aboutsummaryrefslogtreecommitdiffstatshomepage
path: root/libraries/irrlicht-1.8/source/Irrlicht/zlib/trees.c
diff options
context:
space:
mode:
authorDavid Walter Seikel2013-01-13 18:54:10 +1000
committerDavid Walter Seikel2013-01-13 18:54:10 +1000
commit959831f4ef5a3e797f576c3de08cd65032c997ad (patch)
treee7351908be5995f0b325b2ebeaa02d5a34b82583 /libraries/irrlicht-1.8/source/Irrlicht/zlib/trees.c
parentAdd info about changes to Irrlicht. (diff)
downloadSledjHamr-959831f4ef5a3e797f576c3de08cd65032c997ad.zip
SledjHamr-959831f4ef5a3e797f576c3de08cd65032c997ad.tar.gz
SledjHamr-959831f4ef5a3e797f576c3de08cd65032c997ad.tar.bz2
SledjHamr-959831f4ef5a3e797f576c3de08cd65032c997ad.tar.xz
Remove damned ancient DOS line endings from Irrlicht. Hopefully I did not go overboard.
Diffstat (limited to 'libraries/irrlicht-1.8/source/Irrlicht/zlib/trees.c')
-rw-r--r--libraries/irrlicht-1.8/source/Irrlicht/zlib/trees.c2448
1 files changed, 1224 insertions, 1224 deletions
diff --git a/libraries/irrlicht-1.8/source/Irrlicht/zlib/trees.c b/libraries/irrlicht-1.8/source/Irrlicht/zlib/trees.c
index 8ac7a90..8c32b21 100644
--- a/libraries/irrlicht-1.8/source/Irrlicht/zlib/trees.c
+++ b/libraries/irrlicht-1.8/source/Irrlicht/zlib/trees.c
@@ -1,1224 +1,1224 @@
1/* trees.c -- output deflated data using Huffman coding 1/* trees.c -- output deflated data using Huffman coding
2 * Copyright (C) 1995-2012 Jean-loup Gailly 2 * Copyright (C) 1995-2012 Jean-loup Gailly
3 * detect_data_type() function provided freely by Cosmin Truta, 2006 3 * detect_data_type() function provided freely by Cosmin Truta, 2006
4 * For conditions of distribution and use, see copyright notice in zlib.h 4 * For conditions of distribution and use, see copyright notice in zlib.h
5 */ 5 */
6 6
7/* 7/*
8 * ALGORITHM 8 * ALGORITHM
9 * 9 *
10 * The "deflation" process uses several Huffman trees. The more 10 * The "deflation" process uses several Huffman trees. The more
11 * common source values are represented by shorter bit sequences. 11 * common source values are represented by shorter bit sequences.
12 * 12 *
13 * Each code tree is stored in a compressed form which is itself 13 * Each code tree is stored in a compressed form which is itself
14 * a Huffman encoding of the lengths of all the code strings (in 14 * a Huffman encoding of the lengths of all the code strings (in
15 * ascending order by source values). The actual code strings are 15 * ascending order by source values). The actual code strings are
16 * reconstructed from the lengths in the inflate process, as described 16 * reconstructed from the lengths in the inflate process, as described
17 * in the deflate specification. 17 * in the deflate specification.
18 * 18 *
19 * REFERENCES 19 * REFERENCES
20 * 20 *
21 * Deutsch, L.P.,"'Deflate' Compressed Data Format Specification". 21 * Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
22 * Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc 22 * Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
23 * 23 *
24 * Storer, James A. 24 * Storer, James A.
25 * Data Compression: Methods and Theory, pp. 49-50. 25 * Data Compression: Methods and Theory, pp. 49-50.
26 * Computer Science Press, 1988. ISBN 0-7167-8156-5. 26 * Computer Science Press, 1988. ISBN 0-7167-8156-5.
27 * 27 *
28 * Sedgewick, R. 28 * Sedgewick, R.
29 * Algorithms, p290. 29 * Algorithms, p290.
30 * Addison-Wesley, 1983. ISBN 0-201-06672-6. 30 * Addison-Wesley, 1983. ISBN 0-201-06672-6.
31 */ 31 */
32 32
33/* @(#) $Id$ */ 33/* @(#) $Id$ */
34 34
35/* #define GEN_TREES_H */ 35/* #define GEN_TREES_H */
36 36
37#include "deflate.h" 37#include "deflate.h"
38 38
39#ifdef DEBUG 39#ifdef DEBUG
40# include <ctype.h> 40# include <ctype.h>
41#endif 41#endif
42 42
43/* =========================================================================== 43/* ===========================================================================
44 * Constants 44 * Constants
45 */ 45 */
46 46
47#define MAX_BL_BITS 7 47#define MAX_BL_BITS 7
48/* Bit length codes must not exceed MAX_BL_BITS bits */ 48/* Bit length codes must not exceed MAX_BL_BITS bits */
49 49
50#define END_BLOCK 256 50#define END_BLOCK 256
51/* end of block literal code */ 51/* end of block literal code */
52 52
53#define REP_3_6 16 53#define REP_3_6 16
54/* repeat previous bit length 3-6 times (2 bits of repeat count) */ 54/* repeat previous bit length 3-6 times (2 bits of repeat count) */
55 55
56#define REPZ_3_10 17 56#define REPZ_3_10 17
57/* repeat a zero length 3-10 times (3 bits of repeat count) */ 57/* repeat a zero length 3-10 times (3 bits of repeat count) */
58 58
59#define REPZ_11_138 18 59#define REPZ_11_138 18
60/* repeat a zero length 11-138 times (7 bits of repeat count) */ 60/* repeat a zero length 11-138 times (7 bits of repeat count) */
61 61
62local const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */ 62local const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
63 = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0}; 63 = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
64 64
65local const int extra_dbits[D_CODES] /* extra bits for each distance code */ 65local const int extra_dbits[D_CODES] /* extra bits for each distance code */
66 = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13}; 66 = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
67 67
68local const int extra_blbits[BL_CODES]/* extra bits for each bit length code */ 68local const int extra_blbits[BL_CODES]/* extra bits for each bit length code */
69 = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7}; 69 = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
70 70
71local const uch bl_order[BL_CODES] 71local const uch bl_order[BL_CODES]
72 = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15}; 72 = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
73/* The lengths of the bit length codes are sent in order of decreasing 73/* The lengths of the bit length codes are sent in order of decreasing
74 * probability, to avoid transmitting the lengths for unused bit length codes. 74 * probability, to avoid transmitting the lengths for unused bit length codes.
75 */ 75 */
76 76
77/* =========================================================================== 77/* ===========================================================================
78 * Local data. These are initialized only once. 78 * Local data. These are initialized only once.
79 */ 79 */
80 80
81#define DIST_CODE_LEN 512 /* see definition of array dist_code below */ 81#define DIST_CODE_LEN 512 /* see definition of array dist_code below */
82 82
83#if defined(GEN_TREES_H) || !defined(STDC) 83#if defined(GEN_TREES_H) || !defined(STDC)
84/* non ANSI compilers may not accept trees.h */ 84/* non ANSI compilers may not accept trees.h */
85 85
86local ct_data static_ltree[L_CODES+2]; 86local ct_data static_ltree[L_CODES+2];
87/* The static literal tree. Since the bit lengths are imposed, there is no 87/* The static literal tree. Since the bit lengths are imposed, there is no
88 * need for the L_CODES extra codes used during heap construction. However 88 * need for the L_CODES extra codes used during heap construction. However
89 * The codes 286 and 287 are needed to build a canonical tree (see _tr_init 89 * The codes 286 and 287 are needed to build a canonical tree (see _tr_init
90 * below). 90 * below).
91 */ 91 */
92 92
93local ct_data static_dtree[D_CODES]; 93local ct_data static_dtree[D_CODES];
94/* The static distance tree. (Actually a trivial tree since all codes use 94/* The static distance tree. (Actually a trivial tree since all codes use
95 * 5 bits.) 95 * 5 bits.)
96 */ 96 */
97 97
98uch _dist_code[DIST_CODE_LEN]; 98uch _dist_code[DIST_CODE_LEN];
99/* Distance codes. The first 256 values correspond to the distances 99/* Distance codes. The first 256 values correspond to the distances
100 * 3 .. 258, the last 256 values correspond to the top 8 bits of 100 * 3 .. 258, the last 256 values correspond to the top 8 bits of
101 * the 15 bit distances. 101 * the 15 bit distances.
102 */ 102 */
103 103
104uch _length_code[MAX_MATCH-MIN_MATCH+1]; 104uch _length_code[MAX_MATCH-MIN_MATCH+1];
105/* length code for each normalized match length (0 == MIN_MATCH) */ 105/* length code for each normalized match length (0 == MIN_MATCH) */
106 106
107local int base_length[LENGTH_CODES]; 107local int base_length[LENGTH_CODES];
108/* First normalized length for each code (0 = MIN_MATCH) */ 108/* First normalized length for each code (0 = MIN_MATCH) */
109 109
110local int base_dist[D_CODES]; 110local int base_dist[D_CODES];
111/* First normalized distance for each code (0 = distance of 1) */ 111/* First normalized distance for each code (0 = distance of 1) */
112 112
113#else 113#else
114# include "trees.h" 114# include "trees.h"
115#endif /* GEN_TREES_H */ 115#endif /* GEN_TREES_H */
116 116
117struct static_tree_desc_s { 117struct static_tree_desc_s {
118 const ct_data *static_tree; /* static tree or NULL */ 118 const ct_data *static_tree; /* static tree or NULL */
119 const intf *extra_bits; /* extra bits for each code or NULL */ 119 const intf *extra_bits; /* extra bits for each code or NULL */
120 int extra_base; /* base index for extra_bits */ 120 int extra_base; /* base index for extra_bits */
121 int elems; /* max number of elements in the tree */ 121 int elems; /* max number of elements in the tree */
122 int max_length; /* max bit length for the codes */ 122 int max_length; /* max bit length for the codes */
123}; 123};
124 124
125local static_tree_desc static_l_desc = 125local static_tree_desc static_l_desc =
126{static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS}; 126{static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
127 127
128local static_tree_desc static_d_desc = 128local static_tree_desc static_d_desc =
129{static_dtree, extra_dbits, 0, D_CODES, MAX_BITS}; 129{static_dtree, extra_dbits, 0, D_CODES, MAX_BITS};
130 130
131local static_tree_desc static_bl_desc = 131local static_tree_desc static_bl_desc =
132{(const ct_data *)0, extra_blbits, 0, BL_CODES, MAX_BL_BITS}; 132{(const ct_data *)0, extra_blbits, 0, BL_CODES, MAX_BL_BITS};
133 133
134/* =========================================================================== 134/* ===========================================================================
135 * Local (static) routines in this file. 135 * Local (static) routines in this file.
136 */ 136 */
137 137
138local void tr_static_init OF((void)); 138local void tr_static_init OF((void));
139local void init_block OF((deflate_state *s)); 139local void init_block OF((deflate_state *s));
140local void pqdownheap OF((deflate_state *s, ct_data *tree, int k)); 140local void pqdownheap OF((deflate_state *s, ct_data *tree, int k));
141local void gen_bitlen OF((deflate_state *s, tree_desc *desc)); 141local void gen_bitlen OF((deflate_state *s, tree_desc *desc));
142local void gen_codes OF((ct_data *tree, int max_code, ushf *bl_count)); 142local void gen_codes OF((ct_data *tree, int max_code, ushf *bl_count));
143local void build_tree OF((deflate_state *s, tree_desc *desc)); 143local void build_tree OF((deflate_state *s, tree_desc *desc));
144local void scan_tree OF((deflate_state *s, ct_data *tree, int max_code)); 144local void scan_tree OF((deflate_state *s, ct_data *tree, int max_code));
145local void send_tree OF((deflate_state *s, ct_data *tree, int max_code)); 145local void send_tree OF((deflate_state *s, ct_data *tree, int max_code));
146local int build_bl_tree OF((deflate_state *s)); 146local int build_bl_tree OF((deflate_state *s));
147local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes, 147local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes,
148 int blcodes)); 148 int blcodes));
149local void compress_block OF((deflate_state *s, ct_data *ltree, 149local void compress_block OF((deflate_state *s, ct_data *ltree,
150 ct_data *dtree)); 150 ct_data *dtree));
151local int detect_data_type OF((deflate_state *s)); 151local int detect_data_type OF((deflate_state *s));
152local unsigned bi_reverse OF((unsigned value, int length)); 152local unsigned bi_reverse OF((unsigned value, int length));
153local void bi_windup OF((deflate_state *s)); 153local void bi_windup OF((deflate_state *s));
154local void bi_flush OF((deflate_state *s)); 154local void bi_flush OF((deflate_state *s));
155local void copy_block OF((deflate_state *s, charf *buf, unsigned len, 155local void copy_block OF((deflate_state *s, charf *buf, unsigned len,
156 int header)); 156 int header));
157 157
158#ifdef GEN_TREES_H 158#ifdef GEN_TREES_H
159local void gen_trees_header OF((void)); 159local void gen_trees_header OF((void));
160#endif 160#endif
161 161
162#ifndef DEBUG 162#ifndef DEBUG
163# define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len) 163# define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
164 /* Send a code of the given tree. c and tree must not have side effects */ 164 /* Send a code of the given tree. c and tree must not have side effects */
165 165
166#else /* DEBUG */ 166#else /* DEBUG */
167# define send_code(s, c, tree) \ 167# define send_code(s, c, tree) \
168 { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \ 168 { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \
169 send_bits(s, tree[c].Code, tree[c].Len); } 169 send_bits(s, tree[c].Code, tree[c].Len); }
170#endif 170#endif
171 171
172/* =========================================================================== 172/* ===========================================================================
173 * Output a short LSB first on the stream. 173 * Output a short LSB first on the stream.
174 * IN assertion: there is enough room in pendingBuf. 174 * IN assertion: there is enough room in pendingBuf.
175 */ 175 */
176#define put_short(s, w) { \ 176#define put_short(s, w) { \
177 put_byte(s, (uch)((w) & 0xff)); \ 177 put_byte(s, (uch)((w) & 0xff)); \
178 put_byte(s, (uch)((ush)(w) >> 8)); \ 178 put_byte(s, (uch)((ush)(w) >> 8)); \
179} 179}
180 180
181/* =========================================================================== 181/* ===========================================================================
182 * Send a value on a given number of bits. 182 * Send a value on a given number of bits.
183 * IN assertion: length <= 16 and value fits in length bits. 183 * IN assertion: length <= 16 and value fits in length bits.
184 */ 184 */
185#ifdef DEBUG 185#ifdef DEBUG
186local void send_bits OF((deflate_state *s, int value, int length)); 186local void send_bits OF((deflate_state *s, int value, int length));
187 187
188local void send_bits(s, value, length) 188local void send_bits(s, value, length)
189 deflate_state *s; 189 deflate_state *s;
190 int value; /* value to send */ 190 int value; /* value to send */
191 int length; /* number of bits */ 191 int length; /* number of bits */
192{ 192{
193 Tracevv((stderr," l %2d v %4x ", length, value)); 193 Tracevv((stderr," l %2d v %4x ", length, value));
194 Assert(length > 0 && length <= 15, "invalid length"); 194 Assert(length > 0 && length <= 15, "invalid length");
195 s->bits_sent += (ulg)length; 195 s->bits_sent += (ulg)length;
196 196
197 /* If not enough room in bi_buf, use (valid) bits from bi_buf and 197 /* If not enough room in bi_buf, use (valid) bits from bi_buf and
198 * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid)) 198 * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
199 * unused bits in value. 199 * unused bits in value.
200 */ 200 */
201 if (s->bi_valid > (int)Buf_size - length) { 201 if (s->bi_valid > (int)Buf_size - length) {
202 s->bi_buf |= (ush)value << s->bi_valid; 202 s->bi_buf |= (ush)value << s->bi_valid;
203 put_short(s, s->bi_buf); 203 put_short(s, s->bi_buf);
204 s->bi_buf = (ush)value >> (Buf_size - s->bi_valid); 204 s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
205 s->bi_valid += length - Buf_size; 205 s->bi_valid += length - Buf_size;
206 } else { 206 } else {
207 s->bi_buf |= (ush)value << s->bi_valid; 207 s->bi_buf |= (ush)value << s->bi_valid;
208 s->bi_valid += length; 208 s->bi_valid += length;
209 } 209 }
210} 210}
211#else /* !DEBUG */ 211#else /* !DEBUG */
212 212
213#define send_bits(s, value, length) \ 213#define send_bits(s, value, length) \
214{ int len = length;\ 214{ int len = length;\
215 if (s->bi_valid > (int)Buf_size - len) {\ 215 if (s->bi_valid > (int)Buf_size - len) {\
216 int val = value;\ 216 int val = value;\
217 s->bi_buf |= (ush)val << s->bi_valid;\ 217 s->bi_buf |= (ush)val << s->bi_valid;\
218 put_short(s, s->bi_buf);\ 218 put_short(s, s->bi_buf);\
219 s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\ 219 s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
220 s->bi_valid += len - Buf_size;\ 220 s->bi_valid += len - Buf_size;\
221 } else {\ 221 } else {\
222 s->bi_buf |= (ush)(value) << s->bi_valid;\ 222 s->bi_buf |= (ush)(value) << s->bi_valid;\
223 s->bi_valid += len;\ 223 s->bi_valid += len;\
224 }\ 224 }\
225} 225}
226#endif /* DEBUG */ 226#endif /* DEBUG */
227 227
228 228
229/* the arguments must not have side effects */ 229/* the arguments must not have side effects */
230 230
231/* =========================================================================== 231/* ===========================================================================
232 * Initialize the various 'constant' tables. 232 * Initialize the various 'constant' tables.
233 */ 233 */
234local void tr_static_init() 234local void tr_static_init()
235{ 235{
236#if defined(GEN_TREES_H) || !defined(STDC) 236#if defined(GEN_TREES_H) || !defined(STDC)
237 static int static_init_done = 0; 237 static int static_init_done = 0;
238 int n; /* iterates over tree elements */ 238 int n; /* iterates over tree elements */
239 int bits; /* bit counter */ 239 int bits; /* bit counter */
240 int length; /* length value */ 240 int length; /* length value */
241 int code; /* code value */ 241 int code; /* code value */
242 int dist; /* distance index */ 242 int dist; /* distance index */
243 ush bl_count[MAX_BITS+1]; 243 ush bl_count[MAX_BITS+1];
244 /* number of codes at each bit length for an optimal tree */ 244 /* number of codes at each bit length for an optimal tree */
245 245
246 if (static_init_done) return; 246 if (static_init_done) return;
247 247
248 /* For some embedded targets, global variables are not initialized: */ 248 /* For some embedded targets, global variables are not initialized: */
249#ifdef NO_INIT_GLOBAL_POINTERS 249#ifdef NO_INIT_GLOBAL_POINTERS
250 static_l_desc.static_tree = static_ltree; 250 static_l_desc.static_tree = static_ltree;
251 static_l_desc.extra_bits = extra_lbits; 251 static_l_desc.extra_bits = extra_lbits;
252 static_d_desc.static_tree = static_dtree; 252 static_d_desc.static_tree = static_dtree;
253 static_d_desc.extra_bits = extra_dbits; 253 static_d_desc.extra_bits = extra_dbits;
254 static_bl_desc.extra_bits = extra_blbits; 254 static_bl_desc.extra_bits = extra_blbits;
255#endif 255#endif
256 256
257 /* Initialize the mapping length (0..255) -> length code (0..28) */ 257 /* Initialize the mapping length (0..255) -> length code (0..28) */
258 length = 0; 258 length = 0;
259 for (code = 0; code < LENGTH_CODES-1; code++) { 259 for (code = 0; code < LENGTH_CODES-1; code++) {
260 base_length[code] = length; 260 base_length[code] = length;
261 for (n = 0; n < (1<<extra_lbits[code]); n++) { 261 for (n = 0; n < (1<<extra_lbits[code]); n++) {
262 _length_code[length++] = (uch)code; 262 _length_code[length++] = (uch)code;
263 } 263 }
264 } 264 }
265 Assert (length == 256, "tr_static_init: length != 256"); 265 Assert (length == 256, "tr_static_init: length != 256");
266 /* Note that the length 255 (match length 258) can be represented 266 /* Note that the length 255 (match length 258) can be represented
267 * in two different ways: code 284 + 5 bits or code 285, so we 267 * in two different ways: code 284 + 5 bits or code 285, so we
268 * overwrite length_code[255] to use the best encoding: 268 * overwrite length_code[255] to use the best encoding:
269 */ 269 */
270 _length_code[length-1] = (uch)code; 270 _length_code[length-1] = (uch)code;
271 271
272 /* Initialize the mapping dist (0..32K) -> dist code (0..29) */ 272 /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
273 dist = 0; 273 dist = 0;
274 for (code = 0 ; code < 16; code++) { 274 for (code = 0 ; code < 16; code++) {
275 base_dist[code] = dist; 275 base_dist[code] = dist;
276 for (n = 0; n < (1<<extra_dbits[code]); n++) { 276 for (n = 0; n < (1<<extra_dbits[code]); n++) {
277 _dist_code[dist++] = (uch)code; 277 _dist_code[dist++] = (uch)code;
278 } 278 }
279 } 279 }
280 Assert (dist == 256, "tr_static_init: dist != 256"); 280 Assert (dist == 256, "tr_static_init: dist != 256");
281 dist >>= 7; /* from now on, all distances are divided by 128 */ 281 dist >>= 7; /* from now on, all distances are divided by 128 */
282 for ( ; code < D_CODES; code++) { 282 for ( ; code < D_CODES; code++) {
283 base_dist[code] = dist << 7; 283 base_dist[code] = dist << 7;
284 for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) { 284 for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
285 _dist_code[256 + dist++] = (uch)code; 285 _dist_code[256 + dist++] = (uch)code;
286 } 286 }
287 } 287 }
288 Assert (dist == 256, "tr_static_init: 256+dist != 512"); 288 Assert (dist == 256, "tr_static_init: 256+dist != 512");
289 289
290 /* Construct the codes of the static literal tree */ 290 /* Construct the codes of the static literal tree */
291 for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0; 291 for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
292 n = 0; 292 n = 0;
293 while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++; 293 while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
294 while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++; 294 while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
295 while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++; 295 while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
296 while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++; 296 while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
297 /* Codes 286 and 287 do not exist, but we must include them in the 297 /* Codes 286 and 287 do not exist, but we must include them in the
298 * tree construction to get a canonical Huffman tree (longest code 298 * tree construction to get a canonical Huffman tree (longest code
299 * all ones) 299 * all ones)
300 */ 300 */
301 gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count); 301 gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
302 302
303 /* The static distance tree is trivial: */ 303 /* The static distance tree is trivial: */
304 for (n = 0; n < D_CODES; n++) { 304 for (n = 0; n < D_CODES; n++) {
305 static_dtree[n].Len = 5; 305 static_dtree[n].Len = 5;
306 static_dtree[n].Code = bi_reverse((unsigned)n, 5); 306 static_dtree[n].Code = bi_reverse((unsigned)n, 5);
307 } 307 }
308 static_init_done = 1; 308 static_init_done = 1;
309 309
310# ifdef GEN_TREES_H 310# ifdef GEN_TREES_H
311 gen_trees_header(); 311 gen_trees_header();
312# endif 312# endif
313#endif /* defined(GEN_TREES_H) || !defined(STDC) */ 313#endif /* defined(GEN_TREES_H) || !defined(STDC) */
314} 314}
315 315
316/* =========================================================================== 316/* ===========================================================================
317 * Genererate the file trees.h describing the static trees. 317 * Genererate the file trees.h describing the static trees.
318 */ 318 */
319#ifdef GEN_TREES_H 319#ifdef GEN_TREES_H
320# ifndef DEBUG 320# ifndef DEBUG
321# include <stdio.h> 321# include <stdio.h>
322# endif 322# endif
323 323
324# define SEPARATOR(i, last, width) \ 324# define SEPARATOR(i, last, width) \
325 ((i) == (last)? "\n};\n\n" : \ 325 ((i) == (last)? "\n};\n\n" : \
326 ((i) % (width) == (width)-1 ? ",\n" : ", ")) 326 ((i) % (width) == (width)-1 ? ",\n" : ", "))
327 327
328void gen_trees_header() 328void gen_trees_header()
329{ 329{
330 FILE *header = fopen("trees.h", "w"); 330 FILE *header = fopen("trees.h", "w");
331 int i; 331 int i;
332 332
333 Assert (header != NULL, "Can't open trees.h"); 333 Assert (header != NULL, "Can't open trees.h");
334 fprintf(header, 334 fprintf(header,
335 "/* header created automatically with -DGEN_TREES_H */\n\n"); 335 "/* header created automatically with -DGEN_TREES_H */\n\n");
336 336
337 fprintf(header, "local const ct_data static_ltree[L_CODES+2] = {\n"); 337 fprintf(header, "local const ct_data static_ltree[L_CODES+2] = {\n");
338 for (i = 0; i < L_CODES+2; i++) { 338 for (i = 0; i < L_CODES+2; i++) {
339 fprintf(header, "{{%3u},{%3u}}%s", static_ltree[i].Code, 339 fprintf(header, "{{%3u},{%3u}}%s", static_ltree[i].Code,
340 static_ltree[i].Len, SEPARATOR(i, L_CODES+1, 5)); 340 static_ltree[i].Len, SEPARATOR(i, L_CODES+1, 5));
341 } 341 }
342 342
343 fprintf(header, "local const ct_data static_dtree[D_CODES] = {\n"); 343 fprintf(header, "local const ct_data static_dtree[D_CODES] = {\n");
344 for (i = 0; i < D_CODES; i++) { 344 for (i = 0; i < D_CODES; i++) {
345 fprintf(header, "{{%2u},{%2u}}%s", static_dtree[i].Code, 345 fprintf(header, "{{%2u},{%2u}}%s", static_dtree[i].Code,
346 static_dtree[i].Len, SEPARATOR(i, D_CODES-1, 5)); 346 static_dtree[i].Len, SEPARATOR(i, D_CODES-1, 5));
347 } 347 }
348 348
349 fprintf(header, "const uch ZLIB_INTERNAL _dist_code[DIST_CODE_LEN] = {\n"); 349 fprintf(header, "const uch ZLIB_INTERNAL _dist_code[DIST_CODE_LEN] = {\n");
350 for (i = 0; i < DIST_CODE_LEN; i++) { 350 for (i = 0; i < DIST_CODE_LEN; i++) {
351 fprintf(header, "%2u%s", _dist_code[i], 351 fprintf(header, "%2u%s", _dist_code[i],
352 SEPARATOR(i, DIST_CODE_LEN-1, 20)); 352 SEPARATOR(i, DIST_CODE_LEN-1, 20));
353 } 353 }
354 354
355 fprintf(header, 355 fprintf(header,
356 "const uch ZLIB_INTERNAL _length_code[MAX_MATCH-MIN_MATCH+1]= {\n"); 356 "const uch ZLIB_INTERNAL _length_code[MAX_MATCH-MIN_MATCH+1]= {\n");
357 for (i = 0; i < MAX_MATCH-MIN_MATCH+1; i++) { 357 for (i = 0; i < MAX_MATCH-MIN_MATCH+1; i++) {
358 fprintf(header, "%2u%s", _length_code[i], 358 fprintf(header, "%2u%s", _length_code[i],
359 SEPARATOR(i, MAX_MATCH-MIN_MATCH, 20)); 359 SEPARATOR(i, MAX_MATCH-MIN_MATCH, 20));
360 } 360 }
361 361
362 fprintf(header, "local const int base_length[LENGTH_CODES] = {\n"); 362 fprintf(header, "local const int base_length[LENGTH_CODES] = {\n");
363 for (i = 0; i < LENGTH_CODES; i++) { 363 for (i = 0; i < LENGTH_CODES; i++) {
364 fprintf(header, "%1u%s", base_length[i], 364 fprintf(header, "%1u%s", base_length[i],
365 SEPARATOR(i, LENGTH_CODES-1, 20)); 365 SEPARATOR(i, LENGTH_CODES-1, 20));
366 } 366 }
367 367
368 fprintf(header, "local const int base_dist[D_CODES] = {\n"); 368 fprintf(header, "local const int base_dist[D_CODES] = {\n");
369 for (i = 0; i < D_CODES; i++) { 369 for (i = 0; i < D_CODES; i++) {
370 fprintf(header, "%5u%s", base_dist[i], 370 fprintf(header, "%5u%s", base_dist[i],
371 SEPARATOR(i, D_CODES-1, 10)); 371 SEPARATOR(i, D_CODES-1, 10));
372 } 372 }
373 373
374 fclose(header); 374 fclose(header);
375} 375}
376#endif /* GEN_TREES_H */ 376#endif /* GEN_TREES_H */
377 377
378/* =========================================================================== 378/* ===========================================================================
379 * Initialize the tree data structures for a new zlib stream. 379 * Initialize the tree data structures for a new zlib stream.
380 */ 380 */
381void ZLIB_INTERNAL _tr_init(s) 381void ZLIB_INTERNAL _tr_init(s)
382 deflate_state *s; 382 deflate_state *s;
383{ 383{
384 tr_static_init(); 384 tr_static_init();
385 385
386 s->l_desc.dyn_tree = s->dyn_ltree; 386 s->l_desc.dyn_tree = s->dyn_ltree;
387 s->l_desc.stat_desc = &static_l_desc; 387 s->l_desc.stat_desc = &static_l_desc;
388 388
389 s->d_desc.dyn_tree = s->dyn_dtree; 389 s->d_desc.dyn_tree = s->dyn_dtree;
390 s->d_desc.stat_desc = &static_d_desc; 390 s->d_desc.stat_desc = &static_d_desc;
391 391
392 s->bl_desc.dyn_tree = s->bl_tree; 392 s->bl_desc.dyn_tree = s->bl_tree;
393 s->bl_desc.stat_desc = &static_bl_desc; 393 s->bl_desc.stat_desc = &static_bl_desc;
394 394
395 s->bi_buf = 0; 395 s->bi_buf = 0;
396 s->bi_valid = 0; 396 s->bi_valid = 0;
397#ifdef DEBUG 397#ifdef DEBUG
398 s->compressed_len = 0L; 398 s->compressed_len = 0L;
399 s->bits_sent = 0L; 399 s->bits_sent = 0L;
400#endif 400#endif
401 401
402 /* Initialize the first block of the first file: */ 402 /* Initialize the first block of the first file: */
403 init_block(s); 403 init_block(s);
404} 404}
405 405
406/* =========================================================================== 406/* ===========================================================================
407 * Initialize a new block. 407 * Initialize a new block.
408 */ 408 */
409local void init_block(s) 409local void init_block(s)
410 deflate_state *s; 410 deflate_state *s;
411{ 411{
412 int n; /* iterates over tree elements */ 412 int n; /* iterates over tree elements */
413 413
414 /* Initialize the trees. */ 414 /* Initialize the trees. */
415 for (n = 0; n < L_CODES; n++) s->dyn_ltree[n].Freq = 0; 415 for (n = 0; n < L_CODES; n++) s->dyn_ltree[n].Freq = 0;
416 for (n = 0; n < D_CODES; n++) s->dyn_dtree[n].Freq = 0; 416 for (n = 0; n < D_CODES; n++) s->dyn_dtree[n].Freq = 0;
417 for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0; 417 for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
418 418
419 s->dyn_ltree[END_BLOCK].Freq = 1; 419 s->dyn_ltree[END_BLOCK].Freq = 1;
420 s->opt_len = s->static_len = 0L; 420 s->opt_len = s->static_len = 0L;
421 s->last_lit = s->matches = 0; 421 s->last_lit = s->matches = 0;
422} 422}
423 423
424#define SMALLEST 1 424#define SMALLEST 1
425/* Index within the heap array of least frequent node in the Huffman tree */ 425/* Index within the heap array of least frequent node in the Huffman tree */
426 426
427 427
428/* =========================================================================== 428/* ===========================================================================
429 * Remove the smallest element from the heap and recreate the heap with 429 * Remove the smallest element from the heap and recreate the heap with
430 * one less element. Updates heap and heap_len. 430 * one less element. Updates heap and heap_len.
431 */ 431 */
432#define pqremove(s, tree, top) \ 432#define pqremove(s, tree, top) \
433{\ 433{\
434 top = s->heap[SMALLEST]; \ 434 top = s->heap[SMALLEST]; \
435 s->heap[SMALLEST] = s->heap[s->heap_len--]; \ 435 s->heap[SMALLEST] = s->heap[s->heap_len--]; \
436 pqdownheap(s, tree, SMALLEST); \ 436 pqdownheap(s, tree, SMALLEST); \
437} 437}
438 438
439/* =========================================================================== 439/* ===========================================================================
440 * Compares to subtrees, using the tree depth as tie breaker when 440 * Compares to subtrees, using the tree depth as tie breaker when
441 * the subtrees have equal frequency. This minimizes the worst case length. 441 * the subtrees have equal frequency. This minimizes the worst case length.
442 */ 442 */
443#define smaller(tree, n, m, depth) \ 443#define smaller(tree, n, m, depth) \
444 (tree[n].Freq < tree[m].Freq || \ 444 (tree[n].Freq < tree[m].Freq || \
445 (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m])) 445 (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
446 446
447/* =========================================================================== 447/* ===========================================================================
448 * Restore the heap property by moving down the tree starting at node k, 448 * Restore the heap property by moving down the tree starting at node k,
449 * exchanging a node with the smallest of its two sons if necessary, stopping 449 * exchanging a node with the smallest of its two sons if necessary, stopping
450 * when the heap property is re-established (each father smaller than its 450 * when the heap property is re-established (each father smaller than its
451 * two sons). 451 * two sons).
452 */ 452 */
453local void pqdownheap(s, tree, k) 453local void pqdownheap(s, tree, k)
454 deflate_state *s; 454 deflate_state *s;
455 ct_data *tree; /* the tree to restore */ 455 ct_data *tree; /* the tree to restore */
456 int k; /* node to move down */ 456 int k; /* node to move down */
457{ 457{
458 int v = s->heap[k]; 458 int v = s->heap[k];
459 int j = k << 1; /* left son of k */ 459 int j = k << 1; /* left son of k */
460 while (j <= s->heap_len) { 460 while (j <= s->heap_len) {
461 /* Set j to the smallest of the two sons: */ 461 /* Set j to the smallest of the two sons: */
462 if (j < s->heap_len && 462 if (j < s->heap_len &&
463 smaller(tree, s->heap[j+1], s->heap[j], s->depth)) { 463 smaller(tree, s->heap[j+1], s->heap[j], s->depth)) {
464 j++; 464 j++;
465 } 465 }
466 /* Exit if v is smaller than both sons */ 466 /* Exit if v is smaller than both sons */
467 if (smaller(tree, v, s->heap[j], s->depth)) break; 467 if (smaller(tree, v, s->heap[j], s->depth)) break;
468 468
469 /* Exchange v with the smallest son */ 469 /* Exchange v with the smallest son */
470 s->heap[k] = s->heap[j]; k = j; 470 s->heap[k] = s->heap[j]; k = j;
471 471
472 /* And continue down the tree, setting j to the left son of k */ 472 /* And continue down the tree, setting j to the left son of k */
473 j <<= 1; 473 j <<= 1;
474 } 474 }
475 s->heap[k] = v; 475 s->heap[k] = v;
476} 476}
477 477
478/* =========================================================================== 478/* ===========================================================================
479 * Compute the optimal bit lengths for a tree and update the total bit length 479 * Compute the optimal bit lengths for a tree and update the total bit length
480 * for the current block. 480 * for the current block.
481 * IN assertion: the fields freq and dad are set, heap[heap_max] and 481 * IN assertion: the fields freq and dad are set, heap[heap_max] and
482 * above are the tree nodes sorted by increasing frequency. 482 * above are the tree nodes sorted by increasing frequency.
483 * OUT assertions: the field len is set to the optimal bit length, the 483 * OUT assertions: the field len is set to the optimal bit length, the
484 * array bl_count contains the frequencies for each bit length. 484 * array bl_count contains the frequencies for each bit length.
485 * The length opt_len is updated; static_len is also updated if stree is 485 * The length opt_len is updated; static_len is also updated if stree is
486 * not null. 486 * not null.
487 */ 487 */
488local void gen_bitlen(s, desc) 488local void gen_bitlen(s, desc)
489 deflate_state *s; 489 deflate_state *s;
490 tree_desc *desc; /* the tree descriptor */ 490 tree_desc *desc; /* the tree descriptor */
491{ 491{
492 ct_data *tree = desc->dyn_tree; 492 ct_data *tree = desc->dyn_tree;
493 int max_code = desc->max_code; 493 int max_code = desc->max_code;
494 const ct_data *stree = desc->stat_desc->static_tree; 494 const ct_data *stree = desc->stat_desc->static_tree;
495 const intf *extra = desc->stat_desc->extra_bits; 495 const intf *extra = desc->stat_desc->extra_bits;
496 int base = desc->stat_desc->extra_base; 496 int base = desc->stat_desc->extra_base;
497 int max_length = desc->stat_desc->max_length; 497 int max_length = desc->stat_desc->max_length;
498 int h; /* heap index */ 498 int h; /* heap index */
499 int n, m; /* iterate over the tree elements */ 499 int n, m; /* iterate over the tree elements */
500 int bits; /* bit length */ 500 int bits; /* bit length */
501 int xbits; /* extra bits */ 501 int xbits; /* extra bits */
502 ush f; /* frequency */ 502 ush f; /* frequency */
503 int overflow = 0; /* number of elements with bit length too large */ 503 int overflow = 0; /* number of elements with bit length too large */
504 504
505 for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0; 505 for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
506 506
507 /* In a first pass, compute the optimal bit lengths (which may 507 /* In a first pass, compute the optimal bit lengths (which may
508 * overflow in the case of the bit length tree). 508 * overflow in the case of the bit length tree).
509 */ 509 */
510 tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */ 510 tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
511 511
512 for (h = s->heap_max+1; h < HEAP_SIZE; h++) { 512 for (h = s->heap_max+1; h < HEAP_SIZE; h++) {
513 n = s->heap[h]; 513 n = s->heap[h];
514 bits = tree[tree[n].Dad].Len + 1; 514 bits = tree[tree[n].Dad].Len + 1;
515 if (bits > max_length) bits = max_length, overflow++; 515 if (bits > max_length) bits = max_length, overflow++;
516 tree[n].Len = (ush)bits; 516 tree[n].Len = (ush)bits;
517 /* We overwrite tree[n].Dad which is no longer needed */ 517 /* We overwrite tree[n].Dad which is no longer needed */
518 518
519 if (n > max_code) continue; /* not a leaf node */ 519 if (n > max_code) continue; /* not a leaf node */
520 520
521 s->bl_count[bits]++; 521 s->bl_count[bits]++;
522 xbits = 0; 522 xbits = 0;
523 if (n >= base) xbits = extra[n-base]; 523 if (n >= base) xbits = extra[n-base];
524 f = tree[n].Freq; 524 f = tree[n].Freq;
525 s->opt_len += (ulg)f * (bits + xbits); 525 s->opt_len += (ulg)f * (bits + xbits);
526 if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits); 526 if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits);
527 } 527 }
528 if (overflow == 0) return; 528 if (overflow == 0) return;
529 529
530 Trace((stderr,"\nbit length overflow\n")); 530 Trace((stderr,"\nbit length overflow\n"));
531 /* This happens for example on obj2 and pic of the Calgary corpus */ 531 /* This happens for example on obj2 and pic of the Calgary corpus */
532 532
533 /* Find the first bit length which could increase: */ 533 /* Find the first bit length which could increase: */
534 do { 534 do {
535 bits = max_length-1; 535 bits = max_length-1;
536 while (s->bl_count[bits] == 0) bits--; 536 while (s->bl_count[bits] == 0) bits--;
537 s->bl_count[bits]--; /* move one leaf down the tree */ 537 s->bl_count[bits]--; /* move one leaf down the tree */
538 s->bl_count[bits+1] += 2; /* move one overflow item as its brother */ 538 s->bl_count[bits+1] += 2; /* move one overflow item as its brother */
539 s->bl_count[max_length]--; 539 s->bl_count[max_length]--;
540 /* The brother of the overflow item also moves one step up, 540 /* The brother of the overflow item also moves one step up,
541 * but this does not affect bl_count[max_length] 541 * but this does not affect bl_count[max_length]
542 */ 542 */
543 overflow -= 2; 543 overflow -= 2;
544 } while (overflow > 0); 544 } while (overflow > 0);
545 545
546 /* Now recompute all bit lengths, scanning in increasing frequency. 546 /* Now recompute all bit lengths, scanning in increasing frequency.
547 * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all 547 * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
548 * lengths instead of fixing only the wrong ones. This idea is taken 548 * lengths instead of fixing only the wrong ones. This idea is taken
549 * from 'ar' written by Haruhiko Okumura.) 549 * from 'ar' written by Haruhiko Okumura.)
550 */ 550 */
551 for (bits = max_length; bits != 0; bits--) { 551 for (bits = max_length; bits != 0; bits--) {
552 n = s->bl_count[bits]; 552 n = s->bl_count[bits];
553 while (n != 0) { 553 while (n != 0) {
554 m = s->heap[--h]; 554 m = s->heap[--h];
555 if (m > max_code) continue; 555 if (m > max_code) continue;
556 if ((unsigned) tree[m].Len != (unsigned) bits) { 556 if ((unsigned) tree[m].Len != (unsigned) bits) {
557 Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits)); 557 Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
558 s->opt_len += ((long)bits - (long)tree[m].Len) 558 s->opt_len += ((long)bits - (long)tree[m].Len)
559 *(long)tree[m].Freq; 559 *(long)tree[m].Freq;
560 tree[m].Len = (ush)bits; 560 tree[m].Len = (ush)bits;
561 } 561 }
562 n--; 562 n--;
563 } 563 }
564 } 564 }
565} 565}
566 566
567/* =========================================================================== 567/* ===========================================================================
568 * Generate the codes for a given tree and bit counts (which need not be 568 * Generate the codes for a given tree and bit counts (which need not be
569 * optimal). 569 * optimal).
570 * IN assertion: the array bl_count contains the bit length statistics for 570 * IN assertion: the array bl_count contains the bit length statistics for
571 * the given tree and the field len is set for all tree elements. 571 * the given tree and the field len is set for all tree elements.
572 * OUT assertion: the field code is set for all tree elements of non 572 * OUT assertion: the field code is set for all tree elements of non
573 * zero code length. 573 * zero code length.
574 */ 574 */
575local void gen_codes (tree, max_code, bl_count) 575local void gen_codes (tree, max_code, bl_count)
576 ct_data *tree; /* the tree to decorate */ 576 ct_data *tree; /* the tree to decorate */
577 int max_code; /* largest code with non zero frequency */ 577 int max_code; /* largest code with non zero frequency */
578 ushf *bl_count; /* number of codes at each bit length */ 578 ushf *bl_count; /* number of codes at each bit length */
579{ 579{
580 ush next_code[MAX_BITS+1]; /* next code value for each bit length */ 580 ush next_code[MAX_BITS+1]; /* next code value for each bit length */
581 ush code = 0; /* running code value */ 581 ush code = 0; /* running code value */
582 int bits; /* bit index */ 582 int bits; /* bit index */
583 int n; /* code index */ 583 int n; /* code index */
584 584
585 /* The distribution counts are first used to generate the code values 585 /* The distribution counts are first used to generate the code values
586 * without bit reversal. 586 * without bit reversal.
587 */ 587 */
588 for (bits = 1; bits <= MAX_BITS; bits++) { 588 for (bits = 1; bits <= MAX_BITS; bits++) {
589 next_code[bits] = code = (code + bl_count[bits-1]) << 1; 589 next_code[bits] = code = (code + bl_count[bits-1]) << 1;
590 } 590 }
591 /* Check that the bit counts in bl_count are consistent. The last code 591 /* Check that the bit counts in bl_count are consistent. The last code
592 * must be all ones. 592 * must be all ones.
593 */ 593 */
594 Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1, 594 Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
595 "inconsistent bit counts"); 595 "inconsistent bit counts");
596 Tracev((stderr,"\ngen_codes: max_code %d ", max_code)); 596 Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
597 597
598 for (n = 0; n <= max_code; n++) { 598 for (n = 0; n <= max_code; n++) {
599 int len = tree[n].Len; 599 int len = tree[n].Len;
600 if (len == 0) continue; 600 if (len == 0) continue;
601 /* Now reverse the bits */ 601 /* Now reverse the bits */
602 tree[n].Code = bi_reverse(next_code[len]++, len); 602 tree[n].Code = bi_reverse(next_code[len]++, len);
603 603
604 Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ", 604 Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
605 n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1)); 605 n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
606 } 606 }
607} 607}
608 608
609/* =========================================================================== 609/* ===========================================================================
610 * Construct one Huffman tree and assigns the code bit strings and lengths. 610 * Construct one Huffman tree and assigns the code bit strings and lengths.
611 * Update the total bit length for the current block. 611 * Update the total bit length for the current block.
612 * IN assertion: the field freq is set for all tree elements. 612 * IN assertion: the field freq is set for all tree elements.
613 * OUT assertions: the fields len and code are set to the optimal bit length 613 * OUT assertions: the fields len and code are set to the optimal bit length
614 * and corresponding code. The length opt_len is updated; static_len is 614 * and corresponding code. The length opt_len is updated; static_len is
615 * also updated if stree is not null. The field max_code is set. 615 * also updated if stree is not null. The field max_code is set.
616 */ 616 */
617local void build_tree(s, desc) 617local void build_tree(s, desc)
618 deflate_state *s; 618 deflate_state *s;
619 tree_desc *desc; /* the tree descriptor */ 619 tree_desc *desc; /* the tree descriptor */
620{ 620{
621 ct_data *tree = desc->dyn_tree; 621 ct_data *tree = desc->dyn_tree;
622 const ct_data *stree = desc->stat_desc->static_tree; 622 const ct_data *stree = desc->stat_desc->static_tree;
623 int elems = desc->stat_desc->elems; 623 int elems = desc->stat_desc->elems;
624 int n, m; /* iterate over heap elements */ 624 int n, m; /* iterate over heap elements */
625 int max_code = -1; /* largest code with non zero frequency */ 625 int max_code = -1; /* largest code with non zero frequency */
626 int node; /* new node being created */ 626 int node; /* new node being created */
627 627
628 /* Construct the initial heap, with least frequent element in 628 /* Construct the initial heap, with least frequent element in
629 * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1]. 629 * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
630 * heap[0] is not used. 630 * heap[0] is not used.
631 */ 631 */
632 s->heap_len = 0, s->heap_max = HEAP_SIZE; 632 s->heap_len = 0, s->heap_max = HEAP_SIZE;
633 633
634 for (n = 0; n < elems; n++) { 634 for (n = 0; n < elems; n++) {
635 if (tree[n].Freq != 0) { 635 if (tree[n].Freq != 0) {
636 s->heap[++(s->heap_len)] = max_code = n; 636 s->heap[++(s->heap_len)] = max_code = n;
637 s->depth[n] = 0; 637 s->depth[n] = 0;
638 } else { 638 } else {
639 tree[n].Len = 0; 639 tree[n].Len = 0;
640 } 640 }
641 } 641 }
642 642
643 /* The pkzip format requires that at least one distance code exists, 643 /* The pkzip format requires that at least one distance code exists,
644 * and that at least one bit should be sent even if there is only one 644 * and that at least one bit should be sent even if there is only one
645 * possible code. So to avoid special checks later on we force at least 645 * possible code. So to avoid special checks later on we force at least
646 * two codes of non zero frequency. 646 * two codes of non zero frequency.
647 */ 647 */
648 while (s->heap_len < 2) { 648 while (s->heap_len < 2) {
649 node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0); 649 node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
650 tree[node].Freq = 1; 650 tree[node].Freq = 1;
651 s->depth[node] = 0; 651 s->depth[node] = 0;
652 s->opt_len--; if (stree) s->static_len -= stree[node].Len; 652 s->opt_len--; if (stree) s->static_len -= stree[node].Len;
653 /* node is 0 or 1 so it does not have extra bits */ 653 /* node is 0 or 1 so it does not have extra bits */
654 } 654 }
655 desc->max_code = max_code; 655 desc->max_code = max_code;
656 656
657 /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree, 657 /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
658 * establish sub-heaps of increasing lengths: 658 * establish sub-heaps of increasing lengths:
659 */ 659 */
660 for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n); 660 for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
661 661
662 /* Construct the Huffman tree by repeatedly combining the least two 662 /* Construct the Huffman tree by repeatedly combining the least two
663 * frequent nodes. 663 * frequent nodes.
664 */ 664 */
665 node = elems; /* next internal node of the tree */ 665 node = elems; /* next internal node of the tree */
666 do { 666 do {
667 pqremove(s, tree, n); /* n = node of least frequency */ 667 pqremove(s, tree, n); /* n = node of least frequency */
668 m = s->heap[SMALLEST]; /* m = node of next least frequency */ 668 m = s->heap[SMALLEST]; /* m = node of next least frequency */
669 669
670 s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */ 670 s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
671 s->heap[--(s->heap_max)] = m; 671 s->heap[--(s->heap_max)] = m;
672 672
673 /* Create a new node father of n and m */ 673 /* Create a new node father of n and m */
674 tree[node].Freq = tree[n].Freq + tree[m].Freq; 674 tree[node].Freq = tree[n].Freq + tree[m].Freq;
675 s->depth[node] = (uch)((s->depth[n] >= s->depth[m] ? 675 s->depth[node] = (uch)((s->depth[n] >= s->depth[m] ?
676 s->depth[n] : s->depth[m]) + 1); 676 s->depth[n] : s->depth[m]) + 1);
677 tree[n].Dad = tree[m].Dad = (ush)node; 677 tree[n].Dad = tree[m].Dad = (ush)node;
678#ifdef DUMP_BL_TREE 678#ifdef DUMP_BL_TREE
679 if (tree == s->bl_tree) { 679 if (tree == s->bl_tree) {
680 fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)", 680 fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
681 node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq); 681 node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
682 } 682 }
683#endif 683#endif
684 /* and insert the new node in the heap */ 684 /* and insert the new node in the heap */
685 s->heap[SMALLEST] = node++; 685 s->heap[SMALLEST] = node++;
686 pqdownheap(s, tree, SMALLEST); 686 pqdownheap(s, tree, SMALLEST);
687 687
688 } while (s->heap_len >= 2); 688 } while (s->heap_len >= 2);
689 689
690 s->heap[--(s->heap_max)] = s->heap[SMALLEST]; 690 s->heap[--(s->heap_max)] = s->heap[SMALLEST];
691 691
692 /* At this point, the fields freq and dad are set. We can now 692 /* At this point, the fields freq and dad are set. We can now
693 * generate the bit lengths. 693 * generate the bit lengths.
694 */ 694 */
695 gen_bitlen(s, (tree_desc *)desc); 695 gen_bitlen(s, (tree_desc *)desc);
696 696
697 /* The field len is now set, we can generate the bit codes */ 697 /* The field len is now set, we can generate the bit codes */
698 gen_codes ((ct_data *)tree, max_code, s->bl_count); 698 gen_codes ((ct_data *)tree, max_code, s->bl_count);
699} 699}
700 700
701/* =========================================================================== 701/* ===========================================================================
702 * Scan a literal or distance tree to determine the frequencies of the codes 702 * Scan a literal or distance tree to determine the frequencies of the codes
703 * in the bit length tree. 703 * in the bit length tree.
704 */ 704 */
705local void scan_tree (s, tree, max_code) 705local void scan_tree (s, tree, max_code)
706 deflate_state *s; 706 deflate_state *s;
707 ct_data *tree; /* the tree to be scanned */ 707 ct_data *tree; /* the tree to be scanned */
708 int max_code; /* and its largest code of non zero frequency */ 708 int max_code; /* and its largest code of non zero frequency */
709{ 709{
710 int n; /* iterates over all tree elements */ 710 int n; /* iterates over all tree elements */
711 int prevlen = -1; /* last emitted length */ 711 int prevlen = -1; /* last emitted length */
712 int curlen; /* length of current code */ 712 int curlen; /* length of current code */
713 int nextlen = tree[0].Len; /* length of next code */ 713 int nextlen = tree[0].Len; /* length of next code */
714 int count = 0; /* repeat count of the current code */ 714 int count = 0; /* repeat count of the current code */
715 int max_count = 7; /* max repeat count */ 715 int max_count = 7; /* max repeat count */
716 int min_count = 4; /* min repeat count */ 716 int min_count = 4; /* min repeat count */
717 717
718 if (nextlen == 0) max_count = 138, min_count = 3; 718 if (nextlen == 0) max_count = 138, min_count = 3;
719 tree[max_code+1].Len = (ush)0xffff; /* guard */ 719 tree[max_code+1].Len = (ush)0xffff; /* guard */
720 720
721 for (n = 0; n <= max_code; n++) { 721 for (n = 0; n <= max_code; n++) {
722 curlen = nextlen; nextlen = tree[n+1].Len; 722 curlen = nextlen; nextlen = tree[n+1].Len;
723 if (++count < max_count && curlen == nextlen) { 723 if (++count < max_count && curlen == nextlen) {
724 continue; 724 continue;
725 } else if (count < min_count) { 725 } else if (count < min_count) {
726 s->bl_tree[curlen].Freq += count; 726 s->bl_tree[curlen].Freq += count;
727 } else if (curlen != 0) { 727 } else if (curlen != 0) {
728 if (curlen != prevlen) s->bl_tree[curlen].Freq++; 728 if (curlen != prevlen) s->bl_tree[curlen].Freq++;
729 s->bl_tree[REP_3_6].Freq++; 729 s->bl_tree[REP_3_6].Freq++;
730 } else if (count <= 10) { 730 } else if (count <= 10) {
731 s->bl_tree[REPZ_3_10].Freq++; 731 s->bl_tree[REPZ_3_10].Freq++;
732 } else { 732 } else {
733 s->bl_tree[REPZ_11_138].Freq++; 733 s->bl_tree[REPZ_11_138].Freq++;
734 } 734 }
735 count = 0; prevlen = curlen; 735 count = 0; prevlen = curlen;
736 if (nextlen == 0) { 736 if (nextlen == 0) {
737 max_count = 138, min_count = 3; 737 max_count = 138, min_count = 3;
738 } else if (curlen == nextlen) { 738 } else if (curlen == nextlen) {
739 max_count = 6, min_count = 3; 739 max_count = 6, min_count = 3;
740 } else { 740 } else {
741 max_count = 7, min_count = 4; 741 max_count = 7, min_count = 4;
742 } 742 }
743 } 743 }
744} 744}
745 745
746/* =========================================================================== 746/* ===========================================================================
747 * Send a literal or distance tree in compressed form, using the codes in 747 * Send a literal or distance tree in compressed form, using the codes in
748 * bl_tree. 748 * bl_tree.
749 */ 749 */
750local void send_tree (s, tree, max_code) 750local void send_tree (s, tree, max_code)
751 deflate_state *s; 751 deflate_state *s;
752 ct_data *tree; /* the tree to be scanned */ 752 ct_data *tree; /* the tree to be scanned */
753 int max_code; /* and its largest code of non zero frequency */ 753 int max_code; /* and its largest code of non zero frequency */
754{ 754{
755 int n; /* iterates over all tree elements */ 755 int n; /* iterates over all tree elements */
756 int prevlen = -1; /* last emitted length */ 756 int prevlen = -1; /* last emitted length */
757 int curlen; /* length of current code */ 757 int curlen; /* length of current code */
758 int nextlen = tree[0].Len; /* length of next code */ 758 int nextlen = tree[0].Len; /* length of next code */
759 int count = 0; /* repeat count of the current code */ 759 int count = 0; /* repeat count of the current code */
760 int max_count = 7; /* max repeat count */ 760 int max_count = 7; /* max repeat count */
761 int min_count = 4; /* min repeat count */ 761 int min_count = 4; /* min repeat count */
762 762
763 /* tree[max_code+1].Len = -1; */ /* guard already set */ 763 /* tree[max_code+1].Len = -1; */ /* guard already set */
764 if (nextlen == 0) max_count = 138, min_count = 3; 764 if (nextlen == 0) max_count = 138, min_count = 3;
765 765
766 for (n = 0; n <= max_code; n++) { 766 for (n = 0; n <= max_code; n++) {
767 curlen = nextlen; nextlen = tree[n+1].Len; 767 curlen = nextlen; nextlen = tree[n+1].Len;
768 if (++count < max_count && curlen == nextlen) { 768 if (++count < max_count && curlen == nextlen) {
769 continue; 769 continue;
770 } else if (count < min_count) { 770 } else if (count < min_count) {
771 do { send_code(s, curlen, s->bl_tree); } while (--count != 0); 771 do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
772 772
773 } else if (curlen != 0) { 773 } else if (curlen != 0) {
774 if (curlen != prevlen) { 774 if (curlen != prevlen) {
775 send_code(s, curlen, s->bl_tree); count--; 775 send_code(s, curlen, s->bl_tree); count--;
776 } 776 }
777 Assert(count >= 3 && count <= 6, " 3_6?"); 777 Assert(count >= 3 && count <= 6, " 3_6?");
778 send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2); 778 send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2);
779 779
780 } else if (count <= 10) { 780 } else if (count <= 10) {
781 send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3); 781 send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3);
782 782
783 } else { 783 } else {
784 send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7); 784 send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7);
785 } 785 }
786 count = 0; prevlen = curlen; 786 count = 0; prevlen = curlen;
787 if (nextlen == 0) { 787 if (nextlen == 0) {
788 max_count = 138, min_count = 3; 788 max_count = 138, min_count = 3;
789 } else if (curlen == nextlen) { 789 } else if (curlen == nextlen) {
790 max_count = 6, min_count = 3; 790 max_count = 6, min_count = 3;
791 } else { 791 } else {
792 max_count = 7, min_count = 4; 792 max_count = 7, min_count = 4;
793 } 793 }
794 } 794 }
795} 795}
796 796
797/* =========================================================================== 797/* ===========================================================================
798 * Construct the Huffman tree for the bit lengths and return the index in 798 * Construct the Huffman tree for the bit lengths and return the index in
799 * bl_order of the last bit length code to send. 799 * bl_order of the last bit length code to send.
800 */ 800 */
801local int build_bl_tree(s) 801local int build_bl_tree(s)
802 deflate_state *s; 802 deflate_state *s;
803{ 803{
804 int max_blindex; /* index of last bit length code of non zero freq */ 804 int max_blindex; /* index of last bit length code of non zero freq */
805 805
806 /* Determine the bit length frequencies for literal and distance trees */ 806 /* Determine the bit length frequencies for literal and distance trees */
807 scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code); 807 scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
808 scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code); 808 scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
809 809
810 /* Build the bit length tree: */ 810 /* Build the bit length tree: */
811 build_tree(s, (tree_desc *)(&(s->bl_desc))); 811 build_tree(s, (tree_desc *)(&(s->bl_desc)));
812 /* opt_len now includes the length of the tree representations, except 812 /* opt_len now includes the length of the tree representations, except
813 * the lengths of the bit lengths codes and the 5+5+4 bits for the counts. 813 * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
814 */ 814 */
815 815
816 /* Determine the number of bit length codes to send. The pkzip format 816 /* Determine the number of bit length codes to send. The pkzip format
817 * requires that at least 4 bit length codes be sent. (appnote.txt says 817 * requires that at least 4 bit length codes be sent. (appnote.txt says
818 * 3 but the actual value used is 4.) 818 * 3 but the actual value used is 4.)
819 */ 819 */
820 for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) { 820 for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
821 if (s->bl_tree[bl_order[max_blindex]].Len != 0) break; 821 if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
822 } 822 }
823 /* Update opt_len to include the bit length tree and counts */ 823 /* Update opt_len to include the bit length tree and counts */
824 s->opt_len += 3*(max_blindex+1) + 5+5+4; 824 s->opt_len += 3*(max_blindex+1) + 5+5+4;
825 Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld", 825 Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
826 s->opt_len, s->static_len)); 826 s->opt_len, s->static_len));
827 827
828 return max_blindex; 828 return max_blindex;
829} 829}
830 830
831/* =========================================================================== 831/* ===========================================================================
832 * Send the header for a block using dynamic Huffman trees: the counts, the 832 * Send the header for a block using dynamic Huffman trees: the counts, the
833 * lengths of the bit length codes, the literal tree and the distance tree. 833 * lengths of the bit length codes, the literal tree and the distance tree.
834 * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4. 834 * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
835 */ 835 */
836local void send_all_trees(s, lcodes, dcodes, blcodes) 836local void send_all_trees(s, lcodes, dcodes, blcodes)
837 deflate_state *s; 837 deflate_state *s;
838 int lcodes, dcodes, blcodes; /* number of codes for each tree */ 838 int lcodes, dcodes, blcodes; /* number of codes for each tree */
839{ 839{
840 int rank; /* index in bl_order */ 840 int rank; /* index in bl_order */
841 841
842 Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes"); 842 Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
843 Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES, 843 Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
844 "too many codes"); 844 "too many codes");
845 Tracev((stderr, "\nbl counts: ")); 845 Tracev((stderr, "\nbl counts: "));
846 send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */ 846 send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */
847 send_bits(s, dcodes-1, 5); 847 send_bits(s, dcodes-1, 5);
848 send_bits(s, blcodes-4, 4); /* not -3 as stated in appnote.txt */ 848 send_bits(s, blcodes-4, 4); /* not -3 as stated in appnote.txt */
849 for (rank = 0; rank < blcodes; rank++) { 849 for (rank = 0; rank < blcodes; rank++) {
850 Tracev((stderr, "\nbl code %2d ", bl_order[rank])); 850 Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
851 send_bits(s, s->bl_tree[bl_order[rank]].Len, 3); 851 send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
852 } 852 }
853 Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent)); 853 Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
854 854
855 send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */ 855 send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */
856 Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent)); 856 Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
857 857
858 send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */ 858 send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */
859 Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent)); 859 Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
860} 860}
861 861
862/* =========================================================================== 862/* ===========================================================================
863 * Send a stored block 863 * Send a stored block
864 */ 864 */
865void ZLIB_INTERNAL _tr_stored_block(s, buf, stored_len, last) 865void ZLIB_INTERNAL _tr_stored_block(s, buf, stored_len, last)
866 deflate_state *s; 866 deflate_state *s;
867 charf *buf; /* input block */ 867 charf *buf; /* input block */
868 ulg stored_len; /* length of input block */ 868 ulg stored_len; /* length of input block */
869 int last; /* one if this is the last block for a file */ 869 int last; /* one if this is the last block for a file */
870{ 870{
871 send_bits(s, (STORED_BLOCK<<1)+last, 3); /* send block type */ 871 send_bits(s, (STORED_BLOCK<<1)+last, 3); /* send block type */
872#ifdef DEBUG 872#ifdef DEBUG
873 s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L; 873 s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L;
874 s->compressed_len += (stored_len + 4) << 3; 874 s->compressed_len += (stored_len + 4) << 3;
875#endif 875#endif
876 copy_block(s, buf, (unsigned)stored_len, 1); /* with header */ 876 copy_block(s, buf, (unsigned)stored_len, 1); /* with header */
877} 877}
878 878
879/* =========================================================================== 879/* ===========================================================================
880 * Flush the bits in the bit buffer to pending output (leaves at most 7 bits) 880 * Flush the bits in the bit buffer to pending output (leaves at most 7 bits)
881 */ 881 */
882void ZLIB_INTERNAL _tr_flush_bits(s) 882void ZLIB_INTERNAL _tr_flush_bits(s)
883 deflate_state *s; 883 deflate_state *s;
884{ 884{
885 bi_flush(s); 885 bi_flush(s);
886} 886}
887 887
888/* =========================================================================== 888/* ===========================================================================
889 * Send one empty static block to give enough lookahead for inflate. 889 * Send one empty static block to give enough lookahead for inflate.
890 * This takes 10 bits, of which 7 may remain in the bit buffer. 890 * This takes 10 bits, of which 7 may remain in the bit buffer.
891 */ 891 */
892void ZLIB_INTERNAL _tr_align(s) 892void ZLIB_INTERNAL _tr_align(s)
893 deflate_state *s; 893 deflate_state *s;
894{ 894{
895 send_bits(s, STATIC_TREES<<1, 3); 895 send_bits(s, STATIC_TREES<<1, 3);
896 send_code(s, END_BLOCK, static_ltree); 896 send_code(s, END_BLOCK, static_ltree);
897#ifdef DEBUG 897#ifdef DEBUG
898 s->compressed_len += 10L; /* 3 for block type, 7 for EOB */ 898 s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
899#endif 899#endif
900 bi_flush(s); 900 bi_flush(s);
901} 901}
902 902
903/* =========================================================================== 903/* ===========================================================================
904 * Determine the best encoding for the current block: dynamic trees, static 904 * Determine the best encoding for the current block: dynamic trees, static
905 * trees or store, and output the encoded block to the zip file. 905 * trees or store, and output the encoded block to the zip file.
906 */ 906 */
907void ZLIB_INTERNAL _tr_flush_block(s, buf, stored_len, last) 907void ZLIB_INTERNAL _tr_flush_block(s, buf, stored_len, last)
908 deflate_state *s; 908 deflate_state *s;
909 charf *buf; /* input block, or NULL if too old */ 909 charf *buf; /* input block, or NULL if too old */
910 ulg stored_len; /* length of input block */ 910 ulg stored_len; /* length of input block */
911 int last; /* one if this is the last block for a file */ 911 int last; /* one if this is the last block for a file */
912{ 912{
913 ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */ 913 ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
914 int max_blindex = 0; /* index of last bit length code of non zero freq */ 914 int max_blindex = 0; /* index of last bit length code of non zero freq */
915 915
916 /* Build the Huffman trees unless a stored block is forced */ 916 /* Build the Huffman trees unless a stored block is forced */
917 if (s->level > 0) { 917 if (s->level > 0) {
918 918
919 /* Check if the file is binary or text */ 919 /* Check if the file is binary or text */
920 if (s->strm->data_type == Z_UNKNOWN) 920 if (s->strm->data_type == Z_UNKNOWN)
921 s->strm->data_type = detect_data_type(s); 921 s->strm->data_type = detect_data_type(s);
922 922
923 /* Construct the literal and distance trees */ 923 /* Construct the literal and distance trees */
924 build_tree(s, (tree_desc *)(&(s->l_desc))); 924 build_tree(s, (tree_desc *)(&(s->l_desc)));
925 Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len, 925 Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
926 s->static_len)); 926 s->static_len));
927 927
928 build_tree(s, (tree_desc *)(&(s->d_desc))); 928 build_tree(s, (tree_desc *)(&(s->d_desc)));
929 Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len, 929 Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
930 s->static_len)); 930 s->static_len));
931 /* At this point, opt_len and static_len are the total bit lengths of 931 /* At this point, opt_len and static_len are the total bit lengths of
932 * the compressed block data, excluding the tree representations. 932 * the compressed block data, excluding the tree representations.
933 */ 933 */
934 934
935 /* Build the bit length tree for the above two trees, and get the index 935 /* Build the bit length tree for the above two trees, and get the index
936 * in bl_order of the last bit length code to send. 936 * in bl_order of the last bit length code to send.
937 */ 937 */
938 max_blindex = build_bl_tree(s); 938 max_blindex = build_bl_tree(s);
939 939
940 /* Determine the best encoding. Compute the block lengths in bytes. */ 940 /* Determine the best encoding. Compute the block lengths in bytes. */
941 opt_lenb = (s->opt_len+3+7)>>3; 941 opt_lenb = (s->opt_len+3+7)>>3;
942 static_lenb = (s->static_len+3+7)>>3; 942 static_lenb = (s->static_len+3+7)>>3;
943 943
944 Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ", 944 Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
945 opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len, 945 opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
946 s->last_lit)); 946 s->last_lit));
947 947
948 if (static_lenb <= opt_lenb) opt_lenb = static_lenb; 948 if (static_lenb <= opt_lenb) opt_lenb = static_lenb;
949 949
950 } else { 950 } else {
951 Assert(buf != (char*)0, "lost buf"); 951 Assert(buf != (char*)0, "lost buf");
952 opt_lenb = static_lenb = stored_len + 5; /* force a stored block */ 952 opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
953 } 953 }
954 954
955#ifdef FORCE_STORED 955#ifdef FORCE_STORED
956 if (buf != (char*)0) { /* force stored block */ 956 if (buf != (char*)0) { /* force stored block */
957#else 957#else
958 if (stored_len+4 <= opt_lenb && buf != (char*)0) { 958 if (stored_len+4 <= opt_lenb && buf != (char*)0) {
959 /* 4: two words for the lengths */ 959 /* 4: two words for the lengths */
960#endif 960#endif
961 /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE. 961 /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
962 * Otherwise we can't have processed more than WSIZE input bytes since 962 * Otherwise we can't have processed more than WSIZE input bytes since
963 * the last block flush, because compression would have been 963 * the last block flush, because compression would have been
964 * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to 964 * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
965 * transform a block into a stored block. 965 * transform a block into a stored block.
966 */ 966 */
967 _tr_stored_block(s, buf, stored_len, last); 967 _tr_stored_block(s, buf, stored_len, last);
968 968
969#ifdef FORCE_STATIC 969#ifdef FORCE_STATIC
970 } else if (static_lenb >= 0) { /* force static trees */ 970 } else if (static_lenb >= 0) { /* force static trees */
971#else 971#else
972 } else if (s->strategy == Z_FIXED || static_lenb == opt_lenb) { 972 } else if (s->strategy == Z_FIXED || static_lenb == opt_lenb) {
973#endif 973#endif
974 send_bits(s, (STATIC_TREES<<1)+last, 3); 974 send_bits(s, (STATIC_TREES<<1)+last, 3);
975 compress_block(s, (ct_data *)static_ltree, (ct_data *)static_dtree); 975 compress_block(s, (ct_data *)static_ltree, (ct_data *)static_dtree);
976#ifdef DEBUG 976#ifdef DEBUG
977 s->compressed_len += 3 + s->static_len; 977 s->compressed_len += 3 + s->static_len;
978#endif 978#endif
979 } else { 979 } else {
980 send_bits(s, (DYN_TREES<<1)+last, 3); 980 send_bits(s, (DYN_TREES<<1)+last, 3);
981 send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1, 981 send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1,
982 max_blindex+1); 982 max_blindex+1);
983 compress_block(s, (ct_data *)s->dyn_ltree, (ct_data *)s->dyn_dtree); 983 compress_block(s, (ct_data *)s->dyn_ltree, (ct_data *)s->dyn_dtree);
984#ifdef DEBUG 984#ifdef DEBUG
985 s->compressed_len += 3 + s->opt_len; 985 s->compressed_len += 3 + s->opt_len;
986#endif 986#endif
987 } 987 }
988 Assert (s->compressed_len == s->bits_sent, "bad compressed size"); 988 Assert (s->compressed_len == s->bits_sent, "bad compressed size");
989 /* The above check is made mod 2^32, for files larger than 512 MB 989 /* The above check is made mod 2^32, for files larger than 512 MB
990 * and uLong implemented on 32 bits. 990 * and uLong implemented on 32 bits.
991 */ 991 */
992 init_block(s); 992 init_block(s);
993 993
994 if (last) { 994 if (last) {
995 bi_windup(s); 995 bi_windup(s);
996#ifdef DEBUG 996#ifdef DEBUG
997 s->compressed_len += 7; /* align on byte boundary */ 997 s->compressed_len += 7; /* align on byte boundary */
998#endif 998#endif
999 } 999 }
1000 Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3, 1000 Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3,
1001 s->compressed_len-7*last)); 1001 s->compressed_len-7*last));
1002} 1002}
1003 1003
1004/* =========================================================================== 1004/* ===========================================================================
1005 * Save the match info and tally the frequency counts. Return true if 1005 * Save the match info and tally the frequency counts. Return true if
1006 * the current block must be flushed. 1006 * the current block must be flushed.
1007 */ 1007 */
1008int ZLIB_INTERNAL _tr_tally (s, dist, lc) 1008int ZLIB_INTERNAL _tr_tally (s, dist, lc)
1009 deflate_state *s; 1009 deflate_state *s;
1010 unsigned dist; /* distance of matched string */ 1010 unsigned dist; /* distance of matched string */
1011 unsigned lc; /* match length-MIN_MATCH or unmatched char (if dist==0) */ 1011 unsigned lc; /* match length-MIN_MATCH or unmatched char (if dist==0) */
1012{ 1012{
1013 s->d_buf[s->last_lit] = (ush)dist; 1013 s->d_buf[s->last_lit] = (ush)dist;
1014 s->l_buf[s->last_lit++] = (uch)lc; 1014 s->l_buf[s->last_lit++] = (uch)lc;
1015 if (dist == 0) { 1015 if (dist == 0) {
1016 /* lc is the unmatched char */ 1016 /* lc is the unmatched char */
1017 s->dyn_ltree[lc].Freq++; 1017 s->dyn_ltree[lc].Freq++;
1018 } else { 1018 } else {
1019 s->matches++; 1019 s->matches++;
1020 /* Here, lc is the match length - MIN_MATCH */ 1020 /* Here, lc is the match length - MIN_MATCH */
1021 dist--; /* dist = match distance - 1 */ 1021 dist--; /* dist = match distance - 1 */
1022 Assert((ush)dist < (ush)MAX_DIST(s) && 1022 Assert((ush)dist < (ush)MAX_DIST(s) &&
1023 (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) && 1023 (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
1024 (ush)d_code(dist) < (ush)D_CODES, "_tr_tally: bad match"); 1024 (ush)d_code(dist) < (ush)D_CODES, "_tr_tally: bad match");
1025 1025
1026 s->dyn_ltree[_length_code[lc]+LITERALS+1].Freq++; 1026 s->dyn_ltree[_length_code[lc]+LITERALS+1].Freq++;
1027 s->dyn_dtree[d_code(dist)].Freq++; 1027 s->dyn_dtree[d_code(dist)].Freq++;
1028 } 1028 }
1029 1029
1030#ifdef TRUNCATE_BLOCK 1030#ifdef TRUNCATE_BLOCK
1031 /* Try to guess if it is profitable to stop the current block here */ 1031 /* Try to guess if it is profitable to stop the current block here */
1032 if ((s->last_lit & 0x1fff) == 0 && s->level > 2) { 1032 if ((s->last_lit & 0x1fff) == 0 && s->level > 2) {
1033 /* Compute an upper bound for the compressed length */ 1033 /* Compute an upper bound for the compressed length */
1034 ulg out_length = (ulg)s->last_lit*8L; 1034 ulg out_length = (ulg)s->last_lit*8L;
1035 ulg in_length = (ulg)((long)s->strstart - s->block_start); 1035 ulg in_length = (ulg)((long)s->strstart - s->block_start);
1036 int dcode; 1036 int dcode;
1037 for (dcode = 0; dcode < D_CODES; dcode++) { 1037 for (dcode = 0; dcode < D_CODES; dcode++) {
1038 out_length += (ulg)s->dyn_dtree[dcode].Freq * 1038 out_length += (ulg)s->dyn_dtree[dcode].Freq *
1039 (5L+extra_dbits[dcode]); 1039 (5L+extra_dbits[dcode]);
1040 } 1040 }
1041 out_length >>= 3; 1041 out_length >>= 3;
1042 Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ", 1042 Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
1043 s->last_lit, in_length, out_length, 1043 s->last_lit, in_length, out_length,
1044 100L - out_length*100L/in_length)); 1044 100L - out_length*100L/in_length));
1045 if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1; 1045 if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1;
1046 } 1046 }
1047#endif 1047#endif
1048 return (s->last_lit == s->lit_bufsize-1); 1048 return (s->last_lit == s->lit_bufsize-1);
1049 /* We avoid equality with lit_bufsize because of wraparound at 64K 1049 /* We avoid equality with lit_bufsize because of wraparound at 64K
1050 * on 16 bit machines and because stored blocks are restricted to 1050 * on 16 bit machines and because stored blocks are restricted to
1051 * 64K-1 bytes. 1051 * 64K-1 bytes.
1052 */ 1052 */
1053} 1053}
1054 1054
1055/* =========================================================================== 1055/* ===========================================================================
1056 * Send the block data compressed using the given Huffman trees 1056 * Send the block data compressed using the given Huffman trees
1057 */ 1057 */
1058local void compress_block(s, ltree, dtree) 1058local void compress_block(s, ltree, dtree)
1059 deflate_state *s; 1059 deflate_state *s;
1060 ct_data *ltree; /* literal tree */ 1060 ct_data *ltree; /* literal tree */
1061 ct_data *dtree; /* distance tree */ 1061 ct_data *dtree; /* distance tree */
1062{ 1062{
1063 unsigned dist; /* distance of matched string */ 1063 unsigned dist; /* distance of matched string */
1064 int lc; /* match length or unmatched char (if dist == 0) */ 1064 int lc; /* match length or unmatched char (if dist == 0) */
1065 unsigned lx = 0; /* running index in l_buf */ 1065 unsigned lx = 0; /* running index in l_buf */
1066 unsigned code; /* the code to send */ 1066 unsigned code; /* the code to send */
1067 int extra; /* number of extra bits to send */ 1067 int extra; /* number of extra bits to send */
1068 1068
1069 if (s->last_lit != 0) do { 1069 if (s->last_lit != 0) do {
1070 dist = s->d_buf[lx]; 1070 dist = s->d_buf[lx];
1071 lc = s->l_buf[lx++]; 1071 lc = s->l_buf[lx++];
1072 if (dist == 0) { 1072 if (dist == 0) {
1073 send_code(s, lc, ltree); /* send a literal byte */ 1073 send_code(s, lc, ltree); /* send a literal byte */
1074 Tracecv(isgraph(lc), (stderr," '%c' ", lc)); 1074 Tracecv(isgraph(lc), (stderr," '%c' ", lc));
1075 } else { 1075 } else {
1076 /* Here, lc is the match length - MIN_MATCH */ 1076 /* Here, lc is the match length - MIN_MATCH */
1077 code = _length_code[lc]; 1077 code = _length_code[lc];
1078 send_code(s, code+LITERALS+1, ltree); /* send the length code */ 1078 send_code(s, code+LITERALS+1, ltree); /* send the length code */
1079 extra = extra_lbits[code]; 1079 extra = extra_lbits[code];
1080 if (extra != 0) { 1080 if (extra != 0) {
1081 lc -= base_length[code]; 1081 lc -= base_length[code];
1082 send_bits(s, lc, extra); /* send the extra length bits */ 1082 send_bits(s, lc, extra); /* send the extra length bits */
1083 } 1083 }
1084 dist--; /* dist is now the match distance - 1 */ 1084 dist--; /* dist is now the match distance - 1 */
1085 code = d_code(dist); 1085 code = d_code(dist);
1086 Assert (code < D_CODES, "bad d_code"); 1086 Assert (code < D_CODES, "bad d_code");
1087 1087
1088 send_code(s, code, dtree); /* send the distance code */ 1088 send_code(s, code, dtree); /* send the distance code */
1089 extra = extra_dbits[code]; 1089 extra = extra_dbits[code];
1090 if (extra != 0) { 1090 if (extra != 0) {
1091 dist -= base_dist[code]; 1091 dist -= base_dist[code];
1092 send_bits(s, dist, extra); /* send the extra distance bits */ 1092 send_bits(s, dist, extra); /* send the extra distance bits */
1093 } 1093 }
1094 } /* literal or match pair ? */ 1094 } /* literal or match pair ? */
1095 1095
1096 /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */ 1096 /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
1097 Assert((uInt)(s->pending) < s->lit_bufsize + 2*lx, 1097 Assert((uInt)(s->pending) < s->lit_bufsize + 2*lx,
1098 "pendingBuf overflow"); 1098 "pendingBuf overflow");
1099 1099
1100 } while (lx < s->last_lit); 1100 } while (lx < s->last_lit);
1101 1101
1102 send_code(s, END_BLOCK, ltree); 1102 send_code(s, END_BLOCK, ltree);
1103} 1103}
1104 1104
1105/* =========================================================================== 1105/* ===========================================================================
1106 * Check if the data type is TEXT or BINARY, using the following algorithm: 1106 * Check if the data type is TEXT or BINARY, using the following algorithm:
1107 * - TEXT if the two conditions below are satisfied: 1107 * - TEXT if the two conditions below are satisfied:
1108 * a) There are no non-portable control characters belonging to the 1108 * a) There are no non-portable control characters belonging to the
1109 * "black list" (0..6, 14..25, 28..31). 1109 * "black list" (0..6, 14..25, 28..31).
1110 * b) There is at least one printable character belonging to the 1110 * b) There is at least one printable character belonging to the
1111 * "white list" (9 {TAB}, 10 {LF}, 13 {CR}, 32..255). 1111 * "white list" (9 {TAB}, 10 {LF}, 13 {CR}, 32..255).
1112 * - BINARY otherwise. 1112 * - BINARY otherwise.
1113 * - The following partially-portable control characters form a 1113 * - The following partially-portable control characters form a
1114 * "gray list" that is ignored in this detection algorithm: 1114 * "gray list" that is ignored in this detection algorithm:
1115 * (7 {BEL}, 8 {BS}, 11 {VT}, 12 {FF}, 26 {SUB}, 27 {ESC}). 1115 * (7 {BEL}, 8 {BS}, 11 {VT}, 12 {FF}, 26 {SUB}, 27 {ESC}).
1116 * IN assertion: the fields Freq of dyn_ltree are set. 1116 * IN assertion: the fields Freq of dyn_ltree are set.
1117 */ 1117 */
1118local int detect_data_type(s) 1118local int detect_data_type(s)
1119 deflate_state *s; 1119 deflate_state *s;
1120{ 1120{
1121 /* black_mask is the bit mask of black-listed bytes 1121 /* black_mask is the bit mask of black-listed bytes
1122 * set bits 0..6, 14..25, and 28..31 1122 * set bits 0..6, 14..25, and 28..31
1123 * 0xf3ffc07f = binary 11110011111111111100000001111111 1123 * 0xf3ffc07f = binary 11110011111111111100000001111111
1124 */ 1124 */
1125 unsigned long black_mask = 0xf3ffc07fUL; 1125 unsigned long black_mask = 0xf3ffc07fUL;
1126 int n; 1126 int n;
1127 1127
1128 /* Check for non-textual ("black-listed") bytes. */ 1128 /* Check for non-textual ("black-listed") bytes. */
1129 for (n = 0; n <= 31; n++, black_mask >>= 1) 1129 for (n = 0; n <= 31; n++, black_mask >>= 1)
1130 if ((black_mask & 1) && (s->dyn_ltree[n].Freq != 0)) 1130 if ((black_mask & 1) && (s->dyn_ltree[n].Freq != 0))
1131 return Z_BINARY; 1131 return Z_BINARY;
1132 1132
1133 /* Check for textual ("white-listed") bytes. */ 1133 /* Check for textual ("white-listed") bytes. */
1134 if (s->dyn_ltree[9].Freq != 0 || s->dyn_ltree[10].Freq != 0 1134 if (s->dyn_ltree[9].Freq != 0 || s->dyn_ltree[10].Freq != 0
1135 || s->dyn_ltree[13].Freq != 0) 1135 || s->dyn_ltree[13].Freq != 0)
1136 return Z_TEXT; 1136 return Z_TEXT;
1137 for (n = 32; n < LITERALS; n++) 1137 for (n = 32; n < LITERALS; n++)
1138 if (s->dyn_ltree[n].Freq != 0) 1138 if (s->dyn_ltree[n].Freq != 0)
1139 return Z_TEXT; 1139 return Z_TEXT;
1140 1140
1141 /* There are no "black-listed" or "white-listed" bytes: 1141 /* There are no "black-listed" or "white-listed" bytes:
1142 * this stream either is empty or has tolerated ("gray-listed") bytes only. 1142 * this stream either is empty or has tolerated ("gray-listed") bytes only.
1143 */ 1143 */
1144 return Z_BINARY; 1144 return Z_BINARY;
1145} 1145}
1146 1146
1147/* =========================================================================== 1147/* ===========================================================================
1148 * Reverse the first len bits of a code, using straightforward code (a faster 1148 * Reverse the first len bits of a code, using straightforward code (a faster
1149 * method would use a table) 1149 * method would use a table)
1150 * IN assertion: 1 <= len <= 15 1150 * IN assertion: 1 <= len <= 15
1151 */ 1151 */
1152local unsigned bi_reverse(code, len) 1152local unsigned bi_reverse(code, len)
1153 unsigned code; /* the value to invert */ 1153 unsigned code; /* the value to invert */
1154 int len; /* its bit length */ 1154 int len; /* its bit length */
1155{ 1155{
1156 register unsigned res = 0; 1156 register unsigned res = 0;
1157 do { 1157 do {
1158 res |= code & 1; 1158 res |= code & 1;
1159 code >>= 1, res <<= 1; 1159 code >>= 1, res <<= 1;
1160 } while (--len > 0); 1160 } while (--len > 0);
1161 return res >> 1; 1161 return res >> 1;
1162} 1162}
1163 1163
1164/* =========================================================================== 1164/* ===========================================================================
1165 * Flush the bit buffer, keeping at most 7 bits in it. 1165 * Flush the bit buffer, keeping at most 7 bits in it.
1166 */ 1166 */
1167local void bi_flush(s) 1167local void bi_flush(s)
1168 deflate_state *s; 1168 deflate_state *s;
1169{ 1169{
1170 if (s->bi_valid == 16) { 1170 if (s->bi_valid == 16) {
1171 put_short(s, s->bi_buf); 1171 put_short(s, s->bi_buf);
1172 s->bi_buf = 0; 1172 s->bi_buf = 0;
1173 s->bi_valid = 0; 1173 s->bi_valid = 0;
1174 } else if (s->bi_valid >= 8) { 1174 } else if (s->bi_valid >= 8) {
1175 put_byte(s, (Byte)s->bi_buf); 1175 put_byte(s, (Byte)s->bi_buf);
1176 s->bi_buf >>= 8; 1176 s->bi_buf >>= 8;
1177 s->bi_valid -= 8; 1177 s->bi_valid -= 8;
1178 } 1178 }
1179} 1179}
1180 1180
1181/* =========================================================================== 1181/* ===========================================================================
1182 * Flush the bit buffer and align the output on a byte boundary 1182 * Flush the bit buffer and align the output on a byte boundary
1183 */ 1183 */
1184local void bi_windup(s) 1184local void bi_windup(s)
1185 deflate_state *s; 1185 deflate_state *s;
1186{ 1186{
1187 if (s->bi_valid > 8) { 1187 if (s->bi_valid > 8) {
1188 put_short(s, s->bi_buf); 1188 put_short(s, s->bi_buf);
1189 } else if (s->bi_valid > 0) { 1189 } else if (s->bi_valid > 0) {
1190 put_byte(s, (Byte)s->bi_buf); 1190 put_byte(s, (Byte)s->bi_buf);
1191 } 1191 }
1192 s->bi_buf = 0; 1192 s->bi_buf = 0;
1193 s->bi_valid = 0; 1193 s->bi_valid = 0;
1194#ifdef DEBUG 1194#ifdef DEBUG
1195 s->bits_sent = (s->bits_sent+7) & ~7; 1195 s->bits_sent = (s->bits_sent+7) & ~7;
1196#endif 1196#endif
1197} 1197}
1198 1198
1199/* =========================================================================== 1199/* ===========================================================================
1200 * Copy a stored block, storing first the length and its 1200 * Copy a stored block, storing first the length and its
1201 * one's complement if requested. 1201 * one's complement if requested.
1202 */ 1202 */
1203local void copy_block(s, buf, len, header) 1203local void copy_block(s, buf, len, header)
1204 deflate_state *s; 1204 deflate_state *s;
1205 charf *buf; /* the input data */ 1205 charf *buf; /* the input data */
1206 unsigned len; /* its length */ 1206 unsigned len; /* its length */
1207 int header; /* true if block header must be written */ 1207 int header; /* true if block header must be written */
1208{ 1208{
1209 bi_windup(s); /* align on byte boundary */ 1209 bi_windup(s); /* align on byte boundary */
1210 1210
1211 if (header) { 1211 if (header) {
1212 put_short(s, (ush)len); 1212 put_short(s, (ush)len);
1213 put_short(s, (ush)~len); 1213 put_short(s, (ush)~len);
1214#ifdef DEBUG 1214#ifdef DEBUG
1215 s->bits_sent += 2*16; 1215 s->bits_sent += 2*16;
1216#endif 1216#endif
1217 } 1217 }
1218#ifdef DEBUG 1218#ifdef DEBUG
1219 s->bits_sent += (ulg)len<<3; 1219 s->bits_sent += (ulg)len<<3;
1220#endif 1220#endif
1221 while (len--) { 1221 while (len--) {
1222 put_byte(s, *buf++); 1222 put_byte(s, *buf++);
1223 } 1223 }
1224} 1224}