diff options
Diffstat (limited to 'libraries/irrlicht-1.8/source/Irrlicht/jpeglib/jcdctmgr.c')
-rw-r--r-- | libraries/irrlicht-1.8/source/Irrlicht/jpeglib/jcdctmgr.c | 482 |
1 files changed, 482 insertions, 0 deletions
diff --git a/libraries/irrlicht-1.8/source/Irrlicht/jpeglib/jcdctmgr.c b/libraries/irrlicht-1.8/source/Irrlicht/jpeglib/jcdctmgr.c new file mode 100644 index 0000000..550b1a6 --- /dev/null +++ b/libraries/irrlicht-1.8/source/Irrlicht/jpeglib/jcdctmgr.c | |||
@@ -0,0 +1,482 @@ | |||
1 | /* | ||
2 | * jcdctmgr.c | ||
3 | * | ||
4 | * Copyright (C) 1994-1996, Thomas G. Lane. | ||
5 | * This file is part of the Independent JPEG Group's software. | ||
6 | * For conditions of distribution and use, see the accompanying README file. | ||
7 | * | ||
8 | * This file contains the forward-DCT management logic. | ||
9 | * This code selects a particular DCT implementation to be used, | ||
10 | * and it performs related housekeeping chores including coefficient | ||
11 | * quantization. | ||
12 | */ | ||
13 | |||
14 | #define JPEG_INTERNALS | ||
15 | #include "jinclude.h" | ||
16 | #include "jpeglib.h" | ||
17 | #include "jdct.h" /* Private declarations for DCT subsystem */ | ||
18 | |||
19 | |||
20 | /* Private subobject for this module */ | ||
21 | |||
22 | typedef struct { | ||
23 | struct jpeg_forward_dct pub; /* public fields */ | ||
24 | |||
25 | /* Pointer to the DCT routine actually in use */ | ||
26 | forward_DCT_method_ptr do_dct[MAX_COMPONENTS]; | ||
27 | |||
28 | /* The actual post-DCT divisors --- not identical to the quant table | ||
29 | * entries, because of scaling (especially for an unnormalized DCT). | ||
30 | * Each table is given in normal array order. | ||
31 | */ | ||
32 | DCTELEM * divisors[NUM_QUANT_TBLS]; | ||
33 | |||
34 | #ifdef DCT_FLOAT_SUPPORTED | ||
35 | /* Same as above for the floating-point case. */ | ||
36 | float_DCT_method_ptr do_float_dct[MAX_COMPONENTS]; | ||
37 | FAST_FLOAT * float_divisors[NUM_QUANT_TBLS]; | ||
38 | #endif | ||
39 | } my_fdct_controller; | ||
40 | |||
41 | typedef my_fdct_controller * my_fdct_ptr; | ||
42 | |||
43 | |||
44 | /* The current scaled-DCT routines require ISLOW-style divisor tables, | ||
45 | * so be sure to compile that code if either ISLOW or SCALING is requested. | ||
46 | */ | ||
47 | #ifdef DCT_ISLOW_SUPPORTED | ||
48 | #define PROVIDE_ISLOW_TABLES | ||
49 | #else | ||
50 | #ifdef DCT_SCALING_SUPPORTED | ||
51 | #define PROVIDE_ISLOW_TABLES | ||
52 | #endif | ||
53 | #endif | ||
54 | |||
55 | |||
56 | /* | ||
57 | * Perform forward DCT on one or more blocks of a component. | ||
58 | * | ||
59 | * The input samples are taken from the sample_data[] array starting at | ||
60 | * position start_row/start_col, and moving to the right for any additional | ||
61 | * blocks. The quantized coefficients are returned in coef_blocks[]. | ||
62 | */ | ||
63 | |||
64 | METHODDEF(void) | ||
65 | forward_DCT (j_compress_ptr cinfo, jpeg_component_info * compptr, | ||
66 | JSAMPARRAY sample_data, JBLOCKROW coef_blocks, | ||
67 | JDIMENSION start_row, JDIMENSION start_col, | ||
68 | JDIMENSION num_blocks) | ||
69 | /* This version is used for integer DCT implementations. */ | ||
70 | { | ||
71 | /* This routine is heavily used, so it's worth coding it tightly. */ | ||
72 | my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct; | ||
73 | forward_DCT_method_ptr do_dct = fdct->do_dct[compptr->component_index]; | ||
74 | DCTELEM * divisors = fdct->divisors[compptr->quant_tbl_no]; | ||
75 | DCTELEM workspace[DCTSIZE2]; /* work area for FDCT subroutine */ | ||
76 | JDIMENSION bi; | ||
77 | |||
78 | sample_data += start_row; /* fold in the vertical offset once */ | ||
79 | |||
80 | for (bi = 0; bi < num_blocks; bi++, start_col += compptr->DCT_h_scaled_size) { | ||
81 | /* Perform the DCT */ | ||
82 | (*do_dct) (workspace, sample_data, start_col); | ||
83 | |||
84 | /* Quantize/descale the coefficients, and store into coef_blocks[] */ | ||
85 | { register DCTELEM temp, qval; | ||
86 | register int i; | ||
87 | register JCOEFPTR output_ptr = coef_blocks[bi]; | ||
88 | |||
89 | for (i = 0; i < DCTSIZE2; i++) { | ||
90 | qval = divisors[i]; | ||
91 | temp = workspace[i]; | ||
92 | /* Divide the coefficient value by qval, ensuring proper rounding. | ||
93 | * Since C does not specify the direction of rounding for negative | ||
94 | * quotients, we have to force the dividend positive for portability. | ||
95 | * | ||
96 | * In most files, at least half of the output values will be zero | ||
97 | * (at default quantization settings, more like three-quarters...) | ||
98 | * so we should ensure that this case is fast. On many machines, | ||
99 | * a comparison is enough cheaper than a divide to make a special test | ||
100 | * a win. Since both inputs will be nonnegative, we need only test | ||
101 | * for a < b to discover whether a/b is 0. | ||
102 | * If your machine's division is fast enough, define FAST_DIVIDE. | ||
103 | */ | ||
104 | #ifdef FAST_DIVIDE | ||
105 | #define DIVIDE_BY(a,b) a /= b | ||
106 | #else | ||
107 | #define DIVIDE_BY(a,b) if (a >= b) a /= b; else a = 0 | ||
108 | #endif | ||
109 | if (temp < 0) { | ||
110 | temp = -temp; | ||
111 | temp += qval>>1; /* for rounding */ | ||
112 | DIVIDE_BY(temp, qval); | ||
113 | temp = -temp; | ||
114 | } else { | ||
115 | temp += qval>>1; /* for rounding */ | ||
116 | DIVIDE_BY(temp, qval); | ||
117 | } | ||
118 | output_ptr[i] = (JCOEF) temp; | ||
119 | } | ||
120 | } | ||
121 | } | ||
122 | } | ||
123 | |||
124 | |||
125 | #ifdef DCT_FLOAT_SUPPORTED | ||
126 | |||
127 | METHODDEF(void) | ||
128 | forward_DCT_float (j_compress_ptr cinfo, jpeg_component_info * compptr, | ||
129 | JSAMPARRAY sample_data, JBLOCKROW coef_blocks, | ||
130 | JDIMENSION start_row, JDIMENSION start_col, | ||
131 | JDIMENSION num_blocks) | ||
132 | /* This version is used for floating-point DCT implementations. */ | ||
133 | { | ||
134 | /* This routine is heavily used, so it's worth coding it tightly. */ | ||
135 | my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct; | ||
136 | float_DCT_method_ptr do_dct = fdct->do_float_dct[compptr->component_index]; | ||
137 | FAST_FLOAT * divisors = fdct->float_divisors[compptr->quant_tbl_no]; | ||
138 | FAST_FLOAT workspace[DCTSIZE2]; /* work area for FDCT subroutine */ | ||
139 | JDIMENSION bi; | ||
140 | |||
141 | sample_data += start_row; /* fold in the vertical offset once */ | ||
142 | |||
143 | for (bi = 0; bi < num_blocks; bi++, start_col += compptr->DCT_h_scaled_size) { | ||
144 | /* Perform the DCT */ | ||
145 | (*do_dct) (workspace, sample_data, start_col); | ||
146 | |||
147 | /* Quantize/descale the coefficients, and store into coef_blocks[] */ | ||
148 | { register FAST_FLOAT temp; | ||
149 | register int i; | ||
150 | register JCOEFPTR output_ptr = coef_blocks[bi]; | ||
151 | |||
152 | for (i = 0; i < DCTSIZE2; i++) { | ||
153 | /* Apply the quantization and scaling factor */ | ||
154 | temp = workspace[i] * divisors[i]; | ||
155 | /* Round to nearest integer. | ||
156 | * Since C does not specify the direction of rounding for negative | ||
157 | * quotients, we have to force the dividend positive for portability. | ||
158 | * The maximum coefficient size is +-16K (for 12-bit data), so this | ||
159 | * code should work for either 16-bit or 32-bit ints. | ||
160 | */ | ||
161 | output_ptr[i] = (JCOEF) ((int) (temp + (FAST_FLOAT) 16384.5) - 16384); | ||
162 | } | ||
163 | } | ||
164 | } | ||
165 | } | ||
166 | |||
167 | #endif /* DCT_FLOAT_SUPPORTED */ | ||
168 | |||
169 | |||
170 | /* | ||
171 | * Initialize for a processing pass. | ||
172 | * Verify that all referenced Q-tables are present, and set up | ||
173 | * the divisor table for each one. | ||
174 | * In the current implementation, DCT of all components is done during | ||
175 | * the first pass, even if only some components will be output in the | ||
176 | * first scan. Hence all components should be examined here. | ||
177 | */ | ||
178 | |||
179 | METHODDEF(void) | ||
180 | start_pass_fdctmgr (j_compress_ptr cinfo) | ||
181 | { | ||
182 | my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct; | ||
183 | int ci, qtblno, i; | ||
184 | jpeg_component_info *compptr; | ||
185 | int method = 0; | ||
186 | JQUANT_TBL * qtbl; | ||
187 | DCTELEM * dtbl; | ||
188 | |||
189 | for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; | ||
190 | ci++, compptr++) { | ||
191 | /* Select the proper DCT routine for this component's scaling */ | ||
192 | switch ((compptr->DCT_h_scaled_size << 8) + compptr->DCT_v_scaled_size) { | ||
193 | #ifdef DCT_SCALING_SUPPORTED | ||
194 | case ((1 << 8) + 1): | ||
195 | fdct->do_dct[ci] = jpeg_fdct_1x1; | ||
196 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */ | ||
197 | break; | ||
198 | case ((2 << 8) + 2): | ||
199 | fdct->do_dct[ci] = jpeg_fdct_2x2; | ||
200 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */ | ||
201 | break; | ||
202 | case ((3 << 8) + 3): | ||
203 | fdct->do_dct[ci] = jpeg_fdct_3x3; | ||
204 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */ | ||
205 | break; | ||
206 | case ((4 << 8) + 4): | ||
207 | fdct->do_dct[ci] = jpeg_fdct_4x4; | ||
208 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */ | ||
209 | break; | ||
210 | case ((5 << 8) + 5): | ||
211 | fdct->do_dct[ci] = jpeg_fdct_5x5; | ||
212 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */ | ||
213 | break; | ||
214 | case ((6 << 8) + 6): | ||
215 | fdct->do_dct[ci] = jpeg_fdct_6x6; | ||
216 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */ | ||
217 | break; | ||
218 | case ((7 << 8) + 7): | ||
219 | fdct->do_dct[ci] = jpeg_fdct_7x7; | ||
220 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */ | ||
221 | break; | ||
222 | case ((9 << 8) + 9): | ||
223 | fdct->do_dct[ci] = jpeg_fdct_9x9; | ||
224 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */ | ||
225 | break; | ||
226 | case ((10 << 8) + 10): | ||
227 | fdct->do_dct[ci] = jpeg_fdct_10x10; | ||
228 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */ | ||
229 | break; | ||
230 | case ((11 << 8) + 11): | ||
231 | fdct->do_dct[ci] = jpeg_fdct_11x11; | ||
232 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */ | ||
233 | break; | ||
234 | case ((12 << 8) + 12): | ||
235 | fdct->do_dct[ci] = jpeg_fdct_12x12; | ||
236 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */ | ||
237 | break; | ||
238 | case ((13 << 8) + 13): | ||
239 | fdct->do_dct[ci] = jpeg_fdct_13x13; | ||
240 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */ | ||
241 | break; | ||
242 | case ((14 << 8) + 14): | ||
243 | fdct->do_dct[ci] = jpeg_fdct_14x14; | ||
244 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */ | ||
245 | break; | ||
246 | case ((15 << 8) + 15): | ||
247 | fdct->do_dct[ci] = jpeg_fdct_15x15; | ||
248 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */ | ||
249 | break; | ||
250 | case ((16 << 8) + 16): | ||
251 | fdct->do_dct[ci] = jpeg_fdct_16x16; | ||
252 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */ | ||
253 | break; | ||
254 | case ((16 << 8) + 8): | ||
255 | fdct->do_dct[ci] = jpeg_fdct_16x8; | ||
256 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */ | ||
257 | break; | ||
258 | case ((14 << 8) + 7): | ||
259 | fdct->do_dct[ci] = jpeg_fdct_14x7; | ||
260 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */ | ||
261 | break; | ||
262 | case ((12 << 8) + 6): | ||
263 | fdct->do_dct[ci] = jpeg_fdct_12x6; | ||
264 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */ | ||
265 | break; | ||
266 | case ((10 << 8) + 5): | ||
267 | fdct->do_dct[ci] = jpeg_fdct_10x5; | ||
268 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */ | ||
269 | break; | ||
270 | case ((8 << 8) + 4): | ||
271 | fdct->do_dct[ci] = jpeg_fdct_8x4; | ||
272 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */ | ||
273 | break; | ||
274 | case ((6 << 8) + 3): | ||
275 | fdct->do_dct[ci] = jpeg_fdct_6x3; | ||
276 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */ | ||
277 | break; | ||
278 | case ((4 << 8) + 2): | ||
279 | fdct->do_dct[ci] = jpeg_fdct_4x2; | ||
280 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */ | ||
281 | break; | ||
282 | case ((2 << 8) + 1): | ||
283 | fdct->do_dct[ci] = jpeg_fdct_2x1; | ||
284 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */ | ||
285 | break; | ||
286 | case ((8 << 8) + 16): | ||
287 | fdct->do_dct[ci] = jpeg_fdct_8x16; | ||
288 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */ | ||
289 | break; | ||
290 | case ((7 << 8) + 14): | ||
291 | fdct->do_dct[ci] = jpeg_fdct_7x14; | ||
292 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */ | ||
293 | break; | ||
294 | case ((6 << 8) + 12): | ||
295 | fdct->do_dct[ci] = jpeg_fdct_6x12; | ||
296 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */ | ||
297 | break; | ||
298 | case ((5 << 8) + 10): | ||
299 | fdct->do_dct[ci] = jpeg_fdct_5x10; | ||
300 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */ | ||
301 | break; | ||
302 | case ((4 << 8) + 8): | ||
303 | fdct->do_dct[ci] = jpeg_fdct_4x8; | ||
304 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */ | ||
305 | break; | ||
306 | case ((3 << 8) + 6): | ||
307 | fdct->do_dct[ci] = jpeg_fdct_3x6; | ||
308 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */ | ||
309 | break; | ||
310 | case ((2 << 8) + 4): | ||
311 | fdct->do_dct[ci] = jpeg_fdct_2x4; | ||
312 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */ | ||
313 | break; | ||
314 | case ((1 << 8) + 2): | ||
315 | fdct->do_dct[ci] = jpeg_fdct_1x2; | ||
316 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */ | ||
317 | break; | ||
318 | #endif | ||
319 | case ((DCTSIZE << 8) + DCTSIZE): | ||
320 | switch (cinfo->dct_method) { | ||
321 | #ifdef DCT_ISLOW_SUPPORTED | ||
322 | case JDCT_ISLOW: | ||
323 | fdct->do_dct[ci] = jpeg_fdct_islow; | ||
324 | method = JDCT_ISLOW; | ||
325 | break; | ||
326 | #endif | ||
327 | #ifdef DCT_IFAST_SUPPORTED | ||
328 | case JDCT_IFAST: | ||
329 | fdct->do_dct[ci] = jpeg_fdct_ifast; | ||
330 | method = JDCT_IFAST; | ||
331 | break; | ||
332 | #endif | ||
333 | #ifdef DCT_FLOAT_SUPPORTED | ||
334 | case JDCT_FLOAT: | ||
335 | fdct->do_float_dct[ci] = jpeg_fdct_float; | ||
336 | method = JDCT_FLOAT; | ||
337 | break; | ||
338 | #endif | ||
339 | default: | ||
340 | ERREXIT(cinfo, JERR_NOT_COMPILED); | ||
341 | break; | ||
342 | } | ||
343 | break; | ||
344 | default: | ||
345 | ERREXIT2(cinfo, JERR_BAD_DCTSIZE, | ||
346 | compptr->DCT_h_scaled_size, compptr->DCT_v_scaled_size); | ||
347 | break; | ||
348 | } | ||
349 | qtblno = compptr->quant_tbl_no; | ||
350 | /* Make sure specified quantization table is present */ | ||
351 | if (qtblno < 0 || qtblno >= NUM_QUANT_TBLS || | ||
352 | cinfo->quant_tbl_ptrs[qtblno] == NULL) | ||
353 | ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, qtblno); | ||
354 | qtbl = cinfo->quant_tbl_ptrs[qtblno]; | ||
355 | /* Compute divisors for this quant table */ | ||
356 | /* We may do this more than once for same table, but it's not a big deal */ | ||
357 | switch (method) { | ||
358 | #ifdef PROVIDE_ISLOW_TABLES | ||
359 | case JDCT_ISLOW: | ||
360 | /* For LL&M IDCT method, divisors are equal to raw quantization | ||
361 | * coefficients multiplied by 8 (to counteract scaling). | ||
362 | */ | ||
363 | if (fdct->divisors[qtblno] == NULL) { | ||
364 | fdct->divisors[qtblno] = (DCTELEM *) | ||
365 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, | ||
366 | DCTSIZE2 * SIZEOF(DCTELEM)); | ||
367 | } | ||
368 | dtbl = fdct->divisors[qtblno]; | ||
369 | for (i = 0; i < DCTSIZE2; i++) { | ||
370 | dtbl[i] = ((DCTELEM) qtbl->quantval[i]) << 3; | ||
371 | } | ||
372 | fdct->pub.forward_DCT[ci] = forward_DCT; | ||
373 | break; | ||
374 | #endif | ||
375 | #ifdef DCT_IFAST_SUPPORTED | ||
376 | case JDCT_IFAST: | ||
377 | { | ||
378 | /* For AA&N IDCT method, divisors are equal to quantization | ||
379 | * coefficients scaled by scalefactor[row]*scalefactor[col], where | ||
380 | * scalefactor[0] = 1 | ||
381 | * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7 | ||
382 | * We apply a further scale factor of 8. | ||
383 | */ | ||
384 | #define CONST_BITS 14 | ||
385 | static const INT16 aanscales[DCTSIZE2] = { | ||
386 | /* precomputed values scaled up by 14 bits */ | ||
387 | 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520, | ||
388 | 22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270, | ||
389 | 21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906, | ||
390 | 19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315, | ||
391 | 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520, | ||
392 | 12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552, | ||
393 | 8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446, | ||
394 | 4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247 | ||
395 | }; | ||
396 | SHIFT_TEMPS | ||
397 | |||
398 | if (fdct->divisors[qtblno] == NULL) { | ||
399 | fdct->divisors[qtblno] = (DCTELEM *) | ||
400 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, | ||
401 | DCTSIZE2 * SIZEOF(DCTELEM)); | ||
402 | } | ||
403 | dtbl = fdct->divisors[qtblno]; | ||
404 | for (i = 0; i < DCTSIZE2; i++) { | ||
405 | dtbl[i] = (DCTELEM) | ||
406 | DESCALE(MULTIPLY16V16((INT32) qtbl->quantval[i], | ||
407 | (INT32) aanscales[i]), | ||
408 | CONST_BITS-3); | ||
409 | } | ||
410 | } | ||
411 | fdct->pub.forward_DCT[ci] = forward_DCT; | ||
412 | break; | ||
413 | #endif | ||
414 | #ifdef DCT_FLOAT_SUPPORTED | ||
415 | case JDCT_FLOAT: | ||
416 | { | ||
417 | /* For float AA&N IDCT method, divisors are equal to quantization | ||
418 | * coefficients scaled by scalefactor[row]*scalefactor[col], where | ||
419 | * scalefactor[0] = 1 | ||
420 | * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7 | ||
421 | * We apply a further scale factor of 8. | ||
422 | * What's actually stored is 1/divisor so that the inner loop can | ||
423 | * use a multiplication rather than a division. | ||
424 | */ | ||
425 | FAST_FLOAT * fdtbl; | ||
426 | int row, col; | ||
427 | static const double aanscalefactor[DCTSIZE] = { | ||
428 | 1.0, 1.387039845, 1.306562965, 1.175875602, | ||
429 | 1.0, 0.785694958, 0.541196100, 0.275899379 | ||
430 | }; | ||
431 | |||
432 | if (fdct->float_divisors[qtblno] == NULL) { | ||
433 | fdct->float_divisors[qtblno] = (FAST_FLOAT *) | ||
434 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, | ||
435 | DCTSIZE2 * SIZEOF(FAST_FLOAT)); | ||
436 | } | ||
437 | fdtbl = fdct->float_divisors[qtblno]; | ||
438 | i = 0; | ||
439 | for (row = 0; row < DCTSIZE; row++) { | ||
440 | for (col = 0; col < DCTSIZE; col++) { | ||
441 | fdtbl[i] = (FAST_FLOAT) | ||
442 | (1.0 / (((double) qtbl->quantval[i] * | ||
443 | aanscalefactor[row] * aanscalefactor[col] * 8.0))); | ||
444 | i++; | ||
445 | } | ||
446 | } | ||
447 | } | ||
448 | fdct->pub.forward_DCT[ci] = forward_DCT_float; | ||
449 | break; | ||
450 | #endif | ||
451 | default: | ||
452 | ERREXIT(cinfo, JERR_NOT_COMPILED); | ||
453 | break; | ||
454 | } | ||
455 | } | ||
456 | } | ||
457 | |||
458 | |||
459 | /* | ||
460 | * Initialize FDCT manager. | ||
461 | */ | ||
462 | |||
463 | GLOBAL(void) | ||
464 | jinit_forward_dct (j_compress_ptr cinfo) | ||
465 | { | ||
466 | my_fdct_ptr fdct; | ||
467 | int i; | ||
468 | |||
469 | fdct = (my_fdct_ptr) | ||
470 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, | ||
471 | SIZEOF(my_fdct_controller)); | ||
472 | cinfo->fdct = (struct jpeg_forward_dct *) fdct; | ||
473 | fdct->pub.start_pass = start_pass_fdctmgr; | ||
474 | |||
475 | /* Mark divisor tables unallocated */ | ||
476 | for (i = 0; i < NUM_QUANT_TBLS; i++) { | ||
477 | fdct->divisors[i] = NULL; | ||
478 | #ifdef DCT_FLOAT_SUPPORTED | ||
479 | fdct->float_divisors[i] = NULL; | ||
480 | #endif | ||
481 | } | ||
482 | } | ||