diff options
Diffstat (limited to 'libraries/irrlicht-1.8/source/Irrlicht/jpeglib/jcdctmgr.c')
-rw-r--r-- | libraries/irrlicht-1.8/source/Irrlicht/jpeglib/jcdctmgr.c | 964 |
1 files changed, 482 insertions, 482 deletions
diff --git a/libraries/irrlicht-1.8/source/Irrlicht/jpeglib/jcdctmgr.c b/libraries/irrlicht-1.8/source/Irrlicht/jpeglib/jcdctmgr.c index 550b1a6..0bbdbb6 100644 --- a/libraries/irrlicht-1.8/source/Irrlicht/jpeglib/jcdctmgr.c +++ b/libraries/irrlicht-1.8/source/Irrlicht/jpeglib/jcdctmgr.c | |||
@@ -1,482 +1,482 @@ | |||
1 | /* | 1 | /* |
2 | * jcdctmgr.c | 2 | * jcdctmgr.c |
3 | * | 3 | * |
4 | * Copyright (C) 1994-1996, Thomas G. Lane. | 4 | * Copyright (C) 1994-1996, Thomas G. Lane. |
5 | * This file is part of the Independent JPEG Group's software. | 5 | * This file is part of the Independent JPEG Group's software. |
6 | * For conditions of distribution and use, see the accompanying README file. | 6 | * For conditions of distribution and use, see the accompanying README file. |
7 | * | 7 | * |
8 | * This file contains the forward-DCT management logic. | 8 | * This file contains the forward-DCT management logic. |
9 | * This code selects a particular DCT implementation to be used, | 9 | * This code selects a particular DCT implementation to be used, |
10 | * and it performs related housekeeping chores including coefficient | 10 | * and it performs related housekeeping chores including coefficient |
11 | * quantization. | 11 | * quantization. |
12 | */ | 12 | */ |
13 | 13 | ||
14 | #define JPEG_INTERNALS | 14 | #define JPEG_INTERNALS |
15 | #include "jinclude.h" | 15 | #include "jinclude.h" |
16 | #include "jpeglib.h" | 16 | #include "jpeglib.h" |
17 | #include "jdct.h" /* Private declarations for DCT subsystem */ | 17 | #include "jdct.h" /* Private declarations for DCT subsystem */ |
18 | 18 | ||
19 | 19 | ||
20 | /* Private subobject for this module */ | 20 | /* Private subobject for this module */ |
21 | 21 | ||
22 | typedef struct { | 22 | typedef struct { |
23 | struct jpeg_forward_dct pub; /* public fields */ | 23 | struct jpeg_forward_dct pub; /* public fields */ |
24 | 24 | ||
25 | /* Pointer to the DCT routine actually in use */ | 25 | /* Pointer to the DCT routine actually in use */ |
26 | forward_DCT_method_ptr do_dct[MAX_COMPONENTS]; | 26 | forward_DCT_method_ptr do_dct[MAX_COMPONENTS]; |
27 | 27 | ||
28 | /* The actual post-DCT divisors --- not identical to the quant table | 28 | /* The actual post-DCT divisors --- not identical to the quant table |
29 | * entries, because of scaling (especially for an unnormalized DCT). | 29 | * entries, because of scaling (especially for an unnormalized DCT). |
30 | * Each table is given in normal array order. | 30 | * Each table is given in normal array order. |
31 | */ | 31 | */ |
32 | DCTELEM * divisors[NUM_QUANT_TBLS]; | 32 | DCTELEM * divisors[NUM_QUANT_TBLS]; |
33 | 33 | ||
34 | #ifdef DCT_FLOAT_SUPPORTED | 34 | #ifdef DCT_FLOAT_SUPPORTED |
35 | /* Same as above for the floating-point case. */ | 35 | /* Same as above for the floating-point case. */ |
36 | float_DCT_method_ptr do_float_dct[MAX_COMPONENTS]; | 36 | float_DCT_method_ptr do_float_dct[MAX_COMPONENTS]; |
37 | FAST_FLOAT * float_divisors[NUM_QUANT_TBLS]; | 37 | FAST_FLOAT * float_divisors[NUM_QUANT_TBLS]; |
38 | #endif | 38 | #endif |
39 | } my_fdct_controller; | 39 | } my_fdct_controller; |
40 | 40 | ||
41 | typedef my_fdct_controller * my_fdct_ptr; | 41 | typedef my_fdct_controller * my_fdct_ptr; |
42 | 42 | ||
43 | 43 | ||
44 | /* The current scaled-DCT routines require ISLOW-style divisor tables, | 44 | /* The current scaled-DCT routines require ISLOW-style divisor tables, |
45 | * so be sure to compile that code if either ISLOW or SCALING is requested. | 45 | * so be sure to compile that code if either ISLOW or SCALING is requested. |
46 | */ | 46 | */ |
47 | #ifdef DCT_ISLOW_SUPPORTED | 47 | #ifdef DCT_ISLOW_SUPPORTED |
48 | #define PROVIDE_ISLOW_TABLES | 48 | #define PROVIDE_ISLOW_TABLES |
49 | #else | 49 | #else |
50 | #ifdef DCT_SCALING_SUPPORTED | 50 | #ifdef DCT_SCALING_SUPPORTED |
51 | #define PROVIDE_ISLOW_TABLES | 51 | #define PROVIDE_ISLOW_TABLES |
52 | #endif | 52 | #endif |
53 | #endif | 53 | #endif |
54 | 54 | ||
55 | 55 | ||
56 | /* | 56 | /* |
57 | * Perform forward DCT on one or more blocks of a component. | 57 | * Perform forward DCT on one or more blocks of a component. |
58 | * | 58 | * |
59 | * The input samples are taken from the sample_data[] array starting at | 59 | * The input samples are taken from the sample_data[] array starting at |
60 | * position start_row/start_col, and moving to the right for any additional | 60 | * position start_row/start_col, and moving to the right for any additional |
61 | * blocks. The quantized coefficients are returned in coef_blocks[]. | 61 | * blocks. The quantized coefficients are returned in coef_blocks[]. |
62 | */ | 62 | */ |
63 | 63 | ||
64 | METHODDEF(void) | 64 | METHODDEF(void) |
65 | forward_DCT (j_compress_ptr cinfo, jpeg_component_info * compptr, | 65 | forward_DCT (j_compress_ptr cinfo, jpeg_component_info * compptr, |
66 | JSAMPARRAY sample_data, JBLOCKROW coef_blocks, | 66 | JSAMPARRAY sample_data, JBLOCKROW coef_blocks, |
67 | JDIMENSION start_row, JDIMENSION start_col, | 67 | JDIMENSION start_row, JDIMENSION start_col, |
68 | JDIMENSION num_blocks) | 68 | JDIMENSION num_blocks) |
69 | /* This version is used for integer DCT implementations. */ | 69 | /* This version is used for integer DCT implementations. */ |
70 | { | 70 | { |
71 | /* This routine is heavily used, so it's worth coding it tightly. */ | 71 | /* This routine is heavily used, so it's worth coding it tightly. */ |
72 | my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct; | 72 | my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct; |
73 | forward_DCT_method_ptr do_dct = fdct->do_dct[compptr->component_index]; | 73 | forward_DCT_method_ptr do_dct = fdct->do_dct[compptr->component_index]; |
74 | DCTELEM * divisors = fdct->divisors[compptr->quant_tbl_no]; | 74 | DCTELEM * divisors = fdct->divisors[compptr->quant_tbl_no]; |
75 | DCTELEM workspace[DCTSIZE2]; /* work area for FDCT subroutine */ | 75 | DCTELEM workspace[DCTSIZE2]; /* work area for FDCT subroutine */ |
76 | JDIMENSION bi; | 76 | JDIMENSION bi; |
77 | 77 | ||
78 | sample_data += start_row; /* fold in the vertical offset once */ | 78 | sample_data += start_row; /* fold in the vertical offset once */ |
79 | 79 | ||
80 | for (bi = 0; bi < num_blocks; bi++, start_col += compptr->DCT_h_scaled_size) { | 80 | for (bi = 0; bi < num_blocks; bi++, start_col += compptr->DCT_h_scaled_size) { |
81 | /* Perform the DCT */ | 81 | /* Perform the DCT */ |
82 | (*do_dct) (workspace, sample_data, start_col); | 82 | (*do_dct) (workspace, sample_data, start_col); |
83 | 83 | ||
84 | /* Quantize/descale the coefficients, and store into coef_blocks[] */ | 84 | /* Quantize/descale the coefficients, and store into coef_blocks[] */ |
85 | { register DCTELEM temp, qval; | 85 | { register DCTELEM temp, qval; |
86 | register int i; | 86 | register int i; |
87 | register JCOEFPTR output_ptr = coef_blocks[bi]; | 87 | register JCOEFPTR output_ptr = coef_blocks[bi]; |
88 | 88 | ||
89 | for (i = 0; i < DCTSIZE2; i++) { | 89 | for (i = 0; i < DCTSIZE2; i++) { |
90 | qval = divisors[i]; | 90 | qval = divisors[i]; |
91 | temp = workspace[i]; | 91 | temp = workspace[i]; |
92 | /* Divide the coefficient value by qval, ensuring proper rounding. | 92 | /* Divide the coefficient value by qval, ensuring proper rounding. |
93 | * Since C does not specify the direction of rounding for negative | 93 | * Since C does not specify the direction of rounding for negative |
94 | * quotients, we have to force the dividend positive for portability. | 94 | * quotients, we have to force the dividend positive for portability. |
95 | * | 95 | * |
96 | * In most files, at least half of the output values will be zero | 96 | * In most files, at least half of the output values will be zero |
97 | * (at default quantization settings, more like three-quarters...) | 97 | * (at default quantization settings, more like three-quarters...) |
98 | * so we should ensure that this case is fast. On many machines, | 98 | * so we should ensure that this case is fast. On many machines, |
99 | * a comparison is enough cheaper than a divide to make a special test | 99 | * a comparison is enough cheaper than a divide to make a special test |
100 | * a win. Since both inputs will be nonnegative, we need only test | 100 | * a win. Since both inputs will be nonnegative, we need only test |
101 | * for a < b to discover whether a/b is 0. | 101 | * for a < b to discover whether a/b is 0. |
102 | * If your machine's division is fast enough, define FAST_DIVIDE. | 102 | * If your machine's division is fast enough, define FAST_DIVIDE. |
103 | */ | 103 | */ |
104 | #ifdef FAST_DIVIDE | 104 | #ifdef FAST_DIVIDE |
105 | #define DIVIDE_BY(a,b) a /= b | 105 | #define DIVIDE_BY(a,b) a /= b |
106 | #else | 106 | #else |
107 | #define DIVIDE_BY(a,b) if (a >= b) a /= b; else a = 0 | 107 | #define DIVIDE_BY(a,b) if (a >= b) a /= b; else a = 0 |
108 | #endif | 108 | #endif |
109 | if (temp < 0) { | 109 | if (temp < 0) { |
110 | temp = -temp; | 110 | temp = -temp; |
111 | temp += qval>>1; /* for rounding */ | 111 | temp += qval>>1; /* for rounding */ |
112 | DIVIDE_BY(temp, qval); | 112 | DIVIDE_BY(temp, qval); |
113 | temp = -temp; | 113 | temp = -temp; |
114 | } else { | 114 | } else { |
115 | temp += qval>>1; /* for rounding */ | 115 | temp += qval>>1; /* for rounding */ |
116 | DIVIDE_BY(temp, qval); | 116 | DIVIDE_BY(temp, qval); |
117 | } | 117 | } |
118 | output_ptr[i] = (JCOEF) temp; | 118 | output_ptr[i] = (JCOEF) temp; |
119 | } | 119 | } |
120 | } | 120 | } |
121 | } | 121 | } |
122 | } | 122 | } |
123 | 123 | ||
124 | 124 | ||
125 | #ifdef DCT_FLOAT_SUPPORTED | 125 | #ifdef DCT_FLOAT_SUPPORTED |
126 | 126 | ||
127 | METHODDEF(void) | 127 | METHODDEF(void) |
128 | forward_DCT_float (j_compress_ptr cinfo, jpeg_component_info * compptr, | 128 | forward_DCT_float (j_compress_ptr cinfo, jpeg_component_info * compptr, |
129 | JSAMPARRAY sample_data, JBLOCKROW coef_blocks, | 129 | JSAMPARRAY sample_data, JBLOCKROW coef_blocks, |
130 | JDIMENSION start_row, JDIMENSION start_col, | 130 | JDIMENSION start_row, JDIMENSION start_col, |
131 | JDIMENSION num_blocks) | 131 | JDIMENSION num_blocks) |
132 | /* This version is used for floating-point DCT implementations. */ | 132 | /* This version is used for floating-point DCT implementations. */ |
133 | { | 133 | { |
134 | /* This routine is heavily used, so it's worth coding it tightly. */ | 134 | /* This routine is heavily used, so it's worth coding it tightly. */ |
135 | my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct; | 135 | my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct; |
136 | float_DCT_method_ptr do_dct = fdct->do_float_dct[compptr->component_index]; | 136 | float_DCT_method_ptr do_dct = fdct->do_float_dct[compptr->component_index]; |
137 | FAST_FLOAT * divisors = fdct->float_divisors[compptr->quant_tbl_no]; | 137 | FAST_FLOAT * divisors = fdct->float_divisors[compptr->quant_tbl_no]; |
138 | FAST_FLOAT workspace[DCTSIZE2]; /* work area for FDCT subroutine */ | 138 | FAST_FLOAT workspace[DCTSIZE2]; /* work area for FDCT subroutine */ |
139 | JDIMENSION bi; | 139 | JDIMENSION bi; |
140 | 140 | ||
141 | sample_data += start_row; /* fold in the vertical offset once */ | 141 | sample_data += start_row; /* fold in the vertical offset once */ |
142 | 142 | ||
143 | for (bi = 0; bi < num_blocks; bi++, start_col += compptr->DCT_h_scaled_size) { | 143 | for (bi = 0; bi < num_blocks; bi++, start_col += compptr->DCT_h_scaled_size) { |
144 | /* Perform the DCT */ | 144 | /* Perform the DCT */ |
145 | (*do_dct) (workspace, sample_data, start_col); | 145 | (*do_dct) (workspace, sample_data, start_col); |
146 | 146 | ||
147 | /* Quantize/descale the coefficients, and store into coef_blocks[] */ | 147 | /* Quantize/descale the coefficients, and store into coef_blocks[] */ |
148 | { register FAST_FLOAT temp; | 148 | { register FAST_FLOAT temp; |
149 | register int i; | 149 | register int i; |
150 | register JCOEFPTR output_ptr = coef_blocks[bi]; | 150 | register JCOEFPTR output_ptr = coef_blocks[bi]; |
151 | 151 | ||
152 | for (i = 0; i < DCTSIZE2; i++) { | 152 | for (i = 0; i < DCTSIZE2; i++) { |
153 | /* Apply the quantization and scaling factor */ | 153 | /* Apply the quantization and scaling factor */ |
154 | temp = workspace[i] * divisors[i]; | 154 | temp = workspace[i] * divisors[i]; |
155 | /* Round to nearest integer. | 155 | /* Round to nearest integer. |
156 | * Since C does not specify the direction of rounding for negative | 156 | * Since C does not specify the direction of rounding for negative |
157 | * quotients, we have to force the dividend positive for portability. | 157 | * quotients, we have to force the dividend positive for portability. |
158 | * The maximum coefficient size is +-16K (for 12-bit data), so this | 158 | * The maximum coefficient size is +-16K (for 12-bit data), so this |
159 | * code should work for either 16-bit or 32-bit ints. | 159 | * code should work for either 16-bit or 32-bit ints. |
160 | */ | 160 | */ |
161 | output_ptr[i] = (JCOEF) ((int) (temp + (FAST_FLOAT) 16384.5) - 16384); | 161 | output_ptr[i] = (JCOEF) ((int) (temp + (FAST_FLOAT) 16384.5) - 16384); |
162 | } | 162 | } |
163 | } | 163 | } |
164 | } | 164 | } |
165 | } | 165 | } |
166 | 166 | ||
167 | #endif /* DCT_FLOAT_SUPPORTED */ | 167 | #endif /* DCT_FLOAT_SUPPORTED */ |
168 | 168 | ||
169 | 169 | ||
170 | /* | 170 | /* |
171 | * Initialize for a processing pass. | 171 | * Initialize for a processing pass. |
172 | * Verify that all referenced Q-tables are present, and set up | 172 | * Verify that all referenced Q-tables are present, and set up |
173 | * the divisor table for each one. | 173 | * the divisor table for each one. |
174 | * In the current implementation, DCT of all components is done during | 174 | * In the current implementation, DCT of all components is done during |
175 | * the first pass, even if only some components will be output in the | 175 | * the first pass, even if only some components will be output in the |
176 | * first scan. Hence all components should be examined here. | 176 | * first scan. Hence all components should be examined here. |
177 | */ | 177 | */ |
178 | 178 | ||
179 | METHODDEF(void) | 179 | METHODDEF(void) |
180 | start_pass_fdctmgr (j_compress_ptr cinfo) | 180 | start_pass_fdctmgr (j_compress_ptr cinfo) |
181 | { | 181 | { |
182 | my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct; | 182 | my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct; |
183 | int ci, qtblno, i; | 183 | int ci, qtblno, i; |
184 | jpeg_component_info *compptr; | 184 | jpeg_component_info *compptr; |
185 | int method = 0; | 185 | int method = 0; |
186 | JQUANT_TBL * qtbl; | 186 | JQUANT_TBL * qtbl; |
187 | DCTELEM * dtbl; | 187 | DCTELEM * dtbl; |
188 | 188 | ||
189 | for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; | 189 | for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
190 | ci++, compptr++) { | 190 | ci++, compptr++) { |
191 | /* Select the proper DCT routine for this component's scaling */ | 191 | /* Select the proper DCT routine for this component's scaling */ |
192 | switch ((compptr->DCT_h_scaled_size << 8) + compptr->DCT_v_scaled_size) { | 192 | switch ((compptr->DCT_h_scaled_size << 8) + compptr->DCT_v_scaled_size) { |
193 | #ifdef DCT_SCALING_SUPPORTED | 193 | #ifdef DCT_SCALING_SUPPORTED |
194 | case ((1 << 8) + 1): | 194 | case ((1 << 8) + 1): |
195 | fdct->do_dct[ci] = jpeg_fdct_1x1; | 195 | fdct->do_dct[ci] = jpeg_fdct_1x1; |
196 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */ | 196 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */ |
197 | break; | 197 | break; |
198 | case ((2 << 8) + 2): | 198 | case ((2 << 8) + 2): |
199 | fdct->do_dct[ci] = jpeg_fdct_2x2; | 199 | fdct->do_dct[ci] = jpeg_fdct_2x2; |
200 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */ | 200 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */ |
201 | break; | 201 | break; |
202 | case ((3 << 8) + 3): | 202 | case ((3 << 8) + 3): |
203 | fdct->do_dct[ci] = jpeg_fdct_3x3; | 203 | fdct->do_dct[ci] = jpeg_fdct_3x3; |
204 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */ | 204 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */ |
205 | break; | 205 | break; |
206 | case ((4 << 8) + 4): | 206 | case ((4 << 8) + 4): |
207 | fdct->do_dct[ci] = jpeg_fdct_4x4; | 207 | fdct->do_dct[ci] = jpeg_fdct_4x4; |
208 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */ | 208 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */ |
209 | break; | 209 | break; |
210 | case ((5 << 8) + 5): | 210 | case ((5 << 8) + 5): |
211 | fdct->do_dct[ci] = jpeg_fdct_5x5; | 211 | fdct->do_dct[ci] = jpeg_fdct_5x5; |
212 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */ | 212 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */ |
213 | break; | 213 | break; |
214 | case ((6 << 8) + 6): | 214 | case ((6 << 8) + 6): |
215 | fdct->do_dct[ci] = jpeg_fdct_6x6; | 215 | fdct->do_dct[ci] = jpeg_fdct_6x6; |
216 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */ | 216 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */ |
217 | break; | 217 | break; |
218 | case ((7 << 8) + 7): | 218 | case ((7 << 8) + 7): |
219 | fdct->do_dct[ci] = jpeg_fdct_7x7; | 219 | fdct->do_dct[ci] = jpeg_fdct_7x7; |
220 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */ | 220 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */ |
221 | break; | 221 | break; |
222 | case ((9 << 8) + 9): | 222 | case ((9 << 8) + 9): |
223 | fdct->do_dct[ci] = jpeg_fdct_9x9; | 223 | fdct->do_dct[ci] = jpeg_fdct_9x9; |
224 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */ | 224 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */ |
225 | break; | 225 | break; |
226 | case ((10 << 8) + 10): | 226 | case ((10 << 8) + 10): |
227 | fdct->do_dct[ci] = jpeg_fdct_10x10; | 227 | fdct->do_dct[ci] = jpeg_fdct_10x10; |
228 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */ | 228 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */ |
229 | break; | 229 | break; |
230 | case ((11 << 8) + 11): | 230 | case ((11 << 8) + 11): |
231 | fdct->do_dct[ci] = jpeg_fdct_11x11; | 231 | fdct->do_dct[ci] = jpeg_fdct_11x11; |
232 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */ | 232 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */ |
233 | break; | 233 | break; |
234 | case ((12 << 8) + 12): | 234 | case ((12 << 8) + 12): |
235 | fdct->do_dct[ci] = jpeg_fdct_12x12; | 235 | fdct->do_dct[ci] = jpeg_fdct_12x12; |
236 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */ | 236 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */ |
237 | break; | 237 | break; |
238 | case ((13 << 8) + 13): | 238 | case ((13 << 8) + 13): |
239 | fdct->do_dct[ci] = jpeg_fdct_13x13; | 239 | fdct->do_dct[ci] = jpeg_fdct_13x13; |
240 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */ | 240 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */ |
241 | break; | 241 | break; |
242 | case ((14 << 8) + 14): | 242 | case ((14 << 8) + 14): |
243 | fdct->do_dct[ci] = jpeg_fdct_14x14; | 243 | fdct->do_dct[ci] = jpeg_fdct_14x14; |
244 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */ | 244 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */ |
245 | break; | 245 | break; |
246 | case ((15 << 8) + 15): | 246 | case ((15 << 8) + 15): |
247 | fdct->do_dct[ci] = jpeg_fdct_15x15; | 247 | fdct->do_dct[ci] = jpeg_fdct_15x15; |
248 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */ | 248 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */ |
249 | break; | 249 | break; |
250 | case ((16 << 8) + 16): | 250 | case ((16 << 8) + 16): |
251 | fdct->do_dct[ci] = jpeg_fdct_16x16; | 251 | fdct->do_dct[ci] = jpeg_fdct_16x16; |
252 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */ | 252 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */ |
253 | break; | 253 | break; |
254 | case ((16 << 8) + 8): | 254 | case ((16 << 8) + 8): |
255 | fdct->do_dct[ci] = jpeg_fdct_16x8; | 255 | fdct->do_dct[ci] = jpeg_fdct_16x8; |
256 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */ | 256 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */ |
257 | break; | 257 | break; |
258 | case ((14 << 8) + 7): | 258 | case ((14 << 8) + 7): |
259 | fdct->do_dct[ci] = jpeg_fdct_14x7; | 259 | fdct->do_dct[ci] = jpeg_fdct_14x7; |
260 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */ | 260 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */ |
261 | break; | 261 | break; |
262 | case ((12 << 8) + 6): | 262 | case ((12 << 8) + 6): |
263 | fdct->do_dct[ci] = jpeg_fdct_12x6; | 263 | fdct->do_dct[ci] = jpeg_fdct_12x6; |
264 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */ | 264 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */ |
265 | break; | 265 | break; |
266 | case ((10 << 8) + 5): | 266 | case ((10 << 8) + 5): |
267 | fdct->do_dct[ci] = jpeg_fdct_10x5; | 267 | fdct->do_dct[ci] = jpeg_fdct_10x5; |
268 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */ | 268 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */ |
269 | break; | 269 | break; |
270 | case ((8 << 8) + 4): | 270 | case ((8 << 8) + 4): |
271 | fdct->do_dct[ci] = jpeg_fdct_8x4; | 271 | fdct->do_dct[ci] = jpeg_fdct_8x4; |
272 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */ | 272 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */ |
273 | break; | 273 | break; |
274 | case ((6 << 8) + 3): | 274 | case ((6 << 8) + 3): |
275 | fdct->do_dct[ci] = jpeg_fdct_6x3; | 275 | fdct->do_dct[ci] = jpeg_fdct_6x3; |
276 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */ | 276 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */ |
277 | break; | 277 | break; |
278 | case ((4 << 8) + 2): | 278 | case ((4 << 8) + 2): |
279 | fdct->do_dct[ci] = jpeg_fdct_4x2; | 279 | fdct->do_dct[ci] = jpeg_fdct_4x2; |
280 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */ | 280 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */ |
281 | break; | 281 | break; |
282 | case ((2 << 8) + 1): | 282 | case ((2 << 8) + 1): |
283 | fdct->do_dct[ci] = jpeg_fdct_2x1; | 283 | fdct->do_dct[ci] = jpeg_fdct_2x1; |
284 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */ | 284 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */ |
285 | break; | 285 | break; |
286 | case ((8 << 8) + 16): | 286 | case ((8 << 8) + 16): |
287 | fdct->do_dct[ci] = jpeg_fdct_8x16; | 287 | fdct->do_dct[ci] = jpeg_fdct_8x16; |
288 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */ | 288 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */ |
289 | break; | 289 | break; |
290 | case ((7 << 8) + 14): | 290 | case ((7 << 8) + 14): |
291 | fdct->do_dct[ci] = jpeg_fdct_7x14; | 291 | fdct->do_dct[ci] = jpeg_fdct_7x14; |
292 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */ | 292 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */ |
293 | break; | 293 | break; |
294 | case ((6 << 8) + 12): | 294 | case ((6 << 8) + 12): |
295 | fdct->do_dct[ci] = jpeg_fdct_6x12; | 295 | fdct->do_dct[ci] = jpeg_fdct_6x12; |
296 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */ | 296 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */ |
297 | break; | 297 | break; |
298 | case ((5 << 8) + 10): | 298 | case ((5 << 8) + 10): |
299 | fdct->do_dct[ci] = jpeg_fdct_5x10; | 299 | fdct->do_dct[ci] = jpeg_fdct_5x10; |
300 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */ | 300 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */ |
301 | break; | 301 | break; |
302 | case ((4 << 8) + 8): | 302 | case ((4 << 8) + 8): |
303 | fdct->do_dct[ci] = jpeg_fdct_4x8; | 303 | fdct->do_dct[ci] = jpeg_fdct_4x8; |
304 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */ | 304 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */ |
305 | break; | 305 | break; |
306 | case ((3 << 8) + 6): | 306 | case ((3 << 8) + 6): |
307 | fdct->do_dct[ci] = jpeg_fdct_3x6; | 307 | fdct->do_dct[ci] = jpeg_fdct_3x6; |
308 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */ | 308 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */ |
309 | break; | 309 | break; |
310 | case ((2 << 8) + 4): | 310 | case ((2 << 8) + 4): |
311 | fdct->do_dct[ci] = jpeg_fdct_2x4; | 311 | fdct->do_dct[ci] = jpeg_fdct_2x4; |
312 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */ | 312 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */ |
313 | break; | 313 | break; |
314 | case ((1 << 8) + 2): | 314 | case ((1 << 8) + 2): |
315 | fdct->do_dct[ci] = jpeg_fdct_1x2; | 315 | fdct->do_dct[ci] = jpeg_fdct_1x2; |
316 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */ | 316 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */ |
317 | break; | 317 | break; |
318 | #endif | 318 | #endif |
319 | case ((DCTSIZE << 8) + DCTSIZE): | 319 | case ((DCTSIZE << 8) + DCTSIZE): |
320 | switch (cinfo->dct_method) { | 320 | switch (cinfo->dct_method) { |
321 | #ifdef DCT_ISLOW_SUPPORTED | 321 | #ifdef DCT_ISLOW_SUPPORTED |
322 | case JDCT_ISLOW: | 322 | case JDCT_ISLOW: |
323 | fdct->do_dct[ci] = jpeg_fdct_islow; | 323 | fdct->do_dct[ci] = jpeg_fdct_islow; |
324 | method = JDCT_ISLOW; | 324 | method = JDCT_ISLOW; |
325 | break; | 325 | break; |
326 | #endif | 326 | #endif |
327 | #ifdef DCT_IFAST_SUPPORTED | 327 | #ifdef DCT_IFAST_SUPPORTED |
328 | case JDCT_IFAST: | 328 | case JDCT_IFAST: |
329 | fdct->do_dct[ci] = jpeg_fdct_ifast; | 329 | fdct->do_dct[ci] = jpeg_fdct_ifast; |
330 | method = JDCT_IFAST; | 330 | method = JDCT_IFAST; |
331 | break; | 331 | break; |
332 | #endif | 332 | #endif |
333 | #ifdef DCT_FLOAT_SUPPORTED | 333 | #ifdef DCT_FLOAT_SUPPORTED |
334 | case JDCT_FLOAT: | 334 | case JDCT_FLOAT: |
335 | fdct->do_float_dct[ci] = jpeg_fdct_float; | 335 | fdct->do_float_dct[ci] = jpeg_fdct_float; |
336 | method = JDCT_FLOAT; | 336 | method = JDCT_FLOAT; |
337 | break; | 337 | break; |
338 | #endif | 338 | #endif |
339 | default: | 339 | default: |
340 | ERREXIT(cinfo, JERR_NOT_COMPILED); | 340 | ERREXIT(cinfo, JERR_NOT_COMPILED); |
341 | break; | 341 | break; |
342 | } | 342 | } |
343 | break; | 343 | break; |
344 | default: | 344 | default: |
345 | ERREXIT2(cinfo, JERR_BAD_DCTSIZE, | 345 | ERREXIT2(cinfo, JERR_BAD_DCTSIZE, |
346 | compptr->DCT_h_scaled_size, compptr->DCT_v_scaled_size); | 346 | compptr->DCT_h_scaled_size, compptr->DCT_v_scaled_size); |
347 | break; | 347 | break; |
348 | } | 348 | } |
349 | qtblno = compptr->quant_tbl_no; | 349 | qtblno = compptr->quant_tbl_no; |
350 | /* Make sure specified quantization table is present */ | 350 | /* Make sure specified quantization table is present */ |
351 | if (qtblno < 0 || qtblno >= NUM_QUANT_TBLS || | 351 | if (qtblno < 0 || qtblno >= NUM_QUANT_TBLS || |
352 | cinfo->quant_tbl_ptrs[qtblno] == NULL) | 352 | cinfo->quant_tbl_ptrs[qtblno] == NULL) |
353 | ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, qtblno); | 353 | ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, qtblno); |
354 | qtbl = cinfo->quant_tbl_ptrs[qtblno]; | 354 | qtbl = cinfo->quant_tbl_ptrs[qtblno]; |
355 | /* Compute divisors for this quant table */ | 355 | /* Compute divisors for this quant table */ |
356 | /* We may do this more than once for same table, but it's not a big deal */ | 356 | /* We may do this more than once for same table, but it's not a big deal */ |
357 | switch (method) { | 357 | switch (method) { |
358 | #ifdef PROVIDE_ISLOW_TABLES | 358 | #ifdef PROVIDE_ISLOW_TABLES |
359 | case JDCT_ISLOW: | 359 | case JDCT_ISLOW: |
360 | /* For LL&M IDCT method, divisors are equal to raw quantization | 360 | /* For LL&M IDCT method, divisors are equal to raw quantization |
361 | * coefficients multiplied by 8 (to counteract scaling). | 361 | * coefficients multiplied by 8 (to counteract scaling). |
362 | */ | 362 | */ |
363 | if (fdct->divisors[qtblno] == NULL) { | 363 | if (fdct->divisors[qtblno] == NULL) { |
364 | fdct->divisors[qtblno] = (DCTELEM *) | 364 | fdct->divisors[qtblno] = (DCTELEM *) |
365 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, | 365 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
366 | DCTSIZE2 * SIZEOF(DCTELEM)); | 366 | DCTSIZE2 * SIZEOF(DCTELEM)); |
367 | } | 367 | } |
368 | dtbl = fdct->divisors[qtblno]; | 368 | dtbl = fdct->divisors[qtblno]; |
369 | for (i = 0; i < DCTSIZE2; i++) { | 369 | for (i = 0; i < DCTSIZE2; i++) { |
370 | dtbl[i] = ((DCTELEM) qtbl->quantval[i]) << 3; | 370 | dtbl[i] = ((DCTELEM) qtbl->quantval[i]) << 3; |
371 | } | 371 | } |
372 | fdct->pub.forward_DCT[ci] = forward_DCT; | 372 | fdct->pub.forward_DCT[ci] = forward_DCT; |
373 | break; | 373 | break; |
374 | #endif | 374 | #endif |
375 | #ifdef DCT_IFAST_SUPPORTED | 375 | #ifdef DCT_IFAST_SUPPORTED |
376 | case JDCT_IFAST: | 376 | case JDCT_IFAST: |
377 | { | 377 | { |
378 | /* For AA&N IDCT method, divisors are equal to quantization | 378 | /* For AA&N IDCT method, divisors are equal to quantization |
379 | * coefficients scaled by scalefactor[row]*scalefactor[col], where | 379 | * coefficients scaled by scalefactor[row]*scalefactor[col], where |
380 | * scalefactor[0] = 1 | 380 | * scalefactor[0] = 1 |
381 | * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7 | 381 | * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7 |
382 | * We apply a further scale factor of 8. | 382 | * We apply a further scale factor of 8. |
383 | */ | 383 | */ |
384 | #define CONST_BITS 14 | 384 | #define CONST_BITS 14 |
385 | static const INT16 aanscales[DCTSIZE2] = { | 385 | static const INT16 aanscales[DCTSIZE2] = { |
386 | /* precomputed values scaled up by 14 bits */ | 386 | /* precomputed values scaled up by 14 bits */ |
387 | 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520, | 387 | 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520, |
388 | 22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270, | 388 | 22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270, |
389 | 21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906, | 389 | 21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906, |
390 | 19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315, | 390 | 19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315, |
391 | 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520, | 391 | 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520, |
392 | 12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552, | 392 | 12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552, |
393 | 8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446, | 393 | 8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446, |
394 | 4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247 | 394 | 4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247 |
395 | }; | 395 | }; |
396 | SHIFT_TEMPS | 396 | SHIFT_TEMPS |
397 | 397 | ||
398 | if (fdct->divisors[qtblno] == NULL) { | 398 | if (fdct->divisors[qtblno] == NULL) { |
399 | fdct->divisors[qtblno] = (DCTELEM *) | 399 | fdct->divisors[qtblno] = (DCTELEM *) |
400 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, | 400 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
401 | DCTSIZE2 * SIZEOF(DCTELEM)); | 401 | DCTSIZE2 * SIZEOF(DCTELEM)); |
402 | } | 402 | } |
403 | dtbl = fdct->divisors[qtblno]; | 403 | dtbl = fdct->divisors[qtblno]; |
404 | for (i = 0; i < DCTSIZE2; i++) { | 404 | for (i = 0; i < DCTSIZE2; i++) { |
405 | dtbl[i] = (DCTELEM) | 405 | dtbl[i] = (DCTELEM) |
406 | DESCALE(MULTIPLY16V16((INT32) qtbl->quantval[i], | 406 | DESCALE(MULTIPLY16V16((INT32) qtbl->quantval[i], |
407 | (INT32) aanscales[i]), | 407 | (INT32) aanscales[i]), |
408 | CONST_BITS-3); | 408 | CONST_BITS-3); |
409 | } | 409 | } |
410 | } | 410 | } |
411 | fdct->pub.forward_DCT[ci] = forward_DCT; | 411 | fdct->pub.forward_DCT[ci] = forward_DCT; |
412 | break; | 412 | break; |
413 | #endif | 413 | #endif |
414 | #ifdef DCT_FLOAT_SUPPORTED | 414 | #ifdef DCT_FLOAT_SUPPORTED |
415 | case JDCT_FLOAT: | 415 | case JDCT_FLOAT: |
416 | { | 416 | { |
417 | /* For float AA&N IDCT method, divisors are equal to quantization | 417 | /* For float AA&N IDCT method, divisors are equal to quantization |
418 | * coefficients scaled by scalefactor[row]*scalefactor[col], where | 418 | * coefficients scaled by scalefactor[row]*scalefactor[col], where |
419 | * scalefactor[0] = 1 | 419 | * scalefactor[0] = 1 |
420 | * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7 | 420 | * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7 |
421 | * We apply a further scale factor of 8. | 421 | * We apply a further scale factor of 8. |
422 | * What's actually stored is 1/divisor so that the inner loop can | 422 | * What's actually stored is 1/divisor so that the inner loop can |
423 | * use a multiplication rather than a division. | 423 | * use a multiplication rather than a division. |
424 | */ | 424 | */ |
425 | FAST_FLOAT * fdtbl; | 425 | FAST_FLOAT * fdtbl; |
426 | int row, col; | 426 | int row, col; |
427 | static const double aanscalefactor[DCTSIZE] = { | 427 | static const double aanscalefactor[DCTSIZE] = { |
428 | 1.0, 1.387039845, 1.306562965, 1.175875602, | 428 | 1.0, 1.387039845, 1.306562965, 1.175875602, |
429 | 1.0, 0.785694958, 0.541196100, 0.275899379 | 429 | 1.0, 0.785694958, 0.541196100, 0.275899379 |
430 | }; | 430 | }; |
431 | 431 | ||
432 | if (fdct->float_divisors[qtblno] == NULL) { | 432 | if (fdct->float_divisors[qtblno] == NULL) { |
433 | fdct->float_divisors[qtblno] = (FAST_FLOAT *) | 433 | fdct->float_divisors[qtblno] = (FAST_FLOAT *) |
434 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, | 434 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
435 | DCTSIZE2 * SIZEOF(FAST_FLOAT)); | 435 | DCTSIZE2 * SIZEOF(FAST_FLOAT)); |
436 | } | 436 | } |
437 | fdtbl = fdct->float_divisors[qtblno]; | 437 | fdtbl = fdct->float_divisors[qtblno]; |
438 | i = 0; | 438 | i = 0; |
439 | for (row = 0; row < DCTSIZE; row++) { | 439 | for (row = 0; row < DCTSIZE; row++) { |
440 | for (col = 0; col < DCTSIZE; col++) { | 440 | for (col = 0; col < DCTSIZE; col++) { |
441 | fdtbl[i] = (FAST_FLOAT) | 441 | fdtbl[i] = (FAST_FLOAT) |
442 | (1.0 / (((double) qtbl->quantval[i] * | 442 | (1.0 / (((double) qtbl->quantval[i] * |
443 | aanscalefactor[row] * aanscalefactor[col] * 8.0))); | 443 | aanscalefactor[row] * aanscalefactor[col] * 8.0))); |
444 | i++; | 444 | i++; |
445 | } | 445 | } |
446 | } | 446 | } |
447 | } | 447 | } |
448 | fdct->pub.forward_DCT[ci] = forward_DCT_float; | 448 | fdct->pub.forward_DCT[ci] = forward_DCT_float; |
449 | break; | 449 | break; |
450 | #endif | 450 | #endif |
451 | default: | 451 | default: |
452 | ERREXIT(cinfo, JERR_NOT_COMPILED); | 452 | ERREXIT(cinfo, JERR_NOT_COMPILED); |
453 | break; | 453 | break; |
454 | } | 454 | } |
455 | } | 455 | } |
456 | } | 456 | } |
457 | 457 | ||
458 | 458 | ||
459 | /* | 459 | /* |
460 | * Initialize FDCT manager. | 460 | * Initialize FDCT manager. |
461 | */ | 461 | */ |
462 | 462 | ||
463 | GLOBAL(void) | 463 | GLOBAL(void) |
464 | jinit_forward_dct (j_compress_ptr cinfo) | 464 | jinit_forward_dct (j_compress_ptr cinfo) |
465 | { | 465 | { |
466 | my_fdct_ptr fdct; | 466 | my_fdct_ptr fdct; |
467 | int i; | 467 | int i; |
468 | 468 | ||
469 | fdct = (my_fdct_ptr) | 469 | fdct = (my_fdct_ptr) |
470 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, | 470 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
471 | SIZEOF(my_fdct_controller)); | 471 | SIZEOF(my_fdct_controller)); |
472 | cinfo->fdct = (struct jpeg_forward_dct *) fdct; | 472 | cinfo->fdct = (struct jpeg_forward_dct *) fdct; |
473 | fdct->pub.start_pass = start_pass_fdctmgr; | 473 | fdct->pub.start_pass = start_pass_fdctmgr; |
474 | 474 | ||
475 | /* Mark divisor tables unallocated */ | 475 | /* Mark divisor tables unallocated */ |
476 | for (i = 0; i < NUM_QUANT_TBLS; i++) { | 476 | for (i = 0; i < NUM_QUANT_TBLS; i++) { |
477 | fdct->divisors[i] = NULL; | 477 | fdct->divisors[i] = NULL; |
478 | #ifdef DCT_FLOAT_SUPPORTED | 478 | #ifdef DCT_FLOAT_SUPPORTED |
479 | fdct->float_divisors[i] = NULL; | 479 | fdct->float_divisors[i] = NULL; |
480 | #endif | 480 | #endif |
481 | } | 481 | } |
482 | } | 482 | } |