_buffer) (cinfo)) |
503 | return FALSE; | 503 | return FALSE; |
504 | next_input_byte = cinfo->src->next_input_byte; | 504 | next_input_byte = cinfo->src->next_input_byte; |
505 | bytes_in_buffer = cinfo->src->bytes_in_buffer; | 505 | bytes_in_buffer = cinfo->src->bytes_in_buffer; |
506 | } | 506 | } |
507 | bytes_in_buffer--; | 507 | bytes_in_buffer--; |
508 | c = GETJOCTET(*next_input_byte++); | 508 | c = GETJOCTET(*next_input_byte++); |
509 | } while (c == 0xFF); | 509 | } while (c == 0xFF); |
510 | 510 | ||
511 | if (c == 0) { | 511 | if (c == 0) { |
512 | /* Found FF/00, which represents an FF data byte */ | 512 | /* Found FF/00, which represents an FF data byte */ |
513 | c = 0xFF; | 513 | c = 0xFF; |
514 | } else { | 514 | } else { |
515 | /* Oops, it's actually a marker indicating end of compressed data. | 515 | /* Oops, it's actually a marker indicating end of compressed data. |
516 | * Save the marker code for later use. | 516 | * Save the marker code for later use. |
517 | * Fine point: it might appear that we should save the marker into | 517 | * Fine point: it might appear that we should save the marker into |
518 | * bitread working state, not straight into permanent state. But | 518 | * bitread working state, not straight into permanent state. But |
519 | * once we have hit a marker, we cannot need to suspend within the | 519 | * once we have hit a marker, we cannot need to suspend within the |
520 | * current MCU, because we will read no more bytes from the data | 520 | * current MCU, because we will read no more bytes from the data |
521 | * source. So it is OK to update permanent state right away. | 521 | * source. So it is OK to update permanent state right away. |
522 | */ | 522 | */ |
523 | cinfo->unread_marker = c; | 523 | cinfo->unread_marker = c; |
524 | /* See if we need to insert some fake zero bits. */ | 524 | /* See if we need to insert some fake zero bits. */ |
525 | goto no_more_bytes; | 525 | goto no_more_bytes; |
526 | } | 526 | } |
527 | } | 527 | } |
528 | 528 | ||
529 | /* OK, load c into get_buffer */ | 529 | /* OK, load c into get_buffer */ |
530 | get_buffer = (get_buffer << 8) | c; | 530 | get_buffer = (get_buffer << 8) | c; |
531 | bits_left += 8; | 531 | bits_left += 8; |
532 | } /* end while */ | 532 | } /* end while */ |
533 | } else { | 533 | } else { |
534 | no_more_bytes: | 534 | no_more_bytes: |
535 | /* We get here if we've read the marker that terminates the compressed | 535 | /* We get here if we've read the marker that terminates the compressed |
536 | * data segment. There should be enough bits in the buffer register | 536 | * data segment. There should be enough bits in the buffer register |
537 | * to satisfy the request; if so, no problem. | 537 | * to satisfy the request; if so, no problem. |
538 | */ | 538 | */ |
539 | if (nbits > bits_left) { | 539 | if (nbits > bits_left) { |
540 | /* Uh-oh. Report corrupted data to user and stuff zeroes into | 540 | /* Uh-oh. Report corrupted data to user and stuff zeroes into |
541 | * the data stream, so that we can produce some kind of image. | 541 | * the data stream, so that we can produce some kind of image. |
542 | * We use a nonvolatile flag to ensure that only one warning message | 542 | * We use a nonvolatile flag to ensure that only one warning message |
543 | * appears per data segment. | 543 | * appears per data segment. |
544 | */ | 544 | */ |
545 | if (! ((huff_entropy_ptr) cinfo->entropy)->insufficient_data) { | 545 | if (! ((huff_entropy_ptr) cinfo->entropy)->insufficient_data) { |
546 | WARNMS(cinfo, JWRN_HIT_MARKER); | 546 | WARNMS(cinfo, JWRN_HIT_MARKER); |
547 | ((huff_entropy_ptr) cinfo->entropy)->insufficient_data = TRUE; | 547 | ((huff_entropy_ptr) cinfo->entropy)->insufficient_data = TRUE; |
548 | } | 548 | } |
549 | /* Fill the buffer with zero bits */ | 549 | /* Fill the buffer with zero bits */ |
550 | get_buffer <<= MIN_GET_BITS - bits_left; | 550 | get_buffer <<= MIN_GET_BITS - bits_left; |
551 | bits_left = MIN_GET_BITS; | 551 | bits_left = MIN_GET_BITS; |
552 | } | 552 | } |
553 | } | 553 | } |
554 | 554 | ||
555 | /* Unload the local registers */ | 555 | /* Unload the local registers */ |
556 | state->next_input_byte = next_input_byte; | 556 | state->next_input_byte = next_input_byte; |
557 | state->bytes_in_buffer = bytes_in_buffer; | 557 | state->bytes_in_buffer = bytes_in_buffer; |
558 | state->get_buffer = get_buffer; | 558 | state->get_buffer = get_buffer; |
559 | state->bits_left = bits_left; | 559 | state->bits_left = bits_left; |
560 | 560 | ||
561 | return TRUE; | 561 | return TRUE; |
562 | } | 562 | } |
563 | 563 | ||
564 | 564 | ||
565 | /* | 565 | /* |
566 | * Figure F.12: extend sign bit. | 566 | * Figure F.12: extend sign bit. |
567 | * On some machines, a shift and sub will be faster than a table lookup. | 567 | * On some machines, a shift and sub will be faster than a table lookup. |
568 | */ | 568 | */ |
569 | 569 | ||
570 | #ifdef AVOID_TABLES | 570 | #ifdef AVOID_TABLES |
571 | 571 | ||
572 | #define BIT_MASK(nbits) ((1<<(nbits))-1) | 572 | #define BIT_MASK(nbits) ((1<<(nbits))-1) |
573 | #define HUFF_EXTEND(x,s) ((x) < (1<<((s)-1)) ? (x) - ((1<<(s))-1) : (x)) | 573 | #define HUFF_EXTEND(x,s) ((x) < (1<<((s)-1)) ? (x) - ((1<<(s))-1) : (x)) |
574 | 574 | ||
575 | #else | 575 | #else |
576 | 576 | ||
577 | #define BIT_MASK(nbits) bmask[nbits] | 577 | #define BIT_MASK(nbits) bmask[nbits] |
578 | #define HUFF_EXTEND(x,s) ((x) <= bmask[(s) - 1] ? (x) - bmask[s] : (x)) | 578 | #define HUFF_EXTEND(x,s) ((x) <= bmask[(s) - 1] ? (x) - bmask[s] : (x)) |
579 | 579 | ||
580 | static const int bmask[16] = /* bmask[n] is mask for n rightmost bits */ | 580 | static const int bmask[16] = /* bmask[n] is mask for n rightmost bits */ |
581 | { 0, 0x0001, 0x0003, 0x0007, 0x000F, 0x001F, 0x003F, 0x007F, 0x00FF, | 581 | { 0, 0x0001, 0x0003, 0x0007, 0x000F, 0x001F, 0x003F, 0x007F, 0x00FF, |
582 | 0x01FF, 0x03FF, 0x07FF, 0x0FFF, 0x1FFF, 0x3FFF, 0x7FFF }; | 582 | 0x01FF, 0x03FF, 0x07FF, 0x0FFF, 0x1FFF, 0x3FFF, 0x7FFF }; |
583 | 583 | ||
584 | #endif /* AVOID_TABLES */ | 584 | #endif /* AVOID_TABLES */ |
585 | 585 | ||
586 | 586 | ||
587 | /* | 587 | /* |
588 | * Out-of-line code for Huffman code decoding. | 588 | * Out-of-line code for Huffman code decoding. |
589 | */ | 589 | */ |
590 | 590 | ||
591 | LOCAL(int) | 591 | LOCAL(int) |
592 | jpeg_huff_decode (bitread_working_state * state, | 592 | jpeg_huff_decode (bitread_working_state * state, |
593 | register bit_buf_type get_buffer, register int bits_left, | 593 | register bit_buf_type get_buffer, register int bits_left, |
594 | d_derived_tbl * htbl, int min_bits) | 594 | d_derived_tbl * htbl, int min_bits) |
595 | { | 595 | { |
596 | register int l = min_bits; | 596 | register int l = min_bits; |
597 | register INT32 code; | 597 | register INT32 code; |
598 | 598 | ||
599 | /* HUFF_DECODE has determined that the code is at least min_bits */ | 599 | /* HUFF_DECODE has determined that the code is at least min_bits */ |
600 | /* bits long, so fetch that many bits in one swoop. */ | 600 | /* bits long, so fetch that many bits in one swoop. */ |
601 | 601 | ||
602 | CHECK_BIT_BUFFER(*state, l, return -1); | 602 | CHECK_BIT_BUFFER(*state, l, return -1); |
603 | code = GET_BITS(l); | 603 | code = GET_BITS(l); |
604 | 604 | ||
605 | /* Collect the rest of the Huffman code one bit at a time. */ | 605 | /* Collect the rest of the Huffman code one bit at a time. */ |
606 | /* This is per Figure F.16 in the JPEG spec. */ | 606 | /* This is per Figure F.16 in the JPEG spec. */ |
607 | 607 | ||
608 | while (code > htbl->maxcode[l]) { | 608 | while (code > htbl->maxcode[l]) { |
609 | code <<= 1; | 609 | code <<= 1; |
610 | CHECK_BIT_BUFFER(*state, 1, return -1); | 610 | CHECK_BIT_BUFFER(*state, 1, return -1); |
611 | code |= GET_BITS(1); | 611 | code |= GET_BITS(1); |
612 | l++; | 612 | l++; |
613 | } | 613 | } |
614 | 614 | ||
615 | /* Unload the local registers */ | 615 | /* Unload the local registers */ |
616 | state->get_buffer = get_buffer; | 616 | state->get_buffer = get_buffer; |
617 | state->bits_left = bits_left; | 617 | state->bits_left = bits_left; |
618 | 618 | ||
619 | /* With garbage input we may reach the sentinel value l = 17. */ | 619 | /* With garbage input we may reach the sentinel value l = 17. */ |
620 | 620 | ||
621 | if (l > 16) { | 621 | if (l > 16) { |
622 | WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE); | 622 | WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE); |
623 | return 0; /* fake a zero as the safest result */ | 623 | return 0; /* fake a zero as the safest result */ |
624 | } | 624 | } |
625 | 625 | ||
626 | return htbl->pub->huffval[ (int) (code + htbl->valoffset[l]) ]; | 626 | return htbl->pub->huffval[ (int) (code + htbl->valoffset[l]) ]; |
627 | } | 627 | } |
628 | 628 | ||
629 | 629 | ||
630 | /* | 630 | /* |
631 | * Check for a restart marker & resynchronize decoder. | 631 | * Check for a restart marker & resynchronize decoder. |
632 | * Returns FALSE if must suspend. | 632 | * Returns FALSE if must suspend. |
633 | */ | 633 | */ |
634 | 634 | ||
635 | LOCAL(boolean) | 635 | LOCAL(boolean) |
636 | process_restart (j_decompress_ptr cinfo) | 636 | process_restart (j_decompress_ptr cinfo) |
637 | { | 637 | { |
638 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; | 638 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; |
639 | int ci; | 639 | int ci; |
640 | 640 | ||
641 | /* Throw away any unused bits remaining in bit buffer; */ | 641 | /* Throw away any unused bits remaining in bit buffer; */ |
642 | /* include any full bytes in next_marker's count of discarded bytes */ | 642 | /* include any full bytes in next_marker's count of discarded bytes */ |
643 | cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8; | 643 | cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8; |
644 | entropy->bitstate.bits_left = 0; | 644 | entropy->bitstate.bits_left = 0; |
645 | 645 | ||
646 | /* Advance past the RSTn marker */ | 646 | /* Advance past the RSTn marker */ |
647 | if (! (*cinfo->marker->read_restart_marker) (cinfo)) | 647 | if (! (*cinfo->marker->read_restart_marker) (cinfo)) |
648 | return FALSE; | 648 | return FALSE; |
649 | 649 | ||
650 | /* Re-initialize DC predictions to 0 */ | 650 | /* Re-initialize DC predictions to 0 */ |
651 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) | 651 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) |
652 | entropy->saved.last_dc_val[ci] = 0; | 652 | entropy->saved.last_dc_val[ci] = 0; |
653 | /* Re-init EOB run count, too */ | 653 | /* Re-init EOB run count, too */ |
654 | entropy->saved.EOBRUN = 0; | 654 | entropy->saved.EOBRUN = 0; |
655 | 655 | ||
656 | /* Reset restart counter */ | 656 | /* Reset restart counter */ |
657 | entropy->restarts_to_go = cinfo->restart_interval; | 657 | entropy->restarts_to_go = cinfo->restart_interval; |
658 | 658 | ||
659 | /* Reset out-of-data flag, unless read_restart_marker left us smack up | 659 | /* Reset out-of-data flag, unless read_restart_marker left us smack up |
660 | * against a marker. In that case we will end up treating the next data | 660 | * against a marker. In that case we will end up treating the next data |
661 | * segment as empty, and we can avoid producing bogus output pixels by | 661 | * segment as empty, and we can avoid producing bogus output pixels by |
662 | * leaving the flag set. | 662 | * leaving the flag set. |
663 | */ | 663 | */ |
664 | if (cinfo->unread_marker == 0) | 664 | if (cinfo->unread_marker == 0) |
665 | entropy->insufficient_data = FALSE; | 665 | entropy->insufficient_data = FALSE; |
666 | 666 | ||
667 | return TRUE; | 667 | return TRUE; |
668 | } | 668 | } |
669 | 669 | ||
670 | 670 | ||
671 | /* | 671 | /* |
672 | * Huffman MCU decoding. | 672 | * Huffman MCU decoding. |
673 | * Each of these routines decodes and returns one MCU's worth of | 673 | * Each of these routines decodes and returns one MCU's worth of |
674 | * Huffman-compressed coefficients. | 674 | * Huffman-compressed coefficients. |
675 | * The coefficients are reordered from zigzag order into natural array order, | 675 | * The coefficients are reordered from zigzag order into natural array order, |
676 | * but are not dequantized. | 676 | * but are not dequantized. |
677 | * | 677 | * |
678 | * The i'th block of the MCU is stored into the block pointed to by | 678 | * The i'th block of the MCU is stored into the block pointed to by |
679 | * MCU_data[i]. WE ASSUME THIS AREA IS INITIALLY ZEROED BY THE CALLER. | 679 | * MCU_data[i]. WE ASSUME THIS AREA IS INITIALLY ZEROED BY THE CALLER. |
680 | * (Wholesale zeroing is usually a little faster than retail...) | 680 | * (Wholesale zeroing is usually a little faster than retail...) |
681 | * | 681 | * |
682 | * We return FALSE if data source requested suspension. In that case no | 682 | * We return FALSE if data source requested suspension. In that case no |
683 | * changes have been made to permanent state. (Exception: some output | 683 | * changes have been made to permanent state. (Exception: some output |
684 | * coefficients may already have been assigned. This is harmless for | 684 | * coefficients may already have been assigned. This is harmless for |
685 | * spectral selection, since we'll just re-assign them on the next call. | 685 | * spectral selection, since we'll just re-assign them on the next call. |
686 | * Successive approximation AC refinement has to be more careful, however.) | 686 | * Successive approximation AC refinement has to be more careful, however.) |
687 | */ | 687 | */ |
688 | 688 | ||
689 | /* | 689 | /* |
690 | * MCU decoding for DC initial scan (either spectral selection, | 690 | * MCU decoding for DC initial scan (either spectral selection, |
691 | * or first pass of successive approximation). | 691 | * or first pass of successive approximation). |
692 | */ | 692 | */ |
693 | 693 | ||
694 | METHODDEF(boolean) | 694 | METHODDEF(boolean) |
695 | decode_mcu_DC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) | 695 | decode_mcu_DC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) |
696 | { | 696 | { |
697 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; | 697 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; |
698 | int Al = cinfo->Al; | 698 | int Al = cinfo->Al; |
699 | register int s, r; | 699 | register int s, r; |
700 | int blkn, ci; | 700 | int blkn, ci; |
701 | JBLOCKROW block; | 701 | JBLOCKROW block; |
702 | BITREAD_STATE_VARS; | 702 | BITREAD_STATE_VARS; |
703 | savable_state state; | 703 | savable_state state; |
704 | d_derived_tbl * tbl; | 704 | d_derived_tbl * tbl; |
705 | jpeg_component_info * compptr; | 705 | jpeg_component_info * compptr; |
706 | 706 | ||
707 | /* Process restart marker if needed; may have to suspend */ | 707 | /* Process restart marker if needed; may have to suspend */ |
708 | if (cinfo->restart_interval) { | 708 | if (cinfo->restart_interval) { |
709 | if (entropy->restarts_to_go == 0) | 709 | if (entropy->restarts_to_go == 0) |
710 | if (! process_restart(cinfo)) | 710 | if (! process_restart(cinfo)) |
711 | return FALSE; | 711 | return FALSE; |
712 | } | 712 | } |
713 | 713 | ||
714 | /* If we've run out of data, just leave the MCU set to zeroes. | 714 | /* If we've run out of data, just leave the MCU set to zeroes. |
715 | * This way, we return uniform gray for the remainder of the segment. | 715 | * This way, we return uniform gray for the remainder of the segment. |
716 | */ | 716 | */ |
717 | if (! entropy->insufficient_data) { | 717 | if (! entropy->insufficient_data) { |
718 | 718 | ||
719 | /* Load up working state */ | 719 | /* Load up working state */ |
720 | BITREAD_LOAD_STATE(cinfo,entropy->bitstate); | 720 | BITREAD_LOAD_STATE(cinfo,entropy->bitstate); |
721 | ASSIGN_STATE(state, entropy->saved); | 721 | ASSIGN_STATE(state, entropy->saved); |
722 | 722 | ||
723 | /* Outer loop handles each block in the MCU */ | 723 | /* Outer loop handles each block in the MCU */ |
724 | 724 | ||
725 | for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { | 725 | for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { |
726 | block = MCU_data[blkn]; | 726 | block = MCU_data[blkn]; |
727 | ci = cinfo->MCU_membership[blkn]; | 727 | ci = cinfo->MCU_membership[blkn]; |
728 | compptr = cinfo->cur_comp_info[ci]; | 728 | compptr = cinfo->cur_comp_info[ci]; |
729 | tbl = entropy->derived_tbls[compptr->dc_tbl_no]; | 729 | tbl = entropy->derived_tbls[compptr->dc_tbl_no]; |
730 | 730 | ||
731 | /* Decode a single block's worth of coefficients */ | 731 | /* Decode a single block's worth of coefficients */ |
732 | 732 | ||
733 | /* Section F.2.2.1: decode the DC coefficient difference */ | 733 | /* Section F.2.2.1: decode the DC coefficient difference */ |
734 | HUFF_DECODE(s, br_state, tbl, return FALSE, label1); | 734 | HUFF_DECODE(s, br_state, tbl, return FALSE, label1); |
735 | if (s) { | 735 | if (s) { |
736 | CHECK_BIT_BUFFER(br_state, s, return FALSE); | 736 | CHECK_BIT_BUFFER(br_state, s, return FALSE); |
737 | r = GET_BITS(s); | 737 | r = GET_BITS(s); |
738 | s = HUFF_EXTEND(r, s); | 738 | s = HUFF_EXTEND(r, s); |
739 | } | 739 | } |
740 | 740 | ||
741 | /* Convert DC difference to actual value, update last_dc_val */ | 741 | /* Convert DC difference to actual value, update last_dc_val */ |
742 | s += state.last_dc_val[ci]; | 742 | s += state.last_dc_val[ci]; |
743 | state.last_dc_val[ci] = s; | 743 | state.last_dc_val[ci] = s; |
744 | /* Scale and output the coefficient (assumes jpeg_natural_order[0]=0) */ | 744 | /* Scale and output the coefficient (assumes jpeg_natural_order[0]=0) */ |
745 | (*block)[0] = (JCOEF) (s << Al); | 745 | (*block)[0] = (JCOEF) (s << Al); |
746 | } | 746 | } |
747 | 747 | ||
748 | /* Completed MCU, so update state */ | 748 | /* Completed MCU, so update state */ |
749 | BITREAD_SAVE_STATE(cinfo,entropy->bitstate); | 749 | BITREAD_SAVE_STATE(cinfo,entropy->bitstate); |
750 | ASSIGN_STATE(entropy->saved, state); | 750 | ASSIGN_STATE(entropy->saved, state); |
751 | } | 751 | } |
752 | 752 | ||
753 | /* Account for restart interval (no-op if not using restarts) */ | 753 | /* Account for restart interval (no-op if not using restarts) */ |
754 | entropy->restarts_to_go--; | 754 | entropy->restarts_to_go--; |
755 | 755 | ||
756 | return TRUE; | 756 | return TRUE; |
757 | } | 757 | } |
758 | 758 | ||
759 | 759 | ||
760 | /* | 760 | /* |
761 | * MCU decoding for AC initial scan (either spectral selection, | 761 | * MCU decoding for AC initial scan (either spectral selection, |
762 | * or first pass of successive approximation). | 762 | * or first pass of successive approximation). |
763 | */ | 763 | */ |
764 | 764 | ||
765 | METHODDEF(boolean) | 765 | METHODDEF(boolean) |
766 | decode_mcu_AC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) | 766 | decode_mcu_AC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) |
767 | { | 767 | { |
768 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; | 768 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; |
769 | register int s, k, r; | 769 | register int s, k, r; |
770 | unsigned int EOBRUN; | 770 | unsigned int EOBRUN; |
771 | int Se, Al; | 771 | int Se, Al; |
772 | const int * natural_order; | 772 | const int * natural_order; |
773 | JBLOCKROW block; | 773 | JBLOCKROW block; |
774 | BITREAD_STATE_VARS; | 774 | BITREAD_STATE_VARS; |
775 | d_derived_tbl * tbl; | 775 | d_derived_tbl * tbl; |
776 | 776 | ||
777 | /* Process restart marker if needed; may have to suspend */ | 777 | /* Process restart marker if needed; may have to suspend */ |
778 | if (cinfo->restart_interval) { | 778 | if (cinfo->restart_interval) { |
779 | if (entropy->restarts_to_go == 0) | 779 | if (entropy->restarts_to_go == 0) |
780 | if (! process_restart(cinfo)) | 780 | if (! process_restart(cinfo)) |
781 | return FALSE; | 781 | return FALSE; |
782 | } | 782 | } |
783 | 783 | ||
784 | /* If we've run out of data, just leave the MCU set to zeroes. | 784 | /* If we've run out of data, just leave the MCU set to zeroes. |
785 | * This way, we return uniform gray for the remainder of the segment. | 785 | * This way, we return uniform gray for the remainder of the segment. |
786 | */ | 786 | */ |
787 | if (! entropy->insufficient_data) { | 787 | if (! entropy->insufficient_data) { |
788 | 788 | ||
789 | Se = cinfo->Se; | 789 | Se = cinfo->Se; |
790 | Al = cinfo->Al; | 790 | Al = cinfo->Al; |
791 | natural_order = cinfo->natural_order; | 791 | natural_order = cinfo->natural_order; |
792 | 792 | ||
793 | /* Load up working state. | 793 | /* Load up working state. |
794 | * We can avoid loading/saving bitread state if in an EOB run. | 794 | * We can avoid loading/saving bitread state if in an EOB run. |
795 | */ | 795 | */ |
796 | EOBRUN = entropy->saved.EOBRUN; /* only part of saved state we need */ | 796 | EOBRUN = entropy->saved.EOBRUN; /* only part of saved state we need */ |
797 | 797 | ||
798 | /* There is always only one block per MCU */ | 798 | /* There is always only one block per MCU */ |
799 | 799 | ||
800 | if (EOBRUN > 0) /* if it's a band of zeroes... */ | 800 | if (EOBRUN > 0) /* if it's a band of zeroes... */ |
801 | EOBRUN--; /* ...process it now (we do nothing) */ | 801 | EOBRUN--; /* ...process it now (we do nothing) */ |
802 | else { | 802 | else { |
803 | BITREAD_LOAD_STATE(cinfo,entropy->bitstate); | 803 | BITREAD_LOAD_STATE(cinfo,entropy->bitstate); |
804 | block = MCU_data[0]; | 804 | block = MCU_data[0]; |
805 | tbl = entropy->ac_derived_tbl; | 805 | tbl = entropy->ac_derived_tbl; |
806 | 806 | ||
807 | for (k = cinfo->Ss; k <= Se; k++) { | 807 | for (k = cinfo->Ss; k <= Se; k++) { |
808 | HUFF_DECODE(s, br_state, tbl, return FALSE, label2); | 808 | HUFF_DECODE(s, br_state, tbl, return FALSE, label2); |
809 | r = s >> 4; | 809 | r = s >> 4; |
810 | s &= 15; | 810 | s &= 15; |
811 | if (s) { | 811 | if (s) { |
812 | k += r; | 812 | k += r; |
813 | CHECK_BIT_BUFFER(br_state, s, return FALSE); | 813 | CHECK_BIT_BUFFER(br_state, s, return FALSE); |
814 | r = GET_BITS(s); | 814 | r = GET_BITS(s); |
815 | s = HUFF_EXTEND(r, s); | 815 | s = HUFF_EXTEND(r, s); |
816 | /* Scale and output coefficient in natural (dezigzagged) order */ | 816 | /* Scale and output coefficient in natural (dezigzagged) order */ |
817 | (*block)[natural_order[k]] = (JCOEF) (s << Al); | 817 | (*block)[natural_order[k]] = (JCOEF) (s << Al); |
818 | } else { | 818 | } else { |
819 | if (r == 15) { /* ZRL */ | 819 | if (r == 15) { /* ZRL */ |
820 | k += 15; /* skip 15 zeroes in band */ | 820 | k += 15; /* skip 15 zeroes in band */ |
821 | } else { /* EOBr, run length is 2^r + appended bits */ | 821 | } else { /* EOBr, run length is 2^r + appended bits */ |
822 | EOBRUN = 1 << r; | 822 | EOBRUN = 1 << r; |
823 | if (r) { /* EOBr, r > 0 */ | 823 | if (r) { /* EOBr, r > 0 */ |
824 | CHECK_BIT_BUFFER(br_state, r, return FALSE); | 824 | CHECK_BIT_BUFFER(br_state, r, return FALSE); |
825 | r = GET_BITS(r); | 825 | r = GET_BITS(r); |
826 | EOBRUN += r; | 826 | EOBRUN += r; |
827 | } | 827 | } |
828 | EOBRUN--; /* this band is processed at this moment */ | 828 | EOBRUN--; /* this band is processed at this moment */ |
829 | break; /* force end-of-band */ | 829 | break; /* force end-of-band */ |
830 | } | 830 | } |
831 | } | 831 | } |
832 | } | 832 | } |
833 | 833 | ||
834 | BITREAD_SAVE_STATE(cinfo,entropy->bitstate); | 834 | BITREAD_SAVE_STATE(cinfo,entropy->bitstate); |
835 | } | 835 | } |
836 | 836 | ||
837 | /* Completed MCU, so update state */ | 837 | /* Completed MCU, so update state */ |
838 | entropy->saved.EOBRUN = EOBRUN; /* only part of saved state we need */ | 838 | entropy->saved.EOBRUN = EOBRUN; /* only part of saved state we need */ |
839 | } | 839 | } |
840 | 840 | ||
841 | /* Account for restart interval (no-op if not using restarts) */ | 841 | /* Account for restart interval (no-op if not using restarts) */ |
842 | entropy->restarts_to_go--; | 842 | entropy->restarts_to_go--; |
843 | 843 | ||
844 | return TRUE; | 844 | return TRUE; |
845 | } | 845 | } |
846 | 846 | ||
847 | 847 | ||
848 | /* | 848 | /* |
849 | * MCU decoding for DC successive approximation refinement scan. | 849 | * MCU decoding for DC successive approximation refinement scan. |
850 | * Note: we assume such scans can be multi-component, although the spec | 850 | * Note: we assume such scans can be multi-component, although the spec |
851 | * is not very clear on the point. | 851 | * is not very clear on the point. |
852 | */ | 852 | */ |
853 | 853 | ||
854 | METHODDEF(boolean) | 854 | METHODDEF(boolean) |
855 | decode_mcu_DC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) | 855 | decode_mcu_DC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) |
856 | { | 856 | { |
857 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; | 857 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; |
858 | int p1 = 1 << cinfo->Al; /* 1 in the bit position being coded */ | 858 | int p1 = 1 << cinfo->Al; /* 1 in the bit position being coded */ |
859 | int blkn; | 859 | int blkn; |
860 | JBLOCKROW block; | 860 | JBLOCKROW block; |
861 | BITREAD_STATE_VARS; | 861 | BITREAD_STATE_VARS; |
862 | 862 | ||
863 | /* Process restart marker if needed; may have to suspend */ | 863 | /* Process restart marker if needed; may have to suspend */ |
864 | if (cinfo->restart_interval) { | 864 | if (cinfo->restart_interval) { |
865 | if (entropy->restarts_to_go == 0) | 865 | if (entropy->restarts_to_go == 0) |
866 | if (! process_restart(cinfo)) | 866 | if (! process_restart(cinfo)) |
867 | return FALSE; | 867 | return FALSE; |
868 | } | 868 | } |
869 | 869 | ||
870 | /* Not worth the cycles to check insufficient_data here, | 870 | /* Not worth the cycles to check insufficient_data here, |
871 | * since we will not change the data anyway if we read zeroes. | 871 | * since we will not change the data anyway if we read zeroes. |
872 | */ | 872 | */ |
873 | 873 | ||
874 | /* Load up working state */ | 874 | /* Load up working state */ |
875 | BITREAD_LOAD_STATE(cinfo,entropy->bitstate); | 875 | BITREAD_LOAD_STATE(cinfo,entropy->bitstate); |
876 | 876 | ||
877 | /* Outer loop handles each block in the MCU */ | 877 | /* Outer loop handles each block in the MCU */ |
878 | 878 | ||
879 | for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { | 879 | for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { |
880 | block = MCU_data[blkn]; | 880 | block = MCU_data[blkn]; |
881 | 881 | ||
882 | /* Encoded data is simply the next bit of the two's-complement DC value */ | 882 | /* Encoded data is simply the next bit of the two's-complement DC value */ |
883 | CHECK_BIT_BUFFER(br_state, 1, return FALSE); | 883 | CHECK_BIT_BUFFER(br_state, 1, return FALSE); |
884 | if (GET_BITS(1)) | 884 | if (GET_BITS(1)) |
885 | (*block)[0] |= p1; | 885 | (*block)[0] |= p1; |
886 | /* Note: since we use |=, repeating the assignment later is safe */ | 886 | /* Note: since we use |=, repeating the assignment later is safe */ |
887 | } | 887 | } |
888 | 888 | ||
889 | /* Completed MCU, so update state */ | 889 | /* Completed MCU, so update state */ |
890 | BITREAD_SAVE_STATE(cinfo,entropy->bitstate); | 890 | BITREAD_SAVE_STATE(cinfo,entropy->bitstate); |
891 | 891 | ||
892 | /* Account for restart interval (no-op if not using restarts) */ | 892 | /* Account for restart interval (no-op if not using restarts) */ |
893 | entropy->restarts_to_go--; | 893 | entropy->restarts_to_go--; |
894 | 894 | ||
895 | return TRUE; | 895 | return TRUE; |
896 | } | 896 | } |
897 | 897 | ||
898 | 898 | ||
899 | /* | 899 | /* |
900 | * MCU decoding for AC successive approximation refinement scan. | 900 | * MCU decoding for AC successive approximation refinement scan. |
901 | */ | 901 | */ |
902 | 902 | ||
903 | METHODDEF(boolean) | 903 | METHODDEF(boolean) |
904 | decode_mcu_AC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) | 904 | decode_mcu_AC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) |
905 | { | 905 | { |
906 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; | 906 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; |
907 | register int s, k, r; | 907 | register int s, k, r; |
908 | unsigned int EOBRUN; | 908 | unsigned int EOBRUN; |
909 | int Se, p1, m1; | 909 | int Se, p1, m1; |
910 | const int * natural_order; | 910 | const int * natural_order; |
911 | JBLOCKROW block; | 911 | JBLOCKROW block; |
912 | JCOEFPTR thiscoef; | 912 | JCOEFPTR thiscoef; |
913 | BITREAD_STATE_VARS; | 913 | BITREAD_STATE_VARS; |
914 | d_derived_tbl * tbl; | 914 | d_derived_tbl * tbl; |
915 | int num_newnz; | 915 | int num_newnz; |
916 | int newnz_pos[DCTSIZE2]; | 916 | int newnz_pos[DCTSIZE2]; |
917 | 917 | ||
918 | /* Process restart marker if needed; may have to suspend */ | 918 | /* Process restart marker if needed; may have to suspend */ |
919 | if (cinfo->restart_interval) { | 919 | if (cinfo->restart_interval) { |
920 | if (entropy->restarts_to_go == 0) | 920 | if (entropy->restarts_to_go == 0) |
921 | if (! process_restart(cinfo)) | 921 | if (! process_restart(cinfo)) |
922 | return FALSE; | 922 | return FALSE; |
923 | } | 923 | } |
924 | 924 | ||
925 | /* If we've run out of data, don't modify the MCU. | 925 | /* If we've run out of data, don't modify the MCU. |
926 | */ | 926 | */ |
927 | if (! entropy->insufficient_data) { | 927 | if (! entropy->insufficient_data) { |
928 | 928 | ||
929 | Se = cinfo->Se; | 929 | Se = cinfo->Se; |
930 | p1 = 1 << cinfo->Al; /* 1 in the bit position being coded */ | 930 | p1 = 1 << cinfo->Al; /* 1 in the bit position being coded */ |
931 | m1 = (-1) << cinfo->Al; /* -1 in the bit position being coded */ | 931 | m1 = (-1) << cinfo->Al; /* -1 in the bit position being coded */ |
932 | natural_order = cinfo->natural_order; | 932 | natural_order = cinfo->natural_order; |
933 | 933 | ||
934 | /* Load up working state */ | 934 | /* Load up working state */ |
935 | BITREAD_LOAD_STATE(cinfo,entropy->bitstate); | 935 | BITREAD_LOAD_STATE(cinfo,entropy->bitstate); |
936 | EOBRUN = entropy->saved.EOBRUN; /* only part of saved state we need */ | 936 | EOBRUN = entropy->saved.EOBRUN; /* only part of saved state we need */ |
937 | 937 | ||
938 | /* There is always only one block per MCU */ | 938 | /* There is always only one block per MCU */ |
939 | block = MCU_data[0]; | 939 | block = MCU_data[0]; |
940 | tbl = entropy->ac_derived_tbl; | 940 | tbl = entropy->ac_derived_tbl; |
941 | 941 | ||
942 | /* If we are forced to suspend, we must undo the assignments to any newly | 942 | /* If we are forced to suspend, we must undo the assignments to any newly |
943 | * nonzero coefficients in the block, because otherwise we'd get confused | 943 | * nonzero coefficients in the block, because otherwise we'd get confused |
944 | * next time about which coefficients were already nonzero. | 944 | * next time about which coefficients were already nonzero. |
945 | * But we need not undo addition of bits to already-nonzero coefficients; | 945 | * But we need not undo addition of bits to already-nonzero coefficients; |
946 | * instead, we can test the current bit to see if we already did it. | 946 | * instead, we can test the current bit to see if we already did it. |
947 | */ | 947 | */ |
948 | num_newnz = 0; | 948 | num_newnz = 0; |
949 | 949 | ||
950 | /* initialize coefficient loop counter to start of band */ | 950 | /* initialize coefficient loop counter to start of band */ |
951 | k = cinfo->Ss; | 951 | k = cinfo->Ss; |
952 | 952 | ||
953 | if (EOBRUN == 0) { | 953 | if (EOBRUN == 0) { |
954 | for (; k <= Se; k++) { | 954 | for (; k <= Se; k++) { |
955 | HUFF_DECODE(s, br_state, tbl, goto undoit, label3); | 955 | HUFF_DECODE(s, br_state, tbl, goto undoit, label3); |
956 | r = s >> 4; | 956 | r = s >> 4; |
957 | s &= 15; | 957 | s &= 15; |
958 | if (s) { | 958 | if (s) { |
959 | if (s != 1) /* size of new coef should always be 1 */ | 959 | if (s != 1) /* size of new coef should always be 1 */ |
960 | WARNMS(cinfo, JWRN_HUFF_BAD_CODE); | 960 | WARNMS(cinfo, JWRN_HUFF_BAD_CODE); |
961 | CHECK_BIT_BUFFER(br_state, 1, goto undoit); | 961 | CHECK_BIT_BUFFER(br_state, 1, goto undoit); |
962 | if (GET_BITS(1)) | 962 | if (GET_BITS(1)) |
963 | s = p1; /* newly nonzero coef is positive */ | 963 | s = p1; /* newly nonzero coef is positive */ |
964 | else | 964 | else |
965 | s = m1; /* newly nonzero coef is negative */ | 965 | s = m1; /* newly nonzero coef is negative */ |
966 | } else { | 966 | } else { |
967 | if (r != 15) { | 967 | if (r != 15) { |
968 | EOBRUN = 1 << r; /* EOBr, run length is 2^r + appended bits */ | 968 | EOBRUN = 1 << r; /* EOBr, run length is 2^r + appended bits */ |
969 | if (r) { | 969 | if (r) { |
970 | CHECK_BIT_BUFFER(br_state, r, goto undoit); | 970 | CHECK_BIT_BUFFER(br_state, r, goto undoit); |
971 | r = GET_BITS(r); | 971 | r = GET_BITS(r); |
972 | EOBRUN += r; | 972 | EOBRUN += r; |
973 | } | 973 | } |
974 | break; /* rest of block is handled by EOB logic */ | 974 | break; /* rest of block is handled by EOB logic */ |
975 | } | 975 | } |
976 | /* note s = 0 for processing ZRL */ | 976 | /* note s = 0 for processing ZRL */ |
977 | } | 977 | } |
978 | /* Advance over already-nonzero coefs and r still-zero coefs, | 978 | /* Advance over already-nonzero coefs and r still-zero coefs, |
979 | * appending correction bits to the nonzeroes. A correction bit is 1 | 979 | * appending correction bits to the nonzeroes. A correction bit is 1 |
980 | * if the absolute value of the coefficient must be increased. | 980 | * if the absolute value of the coefficient must be increased. |
981 | */ | 981 | */ |
982 | do { | 982 | do { |
983 | thiscoef = *block + natural_order[k]; | 983 | thiscoef = *block + natural_order[k]; |
984 | if (*thiscoef != 0) { | 984 | if (*thiscoef != 0) { |
985 | CHECK_BIT_BUFFER(br_state, 1, goto undoit); | 985 | CHECK_BIT_BUFFER(br_state, 1, goto undoit); |
986 | if (GET_BITS(1)) { | 986 | if (GET_BITS(1)) { |
987 | if ((*thiscoef & p1) == 0) { /* do nothing if already set it */ | 987 | if ((*thiscoef & p1) == 0) { /* do nothing if already set it */ |
988 | if (*thiscoef >= 0) | 988 | if (*thiscoef >= 0) |
989 | *thiscoef += p1; | 989 | *thiscoef += p1; |
990 | else | 990 | else |
991 | *thiscoef += m1; | 991 | *thiscoef += m1; |
992 | } | 992 | } |
993 | } | 993 | } |
994 | } else { | 994 | } else { |
995 | if (--r < 0) | 995 | if (--r < 0) |
996 | break; /* reached target zero coefficient */ | 996 | break; /* reached target zero coefficient */ |
997 | } | 997 | } |
998 | k++; | 998 | k++; |
999 | } while (k <= Se); | 999 | } while (k <= Se); |
1000 | if (s) { | 1000 | if (s) { |
1001 | int pos = natural_order[k]; | 1001 | int pos = natural_order[k]; |
1002 | /* Output newly nonzero coefficient */ | 1002 | /* Output newly nonzero coefficient */ |
1003 | (*block)[pos] = (JCOEF) s; | 1003 | (*block)[pos] = (JCOEF) s; |
1004 | /* Remember its position in case we have to suspend */ | 1004 | /* Remember its position in case we have to suspend */ |
1005 | newnz_pos[num_newnz++] = pos; | 1005 | newnz_pos[num_newnz++] = pos; |
1006 | } | 1006 | } |
1007 | } | 1007 | } |
1008 | } | 1008 | } |
1009 | 1009 | ||
1010 | if (EOBRUN > 0) { | 1010 | if (EOBRUN > 0) { |
1011 | /* Scan any remaining coefficient positions after the end-of-band | 1011 | /* Scan any remaining coefficient positions after the end-of-band |
1012 | * (the last newly nonzero coefficient, if any). Append a correction | 1012 | * (the last newly nonzero coefficient, if any). Append a correction |
1013 | * bit to each already-nonzero coefficient. A correction bit is 1 | 1013 | * bit to each already-nonzero coefficient. A correction bit is 1 |
1014 | * if the absolute value of the coefficient must be increased. | 1014 | * if the absolute value of the coefficient must be increased. |
1015 | */ | 1015 | */ |
1016 | for (; k <= Se; k++) { | 1016 | for (; k <= Se; k++) { |
1017 | thiscoef = *block + natural_order[k]; | 1017 | thiscoef = *block + natural_order[k]; |
1018 | if (*thiscoef != 0) { | 1018 | if (*thiscoef != 0) { |
1019 | CHECK_BIT_BUFFER(br_state, 1, goto undoit); | 1019 | CHECK_BIT_BUFFER(br_state, 1, goto undoit); |
1020 | if (GET_BITS(1)) { | 1020 | if (GET_BITS(1)) { |
1021 | if ((*thiscoef & p1) == 0) { /* do nothing if already changed it */ | 1021 | if ((*thiscoef & p1) == 0) { /* do nothing if already changed it */ |
1022 | if (*thiscoef >= 0) | 1022 | if (*thiscoef >= 0) |
1023 | *thiscoef += p1; | 1023 | *thiscoef += p1; |
1024 | else | 1024 | else |
1025 | *thiscoef += m1; | 1025 | *thiscoef += m1; |
1026 | } | 1026 | } |
1027 | } | 1027 | } |
1028 | } | 1028 | } |
1029 | } | 1029 | } |
1030 | /* Count one block completed in EOB run */ | 1030 | /* Count one block completed in EOB run */ |
1031 | EOBRUN--; | 1031 | EOBRUN--; |
1032 | } | 1032 | } |
1033 | 1033 | ||
1034 | /* Completed MCU, so update state */ | 1034 | /* Completed MCU, so update state */ |
1035 | BITREAD_SAVE_STATE(cinfo,entropy->bitstate); | 1035 | BITREAD_SAVE_STATE(cinfo,entropy->bitstate); |
1036 | entropy->saved.EOBRUN = EOBRUN; /* only part of saved state we need */ | 1036 | entropy->saved.EOBRUN = EOBRUN; /* only part of saved state we need */ |
1037 | } | 1037 | } |
1038 | 1038 | ||
1039 | /* Account for restart interval (no-op if not using restarts) */ | 1039 | /* Account for restart interval (no-op if not using restarts) */ |
1040 | entropy->restarts_to_go--; | 1040 | entropy->restarts_to_go--; |
1041 | 1041 | ||
1042 | return TRUE; | 1042 | return TRUE; |
1043 | 1043 | ||
1044 | undoit: | 1044 | undoit: |
1045 | /* Re-zero any output coefficients that we made newly nonzero */ | 1045 | /* Re-zero any output coefficients that we made newly nonzero */ |
1046 | while (num_newnz > 0) | 1046 | while (num_newnz > 0) |
1047 | (*block)[newnz_pos[--num_newnz]] = 0; | 1047 | (*block)[newnz_pos[--num_newnz]] = 0; |
1048 | 1048 | ||
1049 | return FALSE; | 1049 | return FALSE; |
1050 | } | 1050 | } |
1051 | 1051 | ||
1052 | 1052 | ||
1053 | /* | 1053 | /* |
1054 | * Decode one MCU's worth of Huffman-compressed coefficients, | 1054 | * Decode one MCU's worth of Huffman-compressed coefficients, |
1055 | * partial blocks. | 1055 | * partial blocks. |
1056 | */ | 1056 | */ |
1057 | 1057 | ||
1058 | METHODDEF(boolean) | 1058 | METHODDEF(boolean) |
1059 | decode_mcu_sub (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) | 1059 | decode_mcu_sub (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) |
1060 | { | 1060 | { |
1061 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; | 1061 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; |
1062 | const int * natural_order; | 1062 | const int * natural_order; |
1063 | int Se, blkn; | 1063 | int Se, blkn; |
1064 | BITREAD_STATE_VARS; | 1064 | BITREAD_STATE_VARS; |
1065 | savable_state state; | 1065 | savable_state state; |
1066 | 1066 | ||
1067 | /* Process restart marker if needed; may have to suspend */ | 1067 | /* Process restart marker if needed; may have to suspend */ |
1068 | if (cinfo->restart_interval) { | 1068 | if (cinfo->restart_interval) { |
1069 | if (entropy->restarts_to_go == 0) | 1069 | if (entropy->restarts_to_go == 0) |
1070 | if (! process_restart(cinfo)) | 1070 | if (! process_restart(cinfo)) |
1071 | return FALSE; | 1071 | return FALSE; |
1072 | } | 1072 | } |
1073 | 1073 | ||
1074 | /* If we've run out of data, just leave the MCU set to zeroes. | 1074 | /* If we've run out of data, just leave the MCU set to zeroes. |
1075 | * This way, we return uniform gray for the remainder of the segment. | 1075 | * This way, we return uniform gray for the remainder of the segment. |
1076 | */ | 1076 | */ |
1077 | if (! entropy->insufficient_data) { | 1077 | if (! entropy->insufficient_data) { |
1078 | 1078 | ||
1079 | natural_order = cinfo->natural_order; | 1079 | natural_order = cinfo->natural_order; |
1080 | Se = cinfo->lim_Se; | 1080 | Se = cinfo->lim_Se; |
1081 | 1081 | ||
1082 | /* Load up working state */ | 1082 | /* Load up working state */ |
1083 | BITREAD_LOAD_STATE(cinfo,entropy->bitstate); | 1083 | BITREAD_LOAD_STATE(cinfo,entropy->bitstate); |
1084 | ASSIGN_STATE(state, entropy->saved); | 1084 | ASSIGN_STATE(state, entropy->saved); |
1085 | 1085 | ||
1086 | /* Outer loop handles each block in the MCU */ | 1086 | /* Outer loop handles each block in the MCU */ |
1087 | 1087 | ||
1088 | for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { | 1088 | for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { |
1089 | JBLOCKROW block = MCU_data[blkn]; | 1089 | JBLOCKROW block = MCU_data[blkn]; |
1090 | d_derived_tbl * htbl; | 1090 | d_derived_tbl * htbl; |
1091 | register int s, k, r; | 1091 | register int s, k, r; |
1092 | int coef_limit, ci; | 1092 | int coef_limit, ci; |
1093 | 1093 | ||
1094 | /* Decode a single block's worth of coefficients */ | 1094 | /* Decode a single block's worth of coefficients */ |
1095 | 1095 | ||
1096 | /* Section F.2.2.1: decode the DC coefficient difference */ | 1096 | /* Section F.2.2.1: decode the DC coefficient difference */ |
1097 | htbl = entropy->dc_cur_tbls[blkn]; | 1097 | htbl = entropy->dc_cur_tbls[blkn]; |
1098 | HUFF_DECODE(s, br_state, htbl, return FALSE, label1); | 1098 | HUFF_DECODE(s, br_state, htbl, return FALSE, label1); |
1099 | 1099 | ||
1100 | htbl = entropy->ac_cur_tbls[blkn]; | 1100 | htbl = entropy->ac_cur_tbls[blkn]; |
1101 | k = 1; | 1101 | k = 1; |
1102 | coef_limit = entropy->coef_limit[blkn]; | 1102 | coef_limit = entropy->coef_limit[blkn]; |
1103 | if (coef_limit) { | 1103 | if (coef_limit) { |
1104 | /* Convert DC difference to actual value, update last_dc_val */ | 1104 | /* Convert DC difference to actual value, update last_dc_val */ |
1105 | if (s) { | 1105 | if (s) { |
1106 | CHECK_BIT_BUFFER(br_state, s, return FALSE); | 1106 | CHECK_BIT_BUFFER(br_state, s, return FALSE); |
1107 | r = GET_BITS(s); | 1107 | r = GET_BITS(s); |
1108 | s = HUFF_EXTEND(r, s); | 1108 | s = HUFF_EXTEND(r, s); |
1109 | } | 1109 | } |
1110 | ci = cinfo->MCU_membership[blkn]; | 1110 | ci = cinfo->MCU_membership[blkn]; |
1111 | s += state.last_dc_val[ci]; | 1111 | s += state.last_dc_val[ci]; |
1112 | state.last_dc_val[ci] = s; | 1112 | state.last_dc_val[ci] = s; |
1113 | /* Output the DC coefficient */ | 1113 | /* Output the DC coefficient */ |
1114 | (*block)[0] = (JCOEF) s; | 1114 | (*block)[0] = (JCOEF) s; |
1115 | 1115 | ||
1116 | /* Section F.2.2.2: decode the AC coefficients */ | 1116 | /* Section F.2.2.2: decode the AC coefficients */ |
1117 | /* Since zeroes are skipped, output area must be cleared beforehand */ | 1117 | /* Since zeroes are skipped, output area must be cleared beforehand */ |
1118 | for (; k < coef_limit; k++) { | 1118 | for (; k < coef_limit; k++) { |
1119 | HUFF_DECODE(s, br_state, htbl, return FALSE, label2); | 1119 | HUFF_DECODE(s, br_state, htbl, return FALSE, label2); |
1120 | 1120 | ||
1121 | r = s >> 4; | 1121 | r = s >> 4; |
1122 | s &= 15; | 1122 | s &= 15; |
1123 | 1123 | ||
1124 | if (s) { | 1124 | if (s) { |
1125 | k += r; | 1125 | k += r; |
1126 | CHECK_BIT_BUFFER(br_state, s, return FALSE); | 1126 | CHECK_BIT_BUFFER(br_state, s, return FALSE); |
1127 | r = GET_BITS(s); | 1127 | r = GET_BITS(s); |
1128 | s = HUFF_EXTEND(r, s); | 1128 | s = HUFF_EXTEND(r, s); |
1129 | /* Output coefficient in natural (dezigzagged) order. | 1129 | /* Output coefficient in natural (dezigzagged) order. |
1130 | * Note: the extra entries in natural_order[] will save us | 1130 | * Note: the extra entries in natural_order[] will save us |
1131 | * if k > Se, which could happen if the data is corrupted. | 1131 | * if k > Se, which could happen if the data is corrupted. |
1132 | */ | 1132 | */ |
1133 | (*block)[natural_order[k]] = (JCOEF) s; | 1133 | (*block)[natural_order[k]] = (JCOEF) s; |
1134 | } else { | 1134 | } else { |
1135 | if (r != 15) | 1135 | if (r != 15) |
1136 | goto EndOfBlock; | 1136 | goto EndOfBlock; |
1137 | k += 15; | 1137 | k += 15; |
1138 | } | 1138 | } |
1139 | } | 1139 | } |
1140 | } else { | 1140 | } else { |
1141 | if (s) { | 1141 | if (s) { |
1142 | CHECK_BIT_BUFFER(br_state, s, return FALSE); | 1142 | CHECK_BIT_BUFFER(br_state, s, return FALSE); |
1143 | DROP_BITS(s); | 1143 | DROP_BITS(s); |
1144 | } | 1144 | } |
1145 | } | 1145 | } |
1146 | 1146 | ||
1147 | /* Section F.2.2.2: decode the AC coefficients */ | 1147 | /* Section F.2.2.2: decode the AC coefficients */ |
1148 | /* In this path we just discard the values */ | 1148 | /* In this path we just discard the values */ |
1149 | for (; k <= Se; k++) { | 1149 | for (; k <= Se; k++) { |
1150 | HUFF_DECODE(s, br_state, htbl, return FALSE, label3); | 1150 | HUFF_DECODE(s, br_state, htbl, return FALSE, label3); |
1151 | 1151 | ||
1152 | r = s >> 4; | 1152 | r = s >> 4; |
1153 | s &= 15; | 1153 | s &= 15; |
1154 | 1154 | ||
1155 | if (s) { | 1155 | if (s) { |
1156 | k += r; | 1156 | k += r; |
1157 | CHECK_BIT_BUFFER(br_state, s, return FALSE); | 1157 | CHECK_BIT_BUFFER(br_state, s, return FALSE); |
1158 | DROP_BITS(s); | 1158 | DROP_BITS(s); |
1159 | } else { | 1159 | } else { |
1160 | if (r != 15) | 1160 | if (r != 15) |
1161 | break; | 1161 | break; |
1162 | k += 15; | 1162 | k += 15; |
1163 | } | 1163 | } |
1164 | } | 1164 | } |
1165 | 1165 | ||
1166 | EndOfBlock: ; | 1166 | EndOfBlock: ; |
1167 | } | 1167 | } |
1168 | 1168 | ||
1169 | /* Completed MCU, so update state */ | 1169 | /* Completed MCU, so update state */ |
1170 | BITREAD_SAVE_STATE(cinfo,entropy->bitstate); | 1170 | BITREAD_SAVE_STATE(cinfo,entropy->bitstate); |
1171 | ASSIGN_STATE(entropy->saved, state); | 1171 | ASSIGN_STATE(entropy->saved, state); |
1172 | } | 1172 | } |
1173 | 1173 | ||
1174 | /* Account for restart interval (no-op if not using restarts) */ | 1174 | /* Account for restart interval (no-op if not using restarts) */ |
1175 | entropy->restarts_to_go--; | 1175 | entropy->restarts_to_go--; |
1176 | 1176 | ||
1177 | return TRUE; | 1177 | return TRUE; |
1178 | } | 1178 | } |
1179 | 1179 | ||
1180 | 1180 | ||
1181 | /* | 1181 | /* |
1182 | * Decode one MCU's worth of Huffman-compressed coefficients, | 1182 | * Decode one MCU's worth of Huffman-compressed coefficients, |
1183 | * full-size blocks. | 1183 | * full-size blocks. |
1184 | */ | 1184 | */ |
1185 | 1185 | ||
1186 | METHODDEF(boolean) | 1186 | METHODDEF(boolean) |
1187 | decode_mcu (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) | 1187 | decode_mcu (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) |
1188 | { | 1188 | { |
1189 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; | 1189 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; |
1190 | int blkn; | 1190 | int blkn; |
1191 | BITREAD_STATE_VARS; | 1191 | BITREAD_STATE_VARS; |
1192 | savable_state state; | 1192 | savable_state state; |
1193 | 1193 | ||
1194 | /* Process restart marker if needed; may have to suspend */ | 1194 | /* Process restart marker if needed; may have to suspend */ |
1195 | if (cinfo->restart_interval) { | 1195 | if (cinfo->restart_interval) { |
1196 | if (entropy->restarts_to_go == 0) | 1196 | if (entropy->restarts_to_go == 0) |
1197 | if (! process_restart(cinfo)) | 1197 | if (! process_restart(cinfo)) |
1198 | return FALSE; | 1198 | return FALSE; |
1199 | } | 1199 | } |
1200 | 1200 | ||
1201 | /* If we've run out of data, just leave the MCU set to zeroes. | 1201 | /* If we've run out of data, just leave the MCU set to zeroes. |
1202 | * This way, we return uniform gray for the remainder of the segment. | 1202 | * This way, we return uniform gray for the remainder of the segment. |
1203 | */ | 1203 | */ |
1204 | if (! entropy->insufficient_data) { | 1204 | if (! entropy->insufficient_data) { |
1205 | 1205 | ||
1206 | /* Load up working state */ | 1206 | /* Load up working state */ |
1207 | BITREAD_LOAD_STATE(cinfo,entropy->bitstate); | 1207 | BITREAD_LOAD_STATE(cinfo,entropy->bitstate); |
1208 | ASSIGN_STATE(state, entropy->saved); | 1208 | ASSIGN_STATE(state, entropy->saved); |
1209 | 1209 | ||
1210 | /* Outer loop handles each block in the MCU */ | 1210 | /* Outer loop handles each block in the MCU */ |
1211 | 1211 | ||
1212 | for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { | 1212 | for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { |
1213 | JBLOCKROW block = MCU_data[blkn]; | 1213 | JBLOCKROW block = MCU_data[blkn]; |
1214 | d_derived_tbl * htbl; | 1214 | d_derived_tbl * htbl; |
1215 | register int s, k, r; | 1215 | register int s, k, r; |
1216 | int coef_limit, ci; | 1216 | int coef_limit, ci; |
1217 | 1217 | ||
1218 | /* Decode a single block's worth of coefficients */ | 1218 | /* Decode a single block's worth of coefficients */ |
1219 | 1219 | ||
1220 | /* Section F.2.2.1: decode the DC coefficient difference */ | 1220 | /* Section F.2.2.1: decode the DC coefficient difference */ |
1221 | htbl = entropy->dc_cur_tbls[blkn]; | 1221 | htbl = entropy->dc_cur_tbls[blkn]; |
1222 | HUFF_DECODE(s, br_state, htbl, return FALSE, label1); | 1222 | HUFF_DECODE(s, br_state, htbl, return FALSE, label1); |
1223 | 1223 | ||
1224 | htbl = entropy->ac_cur_tbls[blkn]; | 1224 | htbl = entropy->ac_cur_tbls[blkn]; |
1225 | k = 1; | 1225 | k = 1; |
1226 | coef_limit = entropy->coef_limit[blkn]; | 1226 | coef_limit = entropy->coef_limit[blkn]; |
1227 | if (coef_limit) { | 1227 | if (coef_limit) { |
1228 | /* Convert DC difference to actual value, update last_dc_val */ | 1228 | /* Convert DC difference to actual value, update last_dc_val */ |
1229 | if (s) { | 1229 | if (s) { |
1230 | CHECK_BIT_BUFFER(br_state, s, return FALSE); | 1230 | CHECK_BIT_BUFFER(br_state, s, return FALSE); |
1231 | r = GET_BITS(s); | 1231 | r = GET_BITS(s); |
1232 | s = HUFF_EXTEND(r, s); | 1232 | s = HUFF_EXTEND(r, s); |
1233 | } | 1233 | } |
1234 | ci = cinfo->MCU_membership[blkn]; | 1234 | ci = cinfo->MCU_membership[blkn]; |
1235 | s += state.last_dc_val[ci]; | 1235 | s += state.last_dc_val[ci]; |
1236 | state.last_dc_val[ci] = s; | 1236 | state.last_dc_val[ci] = s; |
1237 | /* Output the DC coefficient */ | 1237 | /* Output the DC coefficient */ |
1238 | (*block)[0] = (JCOEF) s; | 1238 | (*block)[0] = (JCOEF) s; |
1239 | 1239 | ||
1240 | /* Section F.2.2.2: decode the AC coefficients */ | 1240 | /* Section F.2.2.2: decode the AC coefficients */ |
1241 | /* Since zeroes are skipped, output area must be cleared beforehand */ | 1241 | /* Since zeroes are skipped, output area must be cleared beforehand */ |
1242 | for (; k < coef_limit; k++) { | 1242 | for (; k < coef_limit; k++) { |
1243 | HUFF_DECODE(s, br_state, htbl, return FALSE, label2); | 1243 | HUFF_DECODE(s, br_state, htbl, return FALSE, label2); |
1244 | 1244 | ||
1245 | r = s >> 4; | 1245 | r = s >> 4; |
1246 | s &= 15; | 1246 | s &= 15; |
1247 | 1247 | ||
1248 | if (s) { | 1248 | if (s) { |
1249 | k += r; | 1249 | k += r; |
1250 | CHECK_BIT_BUFFER(br_state, s, return FALSE); | 1250 | CHECK_BIT_BUFFER(br_state, s, return FALSE); |
1251 | r = GET_BITS(s); | 1251 | r = GET_BITS(s); |
1252 | s = HUFF_EXTEND(r, s); | 1252 | s = HUFF_EXTEND(r, s); |
1253 | /* Output coefficient in natural (dezigzagged) order. | 1253 | /* Output coefficient in natural (dezigzagged) order. |
1254 | * Note: the extra entries in jpeg_natural_order[] will save us | 1254 | * Note: the extra entries in jpeg_natural_order[] will save us |
1255 | * if k >= DCTSIZE2, which could happen if the data is corrupted. | 1255 | * if k >= DCTSIZE2, which could happen if the data is corrupted. |
1256 | */ | 1256 | */ |
1257 | (*block)[jpeg_natural_order[k]] = (JCOEF) s; | 1257 | (*block)[jpeg_natural_order[k]] = (JCOEF) s; |
1258 | } else { | 1258 | } else { |
1259 | if (r != 15) | 1259 | if (r != 15) |
1260 | goto EndOfBlock; | 1260 | goto EndOfBlock; |
1261 | k += 15; | 1261 | k += 15; |
1262 | } | 1262 | } |
1263 | } | 1263 | } |
1264 | } else { | 1264 | } else { |
1265 | if (s) { | 1265 | if (s) { |
1266 | CHECK_BIT_BUFFER(br_state, s, return FALSE); | 1266 | CHECK_BIT_BUFFER(br_state, s, return FALSE); |
1267 | DROP_BITS(s); | 1267 | DROP_BITS(s); |
1268 | } | 1268 | } |
1269 | } | 1269 | } |
1270 | 1270 | ||
1271 | /* Section F.2.2.2: decode the AC coefficients */ | 1271 | /* Section F.2.2.2: decode the AC coefficients */ |
1272 | /* In this path we just discard the values */ | 1272 | /* In this path we just discard the values */ |
1273 | for (; k < DCTSIZE2; k++) { | 1273 | for (; k < DCTSIZE2; k++) { |
1274 | HUFF_DECODE(s, br_state, htbl, return FALSE, label3); | 1274 | HUFF_DECODE(s, br_state, htbl, return FALSE, label3); |
1275 | 1275 | ||
1276 | r = s >> 4; | 1276 | r = s >> 4; |
1277 | s &= 15; | 1277 | s &= 15; |
1278 | 1278 | ||
1279 | if (s) { | 1279 | if (s) { |
1280 | k += r; | 1280 | k += r; |
1281 | CHECK_BIT_BUFFER(br_state, s, return FALSE); | 1281 | CHECK_BIT_BUFFER(br_state, s, return FALSE); |
1282 | DROP_BITS(s); | 1282 | DROP_BITS(s); |
1283 | } else { | 1283 | } else { |
1284 | if (r != 15) | 1284 | if (r != 15) |
1285 | break; | 1285 | break; |
1286 | k += 15; | 1286 | k += 15; |
1287 | } | 1287 | } |
1288 | } | 1288 | } |
1289 | 1289 | ||
1290 | EndOfBlock: ; | 1290 | EndOfBlock: ; |
1291 | } | 1291 | } |
1292 | 1292 | ||
1293 | /* Completed MCU, so update state */ | 1293 | /* Completed MCU, so update state */ |
1294 | BITREAD_SAVE_STATE(cinfo,entropy->bitstate); | 1294 | BITREAD_SAVE_STATE(cinfo,entropy->bitstate); |
1295 | ASSIGN_STATE(entropy->saved, state); | 1295 | ASSIGN_STATE(entropy->saved, state); |
1296 | } | 1296 | } |
1297 | 1297 | ||
1298 | /* Account for restart interval (no-op if not using restarts) */ | 1298 | /* Account for restart interval (no-op if not using restarts) */ |
1299 | entropy->restarts_to_go--; | 1299 | entropy->restarts_to_go--; |
1300 | 1300 | ||
1301 | return TRUE; | 1301 | return TRUE; |
1302 | } | 1302 | } |
1303 | 1303 | ||
1304 | 1304 | ||
1305 | /* | 1305 | /* |
1306 | * Initialize for a Huffman-compressed scan. | 1306 | * Initialize for a Huffman-compressed scan. |
1307 | */ | 1307 | */ |
1308 | 1308 | ||
1309 | METHODDEF(void) | 1309 | METHODDEF(void) |
1310 | start_pass_huff_decoder (j_decompress_ptr cinfo) | 1310 | start_pass_huff_decoder (j_decompress_ptr cinfo) |
1311 | { | 1311 | { |
1312 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; | 1312 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; |
1313 | int ci, blkn, tbl, i; | 1313 | int ci, blkn, tbl, i; |
1314 | jpeg_component_info * compptr; | 1314 | jpeg_component_info * compptr; |
1315 | 1315 | ||
1316 | if (cinfo->progressive_mode) { | 1316 | if (cinfo->progressive_mode) { |
1317 | /* Validate progressive scan parameters */ | 1317 | /* Validate progressive scan parameters */ |
1318 | if (cinfo->Ss == 0) { | 1318 | if (cinfo->Ss == 0) { |
1319 | if (cinfo->Se != 0) | 1319 | if (cinfo->Se != 0) |
1320 | goto bad; | 1320 | goto bad; |
1321 | } else { | 1321 | } else { |
1322 | /* need not check Ss/Se < 0 since they came from unsigned bytes */ | 1322 | /* need not check Ss/Se < 0 since they came from unsigned bytes */ |
1323 | if (cinfo->Se < cinfo->Ss || cinfo->Se > cinfo->lim_Se) | 1323 | if (cinfo->Se < cinfo->Ss || cinfo->Se > cinfo->lim_Se) |
1324 | goto bad; | 1324 | goto bad; |
1325 | /* AC scans may have only one component */ | 1325 | /* AC scans may have only one component */ |
1326 | if (cinfo->comps_in_scan != 1) | 1326 | if (cinfo->comps_in_scan != 1) |
1327 | goto bad; | 1327 | goto bad; |
1328 | } | 1328 | } |
1329 | if (cinfo->Ah != 0) { | 1329 | if (cinfo->Ah != 0) { |
1330 | /* Successive approximation refinement scan: must have Al = Ah-1. */ | 1330 | /* Successive approximation refinement scan: must have Al = Ah-1. */ |
1331 | if (cinfo->Ah-1 != cinfo->Al) | 1331 | if (cinfo->Ah-1 != cinfo->Al) |
1332 | goto bad; | 1332 | goto bad; |
1333 | } | 1333 | } |
1334 | if (cinfo->Al > 13) { /* need not check for < 0 */ | 1334 | if (cinfo->Al > 13) { /* need not check for < 0 */ |
1335 | /* Arguably the maximum Al value should be less than 13 for 8-bit precision, | 1335 | /* Arguably the maximum Al value should be less than 13 for 8-bit precision, |
1336 | * but the spec doesn't say so, and we try to be liberal about what we | 1336 | * but the spec doesn't say so, and we try to be liberal about what we |
1337 | * accept. Note: large Al values could result in out-of-range DC | 1337 | * accept. Note: large Al values could result in out-of-range DC |
1338 | * coefficients during early scans, leading to bizarre displays due to | 1338 | * coefficients during early scans, leading to bizarre displays due to |
1339 | * overflows in the IDCT math. But we won't crash. | 1339 | * overflows in the IDCT math. But we won't crash. |
1340 | */ | 1340 | */ |
1341 | bad: | 1341 | bad: |
1342 | ERREXIT4(cinfo, JERR_BAD_PROGRESSION, | 1342 | ERREXIT4(cinfo, JERR_BAD_PROGRESSION, |
1343 | cinfo->Ss, cinfo->Se, cinfo->Ah, cinfo->Al); | 1343 | cinfo->Ss, cinfo->Se, cinfo->Ah, cinfo->Al); |
1344 | } | 1344 | } |
1345 | /* Update progression status, and verify that scan order is legal. | 1345 | /* Update progression status, and verify that scan order is legal. |
1346 | * Note that inter-scan inconsistencies are treated as warnings | 1346 | * Note that inter-scan inconsistencies are treated as warnings |
1347 | * not fatal errors ... not clear if this is right way to behave. | 1347 | * not fatal errors ... not clear if this is right way to behave. |
1348 | */ | 1348 | */ |
1349 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) { | 1349 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
1350 | int coefi, cindex = cinfo->cur_comp_info[ci]->component_index; | 1350 | int coefi, cindex = cinfo->cur_comp_info[ci]->component_index; |
1351 | int *coef_bit_ptr = & cinfo->coef_bits[cindex][0]; | 1351 | int *coef_bit_ptr = & cinfo->coef_bits[cindex][0]; |
1352 | if (cinfo->Ss && coef_bit_ptr[0] < 0) /* AC without prior DC scan */ | 1352 | if (cinfo->Ss && coef_bit_ptr[0] < 0) /* AC without prior DC scan */ |
1353 | WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, 0); | 1353 | WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, 0); |
1354 | for (coefi = cinfo->Ss; coefi <= cinfo->Se; coefi++) { | 1354 | for (coefi = cinfo->Ss; coefi <= cinfo->Se; coefi++) { |
1355 | int expected = (coef_bit_ptr[coefi] < 0) ? 0 : coef_bit_ptr[coefi]; | 1355 | int expected = (coef_bit_ptr[coefi] < 0) ? 0 : coef_bit_ptr[coefi]; |
1356 | if (cinfo->Ah != expected) | 1356 | if (cinfo->Ah != expected) |
1357 | WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, coefi); | 1357 | WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, coefi); |
1358 | coef_bit_ptr[coefi] = cinfo->Al; | 1358 | coef_bit_ptr[coefi] = cinfo->Al; |
1359 | } | 1359 | } |
1360 | } | 1360 | } |
1361 | 1361 | ||
1362 | /* Select MCU decoding routine */ | 1362 | /* Select MCU decoding routine */ |
1363 | if (cinfo->Ah == 0) { | 1363 | if (cinfo->Ah == 0) { |
1364 | if (cinfo->Ss == 0) | 1364 | if (cinfo->Ss == 0) |
1365 | entropy->pub.decode_mcu = decode_mcu_DC_first; | 1365 | entropy->pub.decode_mcu = decode_mcu_DC_first; |
1366 | else | 1366 | else |
1367 | entropy->pub.decode_mcu = decode_mcu_AC_first; | 1367 | entropy->pub.decode_mcu = decode_mcu_AC_first; |
1368 | } else { | 1368 | } else { |
1369 | if (cinfo->Ss == 0) | 1369 | if (cinfo->Ss == 0) |
1370 | entropy->pub.decode_mcu = decode_mcu_DC_refine; | 1370 | entropy->pub.decode_mcu = decode_mcu_DC_refine; |
1371 | else | 1371 | else |
1372 | entropy->pub.decode_mcu = decode_mcu_AC_refine; | 1372 | entropy->pub.decode_mcu = decode_mcu_AC_refine; |
1373 | } | 1373 | } |
1374 | 1374 | ||
1375 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) { | 1375 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
1376 | compptr = cinfo->cur_comp_info[ci]; | 1376 | compptr = cinfo->cur_comp_info[ci]; |
1377 | /* Make sure requested tables are present, and compute derived tables. | 1377 | /* Make sure requested tables are present, and compute derived tables. |
1378 | * We may build same derived table more than once, but it's not expensive. | 1378 | * We may build same derived table more than once, but it's not expensive. |
1379 | */ | 1379 | */ |
1380 | if (cinfo->Ss == 0) { | 1380 | if (cinfo->Ss == 0) { |
1381 | if (cinfo->Ah == 0) { /* DC refinement needs no table */ | 1381 | if (cinfo->Ah == 0) { /* DC refinement needs no table */ |
1382 | tbl = compptr->dc_tbl_no; | 1382 | tbl = compptr->dc_tbl_no; |
1383 | jpeg_make_d_derived_tbl(cinfo, TRUE, tbl, | 1383 | jpeg_make_d_derived_tbl(cinfo, TRUE, tbl, |
1384 | & entropy->derived_tbls[tbl]); | 1384 | & entropy->derived_tbls[tbl]); |
1385 | } | 1385 | } |
1386 | } else { | 1386 | } else { |
1387 | tbl = compptr->ac_tbl_no; | 1387 | tbl = compptr->ac_tbl_no; |
1388 | jpeg_make_d_derived_tbl(cinfo, FALSE, tbl, | 1388 | jpeg_make_d_derived_tbl(cinfo, FALSE, tbl, |
1389 | & entropy->derived_tbls[tbl]); | 1389 | & entropy->derived_tbls[tbl]); |
1390 | /* remember the single active table */ | 1390 | /* remember the single active table */ |
1391 | entropy->ac_derived_tbl = entropy->derived_tbls[tbl]; | 1391 | entropy->ac_derived_tbl = entropy->derived_tbls[tbl]; |
1392 | } | 1392 | } |
1393 | /* Initialize DC predictions to 0 */ | 1393 | /* Initialize DC predictions to 0 */ |
1394 | entropy->saved.last_dc_val[ci] = 0; | 1394 | entropy->saved.last_dc_val[ci] = 0; |
1395 | } | 1395 | } |
1396 | 1396 | ||
1397 | /* Initialize private state variables */ | 1397 | /* Initialize private state variables */ |
1398 | entropy->saved.EOBRUN = 0; | 1398 | entropy->saved.EOBRUN = 0; |
1399 | } else { | 1399 | } else { |
1400 | /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG. | 1400 | /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG. |
1401 | * This ought to be an error condition, but we make it a warning because | 1401 | * This ought to be an error condition, but we make it a warning because |
1402 | * there are some baseline files out there with all zeroes in these bytes. | 1402 | * there are some baseline files out there with all zeroes in these bytes. |
1403 | */ | 1403 | */ |
1404 | if (cinfo->Ss != 0 || cinfo->Ah != 0 || cinfo->Al != 0 || | 1404 | if (cinfo->Ss != 0 || cinfo->Ah != 0 || cinfo->Al != 0 || |
1405 | ((cinfo->is_baseline || cinfo->Se < DCTSIZE2) && | 1405 | ((cinfo->is_baseline || cinfo->Se < DCTSIZE2) && |
1406 | cinfo->Se != cinfo->lim_Se)) | 1406 | cinfo->Se != cinfo->lim_Se)) |
1407 | WARNMS(cinfo, JWRN_NOT_SEQUENTIAL); | 1407 | WARNMS(cinfo, JWRN_NOT_SEQUENTIAL); |
1408 | 1408 | ||
1409 | /* Select MCU decoding routine */ | 1409 | /* Select MCU decoding routine */ |
1410 | /* We retain the hard-coded case for full-size blocks. | 1410 | /* We retain the hard-coded case for full-size blocks. |
1411 | * This is not necessary, but it appears that this version is slightly | 1411 | * This is not necessary, but it appears that this version is slightly |
1412 | * more performant in the given implementation. | 1412 | * more performant in the given implementation. |
1413 | * With an improved implementation we would prefer a single optimized | 1413 | * With an improved implementation we would prefer a single optimized |
1414 | * function. | 1414 | * function. |
1415 | */ | 1415 | */ |
1416 | if (cinfo->lim_Se != DCTSIZE2-1) | 1416 | if (cinfo->lim_Se != DCTSIZE2-1) |
1417 | entropy->pub.decode_mcu = decode_mcu_sub; | 1417 | entropy->pub.decode_mcu = decode_mcu_sub; |
1418 | else | 1418 | else |
1419 | entropy->pub.decode_mcu = decode_mcu; | 1419 | entropy->pub.decode_mcu = decode_mcu; |
1420 | 1420 | ||
1421 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) { | 1421 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
1422 | compptr = cinfo->cur_comp_info[ci]; | 1422 | compptr = cinfo->cur_comp_info[ci]; |
1423 | /* Compute derived values for Huffman tables */ | 1423 | /* Compute derived values for Huffman tables */ |
1424 | /* We may do this more than once for a table, but it's not expensive */ | 1424 | /* We may do this more than once for a table, but it's not expensive */ |
1425 | tbl = compptr->dc_tbl_no; | 1425 | tbl = compptr->dc_tbl_no; |
1426 | jpeg_make_d_derived_tbl(cinfo, TRUE, tbl, | 1426 | jpeg_make_d_derived_tbl(cinfo, TRUE, tbl, |
1427 | & entropy->dc_derived_tbls[tbl]); | 1427 | & entropy->dc_derived_tbls[tbl]); |
1428 | if (cinfo->lim_Se) { /* AC needs no table when not present */ | 1428 | if (cinfo->lim_Se) { /* AC needs no table when not present */ |
1429 | tbl = compptr->ac_tbl_no; | 1429 | tbl = compptr->ac_tbl_no; |
1430 | jpeg_make_d_derived_tbl(cinfo, FALSE, tbl, | 1430 | jpeg_make_d_derived_tbl(cinfo, FALSE, tbl, |
1431 | & entropy->ac_derived_tbls[tbl]); | 1431 | & entropy->ac_derived_tbls[tbl]); |
1432 | } | 1432 | } |
1433 | /* Initialize DC predictions to 0 */ | 1433 | /* Initialize DC predictions to 0 */ |
1434 | entropy->saved.last_dc_val[ci] = 0; | 1434 | entropy->saved.last_dc_val[ci] = 0; |
1435 | } | 1435 | } |
1436 | 1436 | ||
1437 | /* Precalculate decoding info for each block in an MCU of this scan */ | 1437 | /* Precalculate decoding info for each block in an MCU of this scan */ |
1438 | for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { | 1438 | for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { |
1439 | ci = cinfo->MCU_membership[blkn]; | 1439 | ci = cinfo->MCU_membership[blkn]; |
1440 | compptr = cinfo->cur_comp_info[ci]; | 1440 | compptr = cinfo->cur_comp_info[ci]; |
1441 | /* Precalculate which table to use for each block */ | 1441 | /* Precalculate which table to use for each block */ |
1442 | entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no]; | 1442 | entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no]; |
1443 | entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no]; | 1443 | entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no]; |
1444 | /* Decide whether we really care about the coefficient values */ | 1444 | /* Decide whether we really care about the coefficient values */ |
1445 | if (compptr->component_needed) { | 1445 | if (compptr->component_needed) { |
1446 | ci = compptr->DCT_v_scaled_size; | 1446 | ci = compptr->DCT_v_scaled_size; |
1447 | i = compptr->DCT_h_scaled_size; | 1447 | i = compptr->DCT_h_scaled_size; |
1448 | switch (cinfo->lim_Se) { | 1448 | switch (cinfo->lim_Se) { |
1449 | case (1*1-1): | 1449 | case (1*1-1): |
1450 | entropy->coef_limit[blkn] = 1; | 1450 | entropy->coef_limit[blkn] = 1; |
1451 | break; | 1451 | break; |
1452 | case (2*2-1): | 1452 | case (2*2-1): |
1453 | if (ci <= 0 || ci > 2) ci = 2; | 1453 | if (ci <= 0 || ci > 2) ci = 2; |
1454 | if (i <= 0 || i > 2) i = 2; | 1454 | if (i <= 0 || i > 2) i = 2; |
1455 | entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order2[ci - 1][i - 1]; | 1455 | entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order2[ci - 1][i - 1]; |
1456 | break; | 1456 | break; |
1457 | case (3*3-1): | 1457 | case (3*3-1): |
1458 | if (ci <= 0 || ci > 3) ci = 3; | 1458 | if (ci <= 0 || ci > 3) ci = 3; |
1459 | if (i <= 0 || i > 3) i = 3; | 1459 | if (i <= 0 || i > 3) i = 3; |
1460 | entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order3[ci - 1][i - 1]; | 1460 | entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order3[ci - 1][i - 1]; |
1461 | break; | 1461 | break; |
1462 | case (4*4-1): | 1462 | case (4*4-1): |
1463 | if (ci <= 0 || ci > 4) ci = 4; | 1463 | if (ci <= 0 || ci > 4) ci = 4; |
1464 | if (i <= 0 || i > 4) i = 4; | 1464 | if (i <= 0 || i > 4) i = 4; |
1465 | entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order4[ci - 1][i - 1]; | 1465 | entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order4[ci - 1][i - 1]; |
1466 | break; | 1466 | break; |
1467 | case (5*5-1): | 1467 | case (5*5-1): |
1468 | if (ci <= 0 || ci > 5) ci = 5; | 1468 | if (ci <= 0 || ci > 5) ci = 5; |
1469 | if (i <= 0 || i > 5) i = 5; | 1469 | if (i <= 0 || i > 5) i = 5; |
1470 | entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order5[ci - 1][i - 1]; | 1470 | entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order5[ci - 1][i - 1]; |
1471 | break; | 1471 | break; |
1472 | case (6*6-1): | 1472 | case (6*6-1): |
1473 | if (ci <= 0 || ci > 6) ci = 6; | 1473 | if (ci <= 0 || ci > 6) ci = 6; |
1474 | if (i <= 0 || i > 6) i = 6; | 1474 | if (i <= 0 || i > 6) i = 6; |
1475 | entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order6[ci - 1][i - 1]; | 1475 | entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order6[ci - 1][i - 1]; |
1476 | break; | 1476 | break; |
1477 | case (7*7-1): | 1477 | case (7*7-1): |
1478 | if (ci <= 0 || ci > 7) ci = 7; | 1478 | if (ci <= 0 || ci > 7) ci = 7; |
1479 | if (i <= 0 || i > 7) i = 7; | 1479 | if (i <= 0 || i > 7) i = 7; |
1480 | entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order7[ci - 1][i - 1]; | 1480 | entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order7[ci - 1][i - 1]; |
1481 | break; | 1481 | break; |
1482 | default: | 1482 | default: |
1483 | if (ci <= 0 || ci > 8) ci = 8; | 1483 | if (ci <= 0 || ci > 8) ci = 8; |
1484 | if (i <= 0 || i > 8) i = 8; | 1484 | if (i <= 0 || i > 8) i = 8; |
1485 | entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order[ci - 1][i - 1]; | 1485 | entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order[ci - 1][i - 1]; |
1486 | break; | 1486 | break; |
1487 | } | 1487 | } |
1488 | } else { | 1488 | } else { |
1489 | entropy->coef_limit[blkn] = 0; | 1489 | entropy->coef_limit[blkn] = 0; |
1490 | } | 1490 | } |
1491 | } | 1491 | } |
1492 | } | 1492 | } |
1493 | 1493 | ||
1494 | /* Initialize bitread state variables */ | 1494 | /* Initialize bitread state variables */ |
1495 | entropy->bitstate.bits_left = 0; | 1495 | entropy->bitstate.bits_left = 0; |
1496 | entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */ | 1496 | entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */ |
1497 | entropy->insufficient_data = FALSE; | 1497 | entropy->insufficient_data = FALSE; |
1498 | 1498 | ||
1499 | /* Initialize restart counter */ | 1499 | /* Initialize restart counter */ |
1500 | entropy->restarts_to_go = cinfo->restart_interval; | 1500 | entropy->restarts_to_go = cinfo->restart_interval; |
1501 | } | 1501 | } |
1502 | 1502 | ||
1503 | 1503 | ||
1504 | /* | 1504 | /* |
1505 | * Module initialization routine for Huffman entropy decoding. | 1505 | * Module initialization routine for Huffman entropy decoding. |
1506 | */ | 1506 | */ |
1507 | 1507 | ||
1508 | GLOBAL(void) | 1508 | GLOBAL(void) |
1509 | jinit_huff_decoder (j_decompress_ptr cinfo) | 1509 | jinit_huff_decoder (j_decompress_ptr cinfo) |
1510 | { | 1510 | { |
1511 | huff_entropy_ptr entropy; | 1511 | huff_entropy_ptr entropy; |
1512 | int i; | 1512 | int i; |
1513 | 1513 | ||
1514 | entropy = (huff_entropy_ptr) | 1514 | entropy = (huff_entropy_ptr) |
1515 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, | 1515 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
1516 | SIZEOF(huff_entropy_decoder)); | 1516 | SIZEOF(huff_entropy_decoder)); |
1517 | cinfo->entropy = (struct jpeg_entropy_decoder *) entropy; | 1517 | cinfo->entropy = (struct jpeg_entropy_decoder *) entropy; |
1518 | entropy->pub.start_pass = start_pass_huff_decoder; | 1518 | entropy->pub.start_pass = start_pass_huff_decoder; |
1519 | 1519 | ||
1520 | if (cinfo->progressive_mode) { | 1520 | if (cinfo->progressive_mode) { |
1521 | /* Create progression status table */ | 1521 | /* Create progression status table */ |
1522 | int *coef_bit_ptr, ci; | 1522 | int *coef_bit_ptr, ci; |
1523 | cinfo->coef_bits = (int (*)[DCTSIZE2]) | 1523 | cinfo->coef_bits = (int (*)[DCTSIZE2]) |
1524 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, | 1524 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
1525 | cinfo->num_components*DCTSIZE2*SIZEOF(int)); | 1525 | cinfo->num_components*DCTSIZE2*SIZEOF(int)); |
1526 | coef_bit_ptr = & cinfo->coef_bits[0][0]; | 1526 | coef_bit_ptr = & cinfo->coef_bits[0][0]; |
1527 | for (ci = 0; ci < cinfo->num_components; ci++) | 1527 | for (ci = 0; ci < cinfo->num_components; ci++) |
1528 | for (i = 0; i < DCTSIZE2; i++) | 1528 | for (i = 0; i < DCTSIZE2; i++) |
1529 | *coef_bit_ptr++ = -1; | 1529 | *coef_bit_ptr++ = -1; |
1530 | 1530 | ||
1531 | /* Mark derived tables unallocated */ | 1531 | /* Mark derived tables unallocated */ |
1532 | for (i = 0; i < NUM_HUFF_TBLS; i++) { | 1532 | for (i = 0; i < NUM_HUFF_TBLS; i++) { |
1533 | entropy->derived_tbls[i] = NULL; | 1533 | entropy->derived_tbls[i] = NULL; |
1534 | } | 1534 | } |
1535 | } else { | 1535 | } else { |
1536 | /* Mark tables unallocated */ | 1536 | /* Mark tables unallocated */ |
1537 | for (i = 0; i < NUM_HUFF_TBLS; i++) { | 1537 | for (i = 0; i < NUM_HUFF_TBLS; i++) { |
1538 | entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL; | 1538 | entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL; |
1539 | } | 1539 | } |
1540 | } | 1540 | } |
1541 | } | 1541 | } |