diff options
author | David Walter Seikel | 2016-03-28 22:28:34 +1000 |
---|---|---|
committer | David Walter Seikel | 2016-03-28 22:28:34 +1000 |
commit | 7028cbe09c688437910a25623098762bf0fa592d (patch) | |
tree | 10b5af58277d9880380c2251f109325542c4e6eb /src/others/irrlicht-1.8.1/examples/10.Shaders/tutorial.html | |
parent | Move lemon to the src/others directory. (diff) | |
download | SledjHamr-7028cbe09c688437910a25623098762bf0fa592d.zip SledjHamr-7028cbe09c688437910a25623098762bf0fa592d.tar.gz SledjHamr-7028cbe09c688437910a25623098762bf0fa592d.tar.bz2 SledjHamr-7028cbe09c688437910a25623098762bf0fa592d.tar.xz |
Move Irrlicht to src/others.
Diffstat (limited to 'src/others/irrlicht-1.8.1/examples/10.Shaders/tutorial.html')
-rw-r--r-- | src/others/irrlicht-1.8.1/examples/10.Shaders/tutorial.html | 566 |
1 files changed, 566 insertions, 0 deletions
diff --git a/src/others/irrlicht-1.8.1/examples/10.Shaders/tutorial.html b/src/others/irrlicht-1.8.1/examples/10.Shaders/tutorial.html new file mode 100644 index 0000000..05c4f08 --- /dev/null +++ b/src/others/irrlicht-1.8.1/examples/10.Shaders/tutorial.html | |||
@@ -0,0 +1,566 @@ | |||
1 | <html> | ||
2 | <head> | ||
3 | <title>Irrlicht Engine Tutorial</title> | ||
4 | <meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1"> | ||
5 | </head> | ||
6 | |||
7 | <body bgcolor="#FFFFFF" leftmargin="0" topmargin="0" marginwidth="0" marginheight="0"> | ||
8 | <br> | ||
9 | <table width="95%" border="0" cellspacing="0" cellpadding="2" align="center"> | ||
10 | <tr> | ||
11 | <td bgcolor="#666699" width="10"><b><a href="http://irrlicht.sourceforge.net" target="_blank"><img src="../../media/irrlichtlogo.jpg" width="88" height="31" border="0"></a></b></td> | ||
12 | <td bgcolor="#666699" width="100%"> | ||
13 | <div align="center"> | ||
14 | <div align="left"><b><font color="#FFFFFF">Tutorial 10. Shaders</font></b></div> | ||
15 | </div> | ||
16 | </td> | ||
17 | </tr> | ||
18 | <tr bgcolor="#eeeeff"> | ||
19 | <td height="90" colspan="2"> | ||
20 | <div align="left"> | ||
21 | <p> This tutorial shows how to use shaders for D3D8, D3D9 and OpenGL with | ||
22 | the engine and how to create new material types with them. It also shows | ||
23 | how to disable the generation of mipmaps at texture loading, and how | ||
24 | to use text scene nodes.</p> | ||
25 | <p>This tutorial does not explain how shaders work. I would recommend | ||
26 | to read the D3D or OpenGL documentation, to search a tutorial, or to | ||
27 | read a book about this.</p> | ||
28 | <p>The program which is described here will look like this:</p> | ||
29 | <p align="center"><img src="../../media/010shot.jpg" width="260" height="203"><br> | ||
30 | </p> | ||
31 | </div> | ||
32 | </td> | ||
33 | </tr> | ||
34 | </table> | ||
35 | <br> | ||
36 | <table width="95%" border="0" cellspacing="0" cellpadding="2" align="center"> | ||
37 | <tr> | ||
38 | <td bgcolor="#666699"> <b><font color="#FFFFFF">Lets start!</font></b></td> | ||
39 | </tr> | ||
40 | <tr> | ||
41 | <td height="90" bgcolor="#eeeeff" valign="top"> <div align="left"> | ||
42 | <div align="left"> | ||
43 | <p>At first, we need to include all headers and do the stuff we always | ||
44 | do, like in nearly all other tutorials:</p> | ||
45 | <table width="95%" border="0" cellspacing="2" cellpadding="0" bgcolor="#CCCCCC" align="center"> | ||
46 | <tr> | ||
47 | <td> <pre>#include <irrlicht.h><br>#include <iostream><br><br>using namespace irr;<br><br>#pragma comment(lib, "Irrlicht.lib")<br></pre></td> | ||
48 | </tr> | ||
49 | </table> | ||
50 | <p>Because we want to use some interesting shaders in this tutorials, | ||
51 | we need to set some data for them to make them able to compute nice | ||
52 | colors. In this example, we'll use a simple vertex shader which will | ||
53 | calculate the color of the vertex based on the position of the camera. | ||
54 | For this, the shader needs the following data: The inverted world | ||
55 | matrix for transforming the normal, the clip matrix for transforming | ||
56 | the position, the camera position and the world position of the object | ||
57 | for the calculation of the angle of light, and the color of the light. | ||
58 | To be able to tell the shader all this data every frame, we have to | ||
59 | derive a class from the IShaderConstantSetCallBack interface and override | ||
60 | its only method, namely OnSetConstants(). This method will be called | ||
61 | every time the material is set. <br> | ||
62 | The method setVertexShaderConstant() of the IMaterialRendererServices | ||
63 | interface is used to set the data the shader needs. If the user chose | ||
64 | to use a High Level shader language like HLSL instead of Assembler | ||
65 | in this example, you have to set the variable name as parameter instead | ||
66 | of the register index.</p> | ||
67 | <table width="95%" border="0" cellspacing="2" cellpadding="0" bgcolor="#CCCCCC" align="center"> | ||
68 | <tr> | ||
69 | <td> <pre>IrrlichtDevice* device = 0;<br>bool UseHighLevelShaders = false;<br><br>class MyShaderCallBack : public video::IShaderConstantSetCallBack<br>{<br>public: | ||
70 | <br> virtual void OnSetConstants(video::IMaterialRendererServices* services, s32 userData)<br> {<br> video::IVideoDriver* driver = services->getVideoDriver();<br><br> <font color="#006600">// set inverted world matrix<br> // if we are using highlevel shaders (the user can select this when<br> // starting the program), we must set the constants by name.</font><br> core::matrix4 invWorld = driver->getTransform(video::ETS_WORLD);<br> invWorld.makeInverse();<br><br> if (UseHighLevelShaders)<br> services->setVertexShaderConstant("mInvWorld", &invWorld.M[0], 16);<br> else<br> services->setVertexShaderConstant(&invWorld.M[0], 0, 4);<br><font color="#006600"><br> // set clip matrix<br></font> core::matrix4 worldViewProj;<br> worldViewProj = driver->getTransform(video::ETS_PROJECTION); <br> worldViewProj *= driver->getTransform(video::ETS_VIEW);<br> worldViewProj *= driver->getTransform(video::ETS_WORLD);<br><br> if (UseHighLevelShaders)<br> services->setVertexShaderConstant("mWorldViewProj", &worldViewProj.M[0], 16);<br> else<br> services->setVertexShaderConstant(&worldViewProj.M[0], 4, 4);<br> <br><font color="#006600"> </font><font color="#006600">// set camera position<br></font> core::vector3df pos = device->getSceneManager()-><br> getActiveCamera()->getAbsolutePosition();<br><br> if (UseHighLevelShaders)<br> services->setVertexShaderConstant("mLightPos", reinterpret_cast<f32*>(&pos), 3);<br> else<br> services->setVertexShaderConstant(reinterpret_cast<f32*>(&pos), 8, 1);<br><br><font color="#006600"> </font><font color="#006600">// set light color <br></font> video::SColorf col(0.0f,1.0f,1.0f,0.0f);<br><br> if (UseHighLevelShaders)<br> services->setVertexShaderConstant("mLightColor", reinterpret_cast<f32*>(&col), 4);<br> else<br> services->setVertexShaderConstant(reinterpret_cast<f32*>(&col), 9, 1);<br><br><font color="#006600"> </font><font color="#006600">// set transposed world matrix<br></font> core::matrix4 world = driver->getTransform(video::ETS_WORLD);<br> world = world.getTransposed();<br><br> if (UseHighLevelShaders)<br> services->setVertexShaderConstant("mTransWorld", &world.M[0], 16);<br> else<br> services->setVertexShaderConstant(&world.M[0], 10, 4);<br> }<br>};</pre></td> | ||
71 | </tr> | ||
72 | </table> | ||
73 | <p> The next few lines start up the engine. Just like in most other | ||
74 | tutorials before. But in addition, we ask the user if he wants this | ||
75 | example to use high level shaders if he selected a driver which is | ||
76 | capable of doing so.</p> | ||
77 | <table width="95%" border="0" cellspacing="2" cellpadding="0" bgcolor="#CCCCCC" align="center"> | ||
78 | <tr> | ||
79 | <td> <pre>int main()<br>{<br><font color="#006600"> // let user select driver type</font><br><br> video::E_DRIVER_TYPE driverType = video::EDT_DIRECTX9;<br><br> printf("Please select the driver you want for this example:\n"\<br> " (a) Direct3D 9.0c\n (b) Direct3D 8.1\n (c) OpenGL 1.5\n"\<br> " (d) Software Renderer\n (e) Apfelbaum Software Renderer\n"\<br> " (f) NullDevice\n (otherKey) exit\n\n");<br><br> char i;<br> std::cin >> i;<br><br> switch(i)<br> {<br> case 'a': driverType = video::EDT_DIRECT3D9;break;<br> case 'b': driverType = video::EDT_DIRECT3D8;break;<br> case 'c': driverType = video::EDT_OPENGL; break;<br> case 'd': driverType = video::EDT_SOFTWARE; break;<br> case 'e': driverType = video::EDT_BURNINGSVIDEO;break;<br> case 'f': driverType = video::EDT_NULL; break;<br> default: return 1;<br> } <br><br><font color="#006600"> </font> <font color="#006600">// ask the user if we should use high level shaders for this example<br> </font> if (driverType == video::EDT_DIRECT3D9 ||<br> driverType == video::EDT_OPENGL) | ||
80 | {<br> printf("<font color="#CC0000">Please press 'y' if you want to use high level shaders.\n</font>");<br> std::cin >> i;<br> if (i == 'y')<br> UseHighLevelShaders = true;<br> }<br><br><font color="#006600"> // create devic</font>e<br><br> device = createDevice(driverType, core::dimension2d<s32>(640, 480));<br><br> if (device == 0)<br> {<br> printf(<font color="#CC0000">"\nWas not able to create driver.\n"\<br> "Please restart and select another driver.\n"</font>);<br> getch();<br> return 1;<br> } <br><br> video::IVideoDriver* driver = device->getVideoDriver();<br> scene::ISceneManager* smgr = device->getSceneManager();<br> gui::IGUIEnvironment* gui = device->getGUIEnvironment();</pre></td> | ||
81 | </tr> | ||
82 | </table> | ||
83 | <p> Now for the more interesting parts. If we are using Direct3D, we | ||
84 | want to load vertex and pixel shader programs, if we have<br> | ||
85 | OpenGL, we want to use ARB fragment and vertex programs. I wrote the | ||
86 | corresponding programs down into the files d3d8.ps, d3d8.vs, d3d9.ps, | ||
87 | d3d9.vs, opengl.ps and opengl.vs. We only need the right filenames | ||
88 | now. This is done in the following switch. Note, that it is not necessary | ||
89 | to write the shaders into text files, like in this example. You can | ||
90 | even write the shaders directly as strings into the cpp source file, | ||
91 | and use later addShaderMaterial() instead of addShaderMaterialFromFiles().</p> | ||
92 | <table width="95%" border="0" cellspacing="2" cellpadding="0" bgcolor="#CCCCCC" align="center"> | ||
93 | <tr> | ||
94 | <td> <pre> c8* vsFileName = 0<font color="#006600">; // filename for the vertex shader</font><br> c8* psFileName = 0<font color="#006600">; // filename for the pixel shader</font><br><br> switch(driverType)<br> {<br> case video::EDT_DIRECT3D8:<br> psFileName = "../../media/d3d8.psh";<br> vsFileName = "../../media/d3d8.vsh";<br> break;<br> case video::EDT_DIRECT3D9:<br> if (UseHighLevelShaders)<br> {<br> psFileName = "../../media/d3d9.hlsl";<br> vsFileName = psFileName; <font color="#006600">// both shaders are in the same file</font><br> }<br> else<br> {<br> psFileName = "../../media/d3d9.psh";<br> vsFileName = "../../media/d3d9.vsh";<br> }<br> break;<br> case video::EDT_OPENGL:<br> if (UseHighLevelShaders)<br> {<br> psFileName = "../../media/opengl.frag";<br> vsFileName = "../../media/opengl.vert";<br> }<br> else<br> {<br> psFileName = "../../media/opengl.psh";<br> vsFileName = "../../media/opengl.vsh";<br> }<br> break;<br> }<br></pre> | ||
95 | </td> | ||
96 | </tr> | ||
97 | </table> | ||
98 | <p> In addition, we check if the hardware and the selected renderer | ||
99 | is capable of executing the shaders we want. If not, we simply set | ||
100 | the filename string to 0. This is not necessary, but useful in this | ||
101 | example: For example, if the hardware is able to execute vertex shaders | ||
102 | but not pixel shaders, we create a new material which only uses the | ||
103 | vertex shader, and no pixel shader. Otherwise, if we would tell the | ||
104 | engine to create this material and the engine sees that the hardware | ||
105 | wouldn't be able to fullfill the request completely,<br> | ||
106 | it would not create any new material at all. So in this example you | ||
107 | would see at least the vertex shader in action, without the pixel | ||
108 | shader.</p> | ||
109 | </div> | ||
110 | <table width="95%" border="0" cellspacing="2" cellpadding="0" bgcolor="#CCCCCC" align="center"> | ||
111 | <tr> | ||
112 | <td> <pre> if (!driver->queryFeature(video::EVDF_PIXEL_SHADER_1_1) &&<br> !driver->queryFeature(video::EVDF_ARB_FRAGMENT_PROGRAM_1))<br> {<br> device->getLogger()->log("WARNING: Pixel shaders disabled "\<br> "because of missing driver/hardware support.");<br> psFileName = 0;<br> }<br> <br> if (!driver->queryFeature(video::EVDF_VERTEX_SHADER_1_1) &&<br> !driver->queryFeature(video::EVDF_ARB_VERTEX_PROGRAM_1))<br> {<br> device->getLogger()->log("WARNING: Vertex shaders disabled "\<br> "because of missing driver/hardware support.");<br> vsFileName = 0;<br> }</pre></td> | ||
113 | </tr> | ||
114 | </table> | ||
115 | <p> Now lets create the new materials.<br> | ||
116 | As you maybe know from previous examples, a material type in the Irrlicht | ||
117 | engine is set by simply changing the MaterialType value in the SMaterial | ||
118 | struct. And this value is just a simple 32 bit value, like video::EMT_SOLID. | ||
119 | So we only need the engine to create a new value for us which we can | ||
120 | set there. To do this, we get a pointer to the IGPUProgrammingServices | ||
121 | and call addShaderMaterialFromFiles(), which returns such a new 32 bit | ||
122 | value. That's all.<br> | ||
123 | The parameters to this method are the following: First, the names of | ||
124 | the files containing the code of the vertex and the pixel shader.<br> | ||
125 | If you would use addShaderMaterial() instead, you would not need file | ||
126 | names, then you could write the code of the shader directly as string. | ||
127 | The following parameter is a pointer to the IShaderConstantSetCallBack | ||
128 | class we wrote at the beginning of this tutorial. If you don't want | ||
129 | to set constants, set this to 0. The last paramter tells the engine | ||
130 | which material it should use as base material. <br> | ||
131 | To demonstrate this, we create two materials with a different base material, | ||
132 | one with EMT_SOLID and one with EMT_TRANSPARENT_ADD_COLOR.</p> | ||
133 | <table width="95%" border="0" cellspacing="2" cellpadding="0" bgcolor="#CCCCCC" align="center"> | ||
134 | <tr> | ||
135 | <td><pre> <font color="#006600">// create materials</font><br><br> video::IGPUProgrammingServices* gpu = driver->getGPUProgrammingServices();<br><br> s32 newMaterialType1 = 0;<br> s32 newMaterialType2 = 0;<br><br> if (gpu)<br> {<br> MyShaderCallBack* mc = new MyShaderCallBack();<br> <font color="#006600"> | ||
136 | // create the shaders depending on if the user wanted high level<br> // or low level shaders:</font><br><br> if (UseHighLevelShaders)<br> {<br><font color="#006600"> // create material from high level shaders (hlsl or glsl)<br><br></font> newMaterialType1 = gpu->addHighLevelShaderMaterialFromFiles(<br> vsFileName, "vertexMain", video::EVST_VS_1_1,<br> psFileName, "pixelMain", video::EPST_PS_1_1,<br> mc, video::EMT_SOLID);<br><br> newMaterialType2 = gpu->addHighLevelShaderMaterialFromFiles(<br> vsFileName, "vertexMain", video::EVST_VS_1_1,<br> psFileName, "pixelMain", video::EPST_PS_1_1,<br> mc, video::EMT_TRANSPARENT_ADD_COLOR);<br> }<br> else<br> {<br><font color="#009900"> // create material from low level shaders (asm or arb_asm)<br></font><br> newMaterialType1 = gpu->addShaderMaterialFromFiles(vsFileName,<br> psFileName, mc, video::EMT_SOLID);<br><br> newMaterialType2 = gpu->addShaderMaterialFromFiles(vsFileName,<br> psFileName, mc, video::EMT_TRANSPARENT_ADD_COLOR);<br> }<br><br> mc->drop();<br> }<br></pre></td> | ||
137 | </tr> | ||
138 | </table> | ||
139 | <p> Now its time for testing out the materials. We create a test cube | ||
140 | and set the material we created. In addition, we add a text scene node | ||
141 | to the cube and a rotatation animator, to make it look more interesting | ||
142 | and important. </p> | ||
143 | <table width="95%" border="0" cellspacing="2" cellpadding="0" bgcolor="#CCCCCC" align="center"> | ||
144 | <tr> | ||
145 | <td><pre><font color="#006600"> | ||
146 | // create test scene node 1, with the new created material type 1</font> | ||
147 | |||
148 | scene::ISceneNode* node = smgr->addCubeSceneNode(50); | ||
149 | node->setPosition(core::vector3df(0,0,0)); | ||
150 | node->setMaterialTexture(0, driver->getTexture("../../media/wall.bmp")); | ||
151 | node->setMaterialFlag(video::EMF_LIGHTING, false); | ||
152 | node->setMaterialType((video::E_MATERIAL_TYPE)newMaterialType1); | ||
153 | |||
154 | smgr->addTextSceneNode(gui->getBuiltInFont(), | ||
155 | L"PS & VS & EMT_SOLID", | ||
156 | video::SColor(255,255,255,255), node); | ||
157 | |||
158 | scene::ISceneNodeAnimator* anim = smgr->createRotationAnimator( | ||
159 | core::vector3df(0,0.3f,0)); | ||
160 | node->addAnimator(anim); | ||
161 | anim->drop();</pre></td> | ||
162 | </tr> | ||
163 | </table> | ||
164 | <p> Same for the second cube, but with the second material we created.</p> | ||
165 | <table width="95%" border="0" cellspacing="2" cellpadding="0" bgcolor="#CCCCCC" align="center"> | ||
166 | <tr> | ||
167 | <td><pre> <font color="#006600">// create test scene node 2, with the new created material type 2</font> | ||
168 | |||
169 | node = smgr->addCubeSceneNode(50); | ||
170 | node->setPosition(core::vector3df(0,-10,50)); | ||
171 | node->setMaterialTexture(0, driver->getTexture("../../media/wall.bmp")); | ||
172 | node->setMaterialFlag(video::EMF_LIGHTING, false); | ||
173 | node->setMaterialType((video::E_MATERIAL_TYPE)newMaterialType2); | ||
174 | |||
175 | smgr->addTextSceneNode(gui->getBuiltInFont(), | ||
176 | L"PS & VS & EMT_TRANSPARENT", | ||
177 | video::SColor(255,255,255,255), node); | ||
178 | |||
179 | anim = smgr->createRotationAnimator(core::vector3df(0,0.3f,0)); | ||
180 | node->addAnimator(anim); | ||
181 | anim->drop();</pre></td> | ||
182 | </tr> | ||
183 | </table> | ||
184 | <br> | ||
185 | Then we add a third cube without a shader on it, to be able to compare | ||
186 | the cubes.<br> | ||
187 | <br> | ||
188 | <table width="95%" border="0" cellspacing="2" cellpadding="0" bgcolor="#CCCCCC" align="center"> | ||
189 | <tr> | ||
190 | <td><pre> <font color="#006600">// add a scene node with no shader </font> | ||
191 | |||
192 | node = smgr->addCubeSceneNode(50); | ||
193 | node->setPosition(core::vector3df(0,50,25)); | ||
194 | node->setMaterialTexture(0, driver->getTexture("../../media/wall.bmp")); | ||
195 | node->setMaterialFlag(video::EMF_LIGHTING, false); | ||
196 | smgr->addTextSceneNode(gui->getBuiltInFont(), L"NO SHADER", | ||
197 | video::SColor(255,255,255,255), node); | ||
198 | </pre></td> | ||
199 | </tr> | ||
200 | </table> | ||
201 | <br> | ||
202 | And last, we add a skybox and a user controlled camera to the scene. For | ||
203 | the skybox textures, we disable mipmap generation, because we don't need | ||
204 | mipmaps on it.<br> | ||
205 | <br> | ||
206 | <table width="95%" border="0" cellspacing="2" cellpadding="0" bgcolor="#CCCCCC" align="center"> | ||
207 | <tr> | ||
208 | <td><pre> <font color="#006600">// add a nice skybox</font><br><br> driver->setTextureCreationFlag(video::ETCF_CREATE_MIP_MAPS, false);<br><br> smgr->addSkyBoxSceneNode(<br> driver->getTexture("../../media/irrlicht2_up.jpg"),<br> driver->getTexture("../../media/irrlicht2_dn.jpg"),<br> driver->getTexture("../../media/irrlicht2_lf.jpg"),<br> driver->getTexture("../../media/irrlicht2_rt.jpg"),<br> driver->getTexture("../../media/irrlicht2_ft.jpg"),<br> driver->getTexture("../../media/irrlicht2_bk.jpg"));<br><br> driver->setTextureCreationFlag(video::ETCF_CREATE_MIP_MAPS, true);<br><br><font color="#006600"> // add a camera and disable the mouse curso</font>r<br><br> scene::ICameraSceneNode* cam = smgr->addCameraSceneNodeFPS(0, 100.0f, 100.0f);<br> cam->setPosition(core::vector3df(-100,50,100));<br> cam->setTarget(core::vector3df(0,0,0));<br> device->getCursorControl()->setVisible(false);</pre></td> | ||
209 | </tr> | ||
210 | </table> | ||
211 | <br> | ||
212 | Now draw everything. That's all.<br> | ||
213 | <br> | ||
214 | <table width="95%" border="0" cellspacing="2" cellpadding="0" bgcolor="#CCCCCC" align="center"> | ||
215 | <tr> | ||
216 | <td><pre> int lastFPS = -1;<br><br> while(device->run())<br> if (device->isWindowActive())<br> {<br> driver->beginScene(true, true, video::SColor(255,0,0,0));<br> smgr->drawAll();<br> driver->endScene();<br><br> int fps = driver->getFPS();<br><br> if (lastFPS != fps)<br> {<br> core::stringw str = L"Irrlicht Engine - Vertex and pixel shader example [";<br> str += driver->getName();<br> str += "] FPS:";<br> str += fps;<br> device->setWindowCaption(str.c_str());<br> lastFPS = fps;<br> }<br> }<br><br> device->drop();<br> <br> return 0;<br></pre></td> | ||
217 | </tr> | ||
218 | </table> | ||
219 | <br> | ||
220 | Compile and run this, and I hope you have fun with your new little shader | ||
221 | writing tool :).<br> | ||
222 | </div> | ||
223 | </td> | ||
224 | </tr> | ||
225 | </table> | ||
226 | <br> | ||
227 | <table width="95%" border="0" cellspacing="0" cellpadding="2" align="center"> | ||
228 | <tr> | ||
229 | <td bgcolor="#666699"> <b><font color="#FFFFFF">Shader files</font></b></td> | ||
230 | </tr> | ||
231 | <tr> | ||
232 | <td height="90" bgcolor="#eeeeff" valign="top"> <div align="left"> | ||
233 | <div align="left"> | ||
234 | <p>The files containing the shaders can be found in the media directory | ||
235 | of the SDK. However, they look like this:</p> | ||
236 | <table width="95%" border="0" cellspacing="4" cellpadding="0" bgcolor="#CCCCCC" align="center"> | ||
237 | <tr> | ||
238 | <td><strong>D3D9.HLSL</strong></td> | ||
239 | </tr> | ||
240 | <tr> | ||
241 | <td> | ||
242 | <pre> | ||
243 | // part of the Irrlicht Engine Shader example. | ||
244 | // These simple Direct3D9 pixel and vertex shaders will be loaded by the shaders | ||
245 | // example. Please note that these example shaders don't do anything really useful. | ||
246 | // They only demonstrate that shaders can be used in Irrlicht. | ||
247 | |||
248 | //----------------------------------------------------------------------------- | ||
249 | // Global variables | ||
250 | //----------------------------------------------------------------------------- | ||
251 | float4x4 mWorldViewProj; // World * View * Projection transformation | ||
252 | float4x4 mInvWorld; // Inverted world matrix | ||
253 | float4x4 mTransWorld; // Transposed world matrix | ||
254 | float3 mLightPos; // Light position | ||
255 | float4 mLightColor; // Light color | ||
256 | |||
257 | |||
258 | // Vertex shader output structure | ||
259 | struct VS_OUTPUT | ||
260 | { | ||
261 | float4 Position : POSITION; // vertex position | ||
262 | float4 Diffuse : COLOR0; // vertex diffuse color | ||
263 | float2 TexCoord : TEXCOORD0; // tex coords | ||
264 | }; | ||
265 | |||
266 | |||
267 | VS_OUTPUT vertexMain( in float4 vPosition : POSITION, | ||
268 | in float3 vNormal : NORMAL, | ||
269 | float2 texCoord : TEXCOORD0 ) | ||
270 | { | ||
271 | VS_OUTPUT Output; | ||
272 | |||
273 | // transform position to clip space | ||
274 | Output.Position = mul(vPosition, mWorldViewProj); | ||
275 | |||
276 | // transform normal | ||
277 | float3 normal = mul(vNormal, mInvWorld); | ||
278 | |||
279 | // renormalize normal | ||
280 | normal = normalize(normal); | ||
281 | |||
282 | // position in world coodinates | ||
283 | float3 worldpos = mul(mTransWorld, vPosition); | ||
284 | |||
285 | // calculate light vector, vtxpos - lightpos | ||
286 | float3 lightVector = worldpos - mLightPos; | ||
287 | |||
288 | // normalize light vector | ||
289 | lightVector = normalize(lightVector); | ||
290 | |||
291 | // calculate light color | ||
292 | float3 tmp = dot(-lightVector, normal); | ||
293 | tmp = lit(tmp.x, tmp.y, 1.0); | ||
294 | |||
295 | tmp = mLightColor * tmp.y; | ||
296 | Output.Diffuse = float4(tmp.x, tmp.y, tmp.z, 0); | ||
297 | Output.TexCoord = texCoord; | ||
298 | |||
299 | return Output; | ||
300 | } | ||
301 | |||
302 | |||
303 | |||
304 | // Pixel shader output structure | ||
305 | struct PS_OUTPUT | ||
306 | { | ||
307 | float4 RGBColor : COLOR0; // Pixel color | ||
308 | }; | ||
309 | |||
310 | |||
311 | sampler2D tex0; | ||
312 | |||
313 | PS_OUTPUT pixelMain( float2 TexCoord : TEXCOORD0, | ||
314 | float4 Position : POSITION, | ||
315 | float4 Diffuse : COLOR0 ) | ||
316 | { | ||
317 | PS_OUTPUT Output; | ||
318 | |||
319 | float4 col = tex2D( tex0, TexCoord ); // sample color map | ||
320 | |||
321 | // multiply with diffuse and do other senseless operations | ||
322 | Output.RGBColor = Diffuse * col; | ||
323 | Output.RGBColor *= 4.0; | ||
324 | |||
325 | return Output; | ||
326 | }</pre></td> | ||
327 | </tr> | ||
328 | </table> | ||
329 | <br> | ||
330 | <table width="95%" border="0" cellspacing="4" cellpadding="0" bgcolor="#CCCCCC" align="center"> | ||
331 | <tr> | ||
332 | <td><strong>D3D9.VSH</strong></td> | ||
333 | </tr> | ||
334 | <tr> | ||
335 | <td> <pre> | ||
336 | ; part of the Irrlicht Engine Shader example. | ||
337 | ; This Direct3D9 vertex shader will be loaded by the engine. | ||
338 | ; Please note that these example shaders don't do anything really useful. | ||
339 | ; They only demonstrate that shaders can be used in Irrlicht.<br> | ||
340 | vs.1.1 | ||
341 | |||
342 | dcl_position v0; ; declare position | ||
343 | dcl_normal v1; ; declare normal | ||
344 | dcl_color v2; ; declare color | ||
345 | dcl_texcoord0 v3; ; declare texture coordinate<br> | ||
346 | ; transpose and transform position to clip space | ||
347 | mul r0, v0.x, c4 | ||
348 | mad r0, v0.y, c5, r0 | ||
349 | mad r0, v0.z, c6, r0 | ||
350 | add oPos, c7, r0 | ||
351 | |||
352 | ; transform normal | ||
353 | dp3 r1.x, v1, c0 | ||
354 | dp3 r1.y, v1, c1 | ||
355 | dp3 r1.z, v1, c2 | ||
356 | |||
357 | ; renormalize normal | ||
358 | dp3 r1.w, r1, r1 | ||
359 | rsq r1.w, r1.w | ||
360 | mul r1, r1, r1.w | ||
361 | |||
362 | ; calculate light vector | ||
363 | m4x4 r6, v0, c10 ; vertex into world position | ||
364 | add r2, c8, -r6 ; vtxpos - lightpos | ||
365 | |||
366 | ; normalize light vector | ||
367 | dp3 r2.w, r2, r2 | ||
368 | rsq r2.w, r2.w | ||
369 | mul r2, r2, r2.w | ||
370 | |||
371 | ; calculate light color | ||
372 | dp3 r3, r1, r2 ; dp3 with negative light vector | ||
373 | lit r5, r3 ; clamp to zero if r3 < 0, r5 has diffuce component in r5.y | ||
374 | mul oD0, r5.y, c9 ; ouput diffuse color | ||
375 | mov oT0, v3 ; store texture coordinates </pre> </td> | ||
376 | </tr> | ||
377 | </table> | ||
378 | <br> | ||
379 | <table width="95%" border="0" cellspacing="4" cellpadding="0" bgcolor="#CCCCCC" align="center"> | ||
380 | <tr> | ||
381 | <td><strong>D3D9.PSH</strong></td> | ||
382 | </tr> | ||
383 | <tr> | ||
384 | <td> <pre> | ||
385 | ; part of the Irrlicht Engine Shader example. | ||
386 | ; This simple Direct3D9 pixel shader will be loaded by the engine. | ||
387 | ; Please note that these example shaders don't do anything really useful. | ||
388 | ; They only demonstrate that shaders can be used in Irrlicht.<br> | ||
389 | ps.1.1 | ||
390 | |||
391 | tex t0 ; sample color map | ||
392 | add r0, v0, v0 ; mulitply with color | ||
393 | mul t0, t0, r0 ; mulitply with color | ||
394 | add r0, t0, t0 ; make it brighter and store result | ||
395 | </pre> </td> | ||
396 | </tr> | ||
397 | </table> | ||
398 | <br> | ||
399 | <table width="95%" border="0" cellspacing="4" cellpadding="0" bgcolor="#CCCCCC" align="center"> | ||
400 | <tr> | ||
401 | <td><strong>D3D8.VSH</strong></td> | ||
402 | </tr> | ||
403 | <tr> | ||
404 | <td> <pre> | ||
405 | ; part of the Irrlicht Engine Shader example. | ||
406 | ; This Direct3D9 vertex shader will be loaded by the engine. | ||
407 | ; Please note that these example shaders don't do anything really useful. | ||
408 | ; They only demonstrate that shaders can be used in Irrlicht.<br> | ||
409 | vs.1.1 | ||
410 | |||
411 | ; transpose and transform position to clip space | ||
412 | mul r0, v0.x, c4 | ||
413 | mad r0, v0.y, c5, r0 | ||
414 | mad r0, v0.z, c6, r0 | ||
415 | add oPos, c7, r0 | ||
416 | |||
417 | ; transform normal | ||
418 | dp3 r1.x, v1, c0 | ||
419 | dp3 r1.y, v1, c1 | ||
420 | dp3 r1.z, v1, c2 | ||
421 | |||
422 | ; renormalize normal | ||
423 | dp3 r1.w, r1, r1 | ||
424 | rsq r1.w, r1.w | ||
425 | mul r1, r1, r1.w | ||
426 | |||
427 | ; calculate light vector | ||
428 | m4x4 r6, v0, c10 ; vertex into world position | ||
429 | add r2, c8, -r6 ; vtxpos - lightpos | ||
430 | |||
431 | ; normalize light vector | ||
432 | dp3 r2.w, r2, r2 | ||
433 | rsq r2.w, r2.w | ||
434 | mul r2, r2, r2.w | ||
435 | |||
436 | ; calculate light color | ||
437 | dp3 r3, r1, r2 ; dp3 with negative light vector | ||
438 | lit r5, r3 ; clamp to zero if r3 < 0, r5 has diffuce component in r5.y | ||
439 | mul oD0, r5.y, c9 ; ouput diffuse color | ||
440 | mov oT0, v3 ; store texture coordinates </pre> </td> | ||
441 | </tr> | ||
442 | </table> | ||
443 | <br> | ||
444 | <table width="95%" border="0" cellspacing="4" cellpadding="0" bgcolor="#CCCCCC" align="center"> | ||
445 | <tr> | ||
446 | <td><strong>D3D8.PSH</strong></td> | ||
447 | </tr> | ||
448 | <tr> | ||
449 | <td> <pre> | ||
450 | ; part of the Irrlicht Engine Shader example. | ||
451 | ; This simple Direct3D9 pixel shader will be loaded by the engine. | ||
452 | ; Please note that these example shaders don't do anything really useful. | ||
453 | ; They only demonstrate that shaders can be used in Irrlicht.<br> | ||
454 | ps.1.1 | ||
455 | |||
456 | tex t0 ; sample color map | ||
457 | mul_x2 t0, t0, v0 ; mulitply with color | ||
458 | add r0, t0, t0 ; make it brighter and store result </pre> </td> | ||
459 | </tr> | ||
460 | </table> | ||
461 | <br> | ||
462 | <table width="95%" border="0" cellspacing="4" cellpadding="0" bgcolor="#CCCCCC" align="center"> | ||
463 | <tr> | ||
464 | <td><strong>OPENGL.VSH</strong></td> | ||
465 | </tr> | ||
466 | <tr> | ||
467 | <td> <pre> | ||
468 | !!ARBvp1.0 | ||
469 | # part of the Irrlicht Engine Shader example. | ||
470 | # Please note that these example shaders don't do anything really useful. | ||
471 | # They only demonstrate that shaders can be used in Irrlicht.<br> | ||
472 | #input | ||
473 | ATTRIB InPos = vertex.position; | ||
474 | ATTRIB InColor = vertex.color; | ||
475 | ATTRIB InNormal = vertex.normal; | ||
476 | ATTRIB InTexCoord = vertex.texcoord; | ||
477 | |||
478 | #output | ||
479 | OUTPUT OutPos = result.position; | ||
480 | OUTPUT OutColor = result.color; | ||
481 | OUTPUT OutTexCoord = result.texcoord; | ||
482 | |||
483 | PARAM MVP[4] = { state.matrix.mvp }; # modelViewProjection matrix. | ||
484 | TEMP Temp; | ||
485 | TEMP TempColor; | ||
486 | TEMP TempNormal; | ||
487 | TEMP TempPos; | ||
488 | |||
489 | #transform position to clip space | ||
490 | DP4 Temp.x, MVP[0], InPos; | ||
491 | DP4 Temp.y, MVP[1], InPos; | ||
492 | DP4 Temp.z, MVP[2], InPos; | ||
493 | DP4 Temp.w, MVP[3], InPos; | ||
494 | |||
495 | #transform normal | ||
496 | DP3 TempNormal.x, InNormal.x, program.local[0]; | ||
497 | DP3 TempNormal.y, InNormal.y, program.local[1]; | ||
498 | DP3 TempNormal.z, InNormal.z, program.local[2]; | ||
499 | |||
500 | #renormalize normal | ||
501 | DP3 TempNormal.w, TempNormal, TempNormal; | ||
502 | RSQ TempNormal.w, TempNormal.w; | ||
503 | MUL TempNormal, TempNormal, TempNormal.w; | ||
504 | |||
505 | # calculate light vector | ||
506 | DP4 TempPos.x, InPos, program.local[10]; # vertex into world position | ||
507 | DP4 TempPos.y, InPos, program.local[11]; | ||
508 | DP4 TempPos.z, InPos, program.local[12]; | ||
509 | DP4 TempPos.w, InPos, program.local[13]; | ||
510 | |||
511 | ADD TempPos, program.local[8], -TempPos; # vtxpos - lightpos | ||
512 | |||
513 | # normalize light vector | ||
514 | DP3 TempPos.w, TempPos, TempPos; | ||
515 | RSQ TempPos.w, TempPos.w; | ||
516 | MUL TempPos, TempPos, TempPos.w; | ||
517 | |||
518 | # calculate light color | ||
519 | DP3 TempColor, TempNormal, TempPos; # dp3 with negative light vector | ||
520 | LIT OutColor, TempColor; # clamp to zero if r3 < 0, r5 has diffuce component in r5.y | ||
521 | MUL OutColor, TempColor.y, program.local[9]; # ouput diffuse color | ||
522 | MOV OutColor.w, 1.0; # we want alpha to be always 1 | ||
523 | MOV OutTexCoord, InTexCoord; # store texture coordinate | ||
524 | MOV OutPos, Temp; | ||
525 | |||
526 | END</pre> </td> | ||
527 | </tr> | ||
528 | </table> | ||
529 | <br> | ||
530 | <table width="95%" border="0" cellspacing="4" cellpadding="0" bgcolor="#CCCCCC" align="center"> | ||
531 | <tr> | ||
532 | <td><strong>OPENGL.PSH</strong></td> | ||
533 | </tr> | ||
534 | <tr> | ||
535 | <td> <pre> | ||
536 | !!ARBfp1.0 | ||
537 | # part of the Irrlicht Engine Shader example. | ||
538 | # Please note that these example shaders don't do anything really useful. | ||
539 | # They only demonstrate that shaders can be used in Irrlicht.<br> | ||
540 | #Input | ||
541 | ATTRIB inTexCoord = fragment.texcoord; # texture coordinates | ||
542 | ATTRIB inColor = fragment.color.primary; # interpolated diffuse color | ||
543 | |||
544 | #Output | ||
545 | OUTPUT outColor = result.color; | ||
546 | |||
547 | TEMP texelColor; | ||
548 | TEMP tmp; | ||
549 | TXP texelColor, inTexCoord, texture, 2D; | ||
550 | |||
551 | ADD tmp, inColor, inColor; # mulitply with color | ||
552 | MUL texelColor, texelColor, tmp; # mulitply with color | ||
553 | ADD outColor, texelColor, texelColor; # make it brighter and store result | ||
554 | |||
555 | END </pre> </td> | ||
556 | </tr> | ||
557 | </table> | ||
558 | <p> </p> | ||
559 | </div> | ||
560 | </div></td> | ||
561 | </tr> | ||
562 | </table> | ||
563 | <p> </p> | ||
564 | <p> </p> | ||
565 | </body> | ||
566 | </html> | ||