aboutsummaryrefslogtreecommitdiffstatshomepage
path: root/libraries/irrlicht-1.8/source/Irrlicht/jpeglib/jidctfst.c
diff options
context:
space:
mode:
authorDavid Walter Seikel2013-01-13 18:54:10 +1000
committerDavid Walter Seikel2013-01-13 18:54:10 +1000
commit959831f4ef5a3e797f576c3de08cd65032c997ad (patch)
treee7351908be5995f0b325b2ebeaa02d5a34b82583 /libraries/irrlicht-1.8/source/Irrlicht/jpeglib/jidctfst.c
parentAdd info about changes to Irrlicht. (diff)
downloadSledjHamr-959831f4ef5a3e797f576c3de08cd65032c997ad.zip
SledjHamr-959831f4ef5a3e797f576c3de08cd65032c997ad.tar.gz
SledjHamr-959831f4ef5a3e797f576c3de08cd65032c997ad.tar.bz2
SledjHamr-959831f4ef5a3e797f576c3de08cd65032c997ad.tar.xz
Remove damned ancient DOS line endings from Irrlicht. Hopefully I did not go overboard.
Diffstat (limited to 'libraries/irrlicht-1.8/source/Irrlicht/jpeglib/jidctfst.c')
-rw-r--r--libraries/irrlicht-1.8/source/Irrlicht/jpeglib/jidctfst.c736
1 files changed, 368 insertions, 368 deletions
diff --git a/libraries/irrlicht-1.8/source/Irrlicht/jpeglib/jidctfst.c b/libraries/irrlicht-1.8/source/Irrlicht/jpeglib/jidctfst.c
index 078b8c4..dba4216 100644
--- a/libraries/irrlicht-1.8/source/Irrlicht/jpeglib/jidctfst.c
+++ b/libraries/irrlicht-1.8/source/Irrlicht/jpeglib/jidctfst.c
@@ -1,368 +1,368 @@
1/* 1/*
2 * jidctfst.c 2 * jidctfst.c
3 * 3 *
4 * Copyright (C) 1994-1998, Thomas G. Lane. 4 * Copyright (C) 1994-1998, Thomas G. Lane.
5 * This file is part of the Independent JPEG Group's software. 5 * This file is part of the Independent JPEG Group's software.
6 * For conditions of distribution and use, see the accompanying README file. 6 * For conditions of distribution and use, see the accompanying README file.
7 * 7 *
8 * This file contains a fast, not so accurate integer implementation of the 8 * This file contains a fast, not so accurate integer implementation of the
9 * inverse DCT (Discrete Cosine Transform). In the IJG code, this routine 9 * inverse DCT (Discrete Cosine Transform). In the IJG code, this routine
10 * must also perform dequantization of the input coefficients. 10 * must also perform dequantization of the input coefficients.
11 * 11 *
12 * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT 12 * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT
13 * on each row (or vice versa, but it's more convenient to emit a row at 13 * on each row (or vice versa, but it's more convenient to emit a row at
14 * a time). Direct algorithms are also available, but they are much more 14 * a time). Direct algorithms are also available, but they are much more
15 * complex and seem not to be any faster when reduced to code. 15 * complex and seem not to be any faster when reduced to code.
16 * 16 *
17 * This implementation is based on Arai, Agui, and Nakajima's algorithm for 17 * This implementation is based on Arai, Agui, and Nakajima's algorithm for
18 * scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in 18 * scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in
19 * Japanese, but the algorithm is described in the Pennebaker & Mitchell 19 * Japanese, but the algorithm is described in the Pennebaker & Mitchell
20 * JPEG textbook (see REFERENCES section in file README). The following code 20 * JPEG textbook (see REFERENCES section in file README). The following code
21 * is based directly on figure 4-8 in P&M. 21 * is based directly on figure 4-8 in P&M.
22 * While an 8-point DCT cannot be done in less than 11 multiplies, it is 22 * While an 8-point DCT cannot be done in less than 11 multiplies, it is
23 * possible to arrange the computation so that many of the multiplies are 23 * possible to arrange the computation so that many of the multiplies are
24 * simple scalings of the final outputs. These multiplies can then be 24 * simple scalings of the final outputs. These multiplies can then be
25 * folded into the multiplications or divisions by the JPEG quantization 25 * folded into the multiplications or divisions by the JPEG quantization
26 * table entries. The AA&N method leaves only 5 multiplies and 29 adds 26 * table entries. The AA&N method leaves only 5 multiplies and 29 adds
27 * to be done in the DCT itself. 27 * to be done in the DCT itself.
28 * The primary disadvantage of this method is that with fixed-point math, 28 * The primary disadvantage of this method is that with fixed-point math,
29 * accuracy is lost due to imprecise representation of the scaled 29 * accuracy is lost due to imprecise representation of the scaled
30 * quantization values. The smaller the quantization table entry, the less 30 * quantization values. The smaller the quantization table entry, the less
31 * precise the scaled value, so this implementation does worse with high- 31 * precise the scaled value, so this implementation does worse with high-
32 * quality-setting files than with low-quality ones. 32 * quality-setting files than with low-quality ones.
33 */ 33 */
34 34
35#define JPEG_INTERNALS 35#define JPEG_INTERNALS
36#include "jinclude.h" 36#include "jinclude.h"
37#include "jpeglib.h" 37#include "jpeglib.h"
38#include "jdct.h" /* Private declarations for DCT subsystem */ 38#include "jdct.h" /* Private declarations for DCT subsystem */
39 39
40#ifdef DCT_IFAST_SUPPORTED 40#ifdef DCT_IFAST_SUPPORTED
41 41
42 42
43/* 43/*
44 * This module is specialized to the case DCTSIZE = 8. 44 * This module is specialized to the case DCTSIZE = 8.
45 */ 45 */
46 46
47#if DCTSIZE != 8 47#if DCTSIZE != 8
48 Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */ 48 Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
49#endif 49#endif
50 50
51 51
52/* Scaling decisions are generally the same as in the LL&M algorithm; 52/* Scaling decisions are generally the same as in the LL&M algorithm;
53 * see jidctint.c for more details. However, we choose to descale 53 * see jidctint.c for more details. However, we choose to descale
54 * (right shift) multiplication products as soon as they are formed, 54 * (right shift) multiplication products as soon as they are formed,
55 * rather than carrying additional fractional bits into subsequent additions. 55 * rather than carrying additional fractional bits into subsequent additions.
56 * This compromises accuracy slightly, but it lets us save a few shifts. 56 * This compromises accuracy slightly, but it lets us save a few shifts.
57 * More importantly, 16-bit arithmetic is then adequate (for 8-bit samples) 57 * More importantly, 16-bit arithmetic is then adequate (for 8-bit samples)
58 * everywhere except in the multiplications proper; this saves a good deal 58 * everywhere except in the multiplications proper; this saves a good deal
59 * of work on 16-bit-int machines. 59 * of work on 16-bit-int machines.
60 * 60 *
61 * The dequantized coefficients are not integers because the AA&N scaling 61 * The dequantized coefficients are not integers because the AA&N scaling
62 * factors have been incorporated. We represent them scaled up by PASS1_BITS, 62 * factors have been incorporated. We represent them scaled up by PASS1_BITS,
63 * so that the first and second IDCT rounds have the same input scaling. 63 * so that the first and second IDCT rounds have the same input scaling.
64 * For 8-bit JSAMPLEs, we choose IFAST_SCALE_BITS = PASS1_BITS so as to 64 * For 8-bit JSAMPLEs, we choose IFAST_SCALE_BITS = PASS1_BITS so as to
65 * avoid a descaling shift; this compromises accuracy rather drastically 65 * avoid a descaling shift; this compromises accuracy rather drastically
66 * for small quantization table entries, but it saves a lot of shifts. 66 * for small quantization table entries, but it saves a lot of shifts.
67 * For 12-bit JSAMPLEs, there's no hope of using 16x16 multiplies anyway, 67 * For 12-bit JSAMPLEs, there's no hope of using 16x16 multiplies anyway,
68 * so we use a much larger scaling factor to preserve accuracy. 68 * so we use a much larger scaling factor to preserve accuracy.
69 * 69 *
70 * A final compromise is to represent the multiplicative constants to only 70 * A final compromise is to represent the multiplicative constants to only
71 * 8 fractional bits, rather than 13. This saves some shifting work on some 71 * 8 fractional bits, rather than 13. This saves some shifting work on some
72 * machines, and may also reduce the cost of multiplication (since there 72 * machines, and may also reduce the cost of multiplication (since there
73 * are fewer one-bits in the constants). 73 * are fewer one-bits in the constants).
74 */ 74 */
75 75
76#if BITS_IN_JSAMPLE == 8 76#if BITS_IN_JSAMPLE == 8
77#define CONST_BITS 8 77#define CONST_BITS 8
78#define PASS1_BITS 2 78#define PASS1_BITS 2
79#else 79#else
80#define CONST_BITS 8 80#define CONST_BITS 8
81#define PASS1_BITS 1 /* lose a little precision to avoid overflow */ 81#define PASS1_BITS 1 /* lose a little precision to avoid overflow */
82#endif 82#endif
83 83
84/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus 84/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
85 * causing a lot of useless floating-point operations at run time. 85 * causing a lot of useless floating-point operations at run time.
86 * To get around this we use the following pre-calculated constants. 86 * To get around this we use the following pre-calculated constants.
87 * If you change CONST_BITS you may want to add appropriate values. 87 * If you change CONST_BITS you may want to add appropriate values.
88 * (With a reasonable C compiler, you can just rely on the FIX() macro...) 88 * (With a reasonable C compiler, you can just rely on the FIX() macro...)
89 */ 89 */
90 90
91#if CONST_BITS == 8 91#if CONST_BITS == 8
92#define FIX_1_082392200 ((INT32) 277) /* FIX(1.082392200) */ 92#define FIX_1_082392200 ((INT32) 277) /* FIX(1.082392200) */
93#define FIX_1_414213562 ((INT32) 362) /* FIX(1.414213562) */ 93#define FIX_1_414213562 ((INT32) 362) /* FIX(1.414213562) */
94#define FIX_1_847759065 ((INT32) 473) /* FIX(1.847759065) */ 94#define FIX_1_847759065 ((INT32) 473) /* FIX(1.847759065) */
95#define FIX_2_613125930 ((INT32) 669) /* FIX(2.613125930) */ 95#define FIX_2_613125930 ((INT32) 669) /* FIX(2.613125930) */
96#else 96#else
97#define FIX_1_082392200 FIX(1.082392200) 97#define FIX_1_082392200 FIX(1.082392200)
98#define FIX_1_414213562 FIX(1.414213562) 98#define FIX_1_414213562 FIX(1.414213562)
99#define FIX_1_847759065 FIX(1.847759065) 99#define FIX_1_847759065 FIX(1.847759065)
100#define FIX_2_613125930 FIX(2.613125930) 100#define FIX_2_613125930 FIX(2.613125930)
101#endif 101#endif
102 102
103 103
104/* We can gain a little more speed, with a further compromise in accuracy, 104/* We can gain a little more speed, with a further compromise in accuracy,
105 * by omitting the addition in a descaling shift. This yields an incorrectly 105 * by omitting the addition in a descaling shift. This yields an incorrectly
106 * rounded result half the time... 106 * rounded result half the time...
107 */ 107 */
108 108
109#ifndef USE_ACCURATE_ROUNDING 109#ifndef USE_ACCURATE_ROUNDING
110#undef DESCALE 110#undef DESCALE
111#define DESCALE(x,n) RIGHT_SHIFT(x, n) 111#define DESCALE(x,n) RIGHT_SHIFT(x, n)
112#endif 112#endif
113 113
114 114
115/* Multiply a DCTELEM variable by an INT32 constant, and immediately 115/* Multiply a DCTELEM variable by an INT32 constant, and immediately
116 * descale to yield a DCTELEM result. 116 * descale to yield a DCTELEM result.
117 */ 117 */
118 118
119#define MULTIPLY(var,const) ((DCTELEM) DESCALE((var) * (const), CONST_BITS)) 119#define MULTIPLY(var,const) ((DCTELEM) DESCALE((var) * (const), CONST_BITS))
120 120
121 121
122/* Dequantize a coefficient by multiplying it by the multiplier-table 122/* Dequantize a coefficient by multiplying it by the multiplier-table
123 * entry; produce a DCTELEM result. For 8-bit data a 16x16->16 123 * entry; produce a DCTELEM result. For 8-bit data a 16x16->16
124 * multiplication will do. For 12-bit data, the multiplier table is 124 * multiplication will do. For 12-bit data, the multiplier table is
125 * declared INT32, so a 32-bit multiply will be used. 125 * declared INT32, so a 32-bit multiply will be used.
126 */ 126 */
127 127
128#if BITS_IN_JSAMPLE == 8 128#if BITS_IN_JSAMPLE == 8
129#define DEQUANTIZE(coef,quantval) (((IFAST_MULT_TYPE) (coef)) * (quantval)) 129#define DEQUANTIZE(coef,quantval) (((IFAST_MULT_TYPE) (coef)) * (quantval))
130#else 130#else
131#define DEQUANTIZE(coef,quantval) \ 131#define DEQUANTIZE(coef,quantval) \
132 DESCALE((coef)*(quantval), IFAST_SCALE_BITS-PASS1_BITS) 132 DESCALE((coef)*(quantval), IFAST_SCALE_BITS-PASS1_BITS)
133#endif 133#endif
134 134
135 135
136/* Like DESCALE, but applies to a DCTELEM and produces an int. 136/* Like DESCALE, but applies to a DCTELEM and produces an int.
137 * We assume that int right shift is unsigned if INT32 right shift is. 137 * We assume that int right shift is unsigned if INT32 right shift is.
138 */ 138 */
139 139
140#ifdef RIGHT_SHIFT_IS_UNSIGNED 140#ifdef RIGHT_SHIFT_IS_UNSIGNED
141#define ISHIFT_TEMPS DCTELEM ishift_temp; 141#define ISHIFT_TEMPS DCTELEM ishift_temp;
142#if BITS_IN_JSAMPLE == 8 142#if BITS_IN_JSAMPLE == 8
143#define DCTELEMBITS 16 /* DCTELEM may be 16 or 32 bits */ 143#define DCTELEMBITS 16 /* DCTELEM may be 16 or 32 bits */
144#else 144#else
145#define DCTELEMBITS 32 /* DCTELEM must be 32 bits */ 145#define DCTELEMBITS 32 /* DCTELEM must be 32 bits */
146#endif 146#endif
147#define IRIGHT_SHIFT(x,shft) \ 147#define IRIGHT_SHIFT(x,shft) \
148 ((ishift_temp = (x)) < 0 ? \ 148 ((ishift_temp = (x)) < 0 ? \
149 (ishift_temp >> (shft)) | ((~((DCTELEM) 0)) << (DCTELEMBITS-(shft))) : \ 149 (ishift_temp >> (shft)) | ((~((DCTELEM) 0)) << (DCTELEMBITS-(shft))) : \
150 (ishift_temp >> (shft))) 150 (ishift_temp >> (shft)))
151#else 151#else
152#define ISHIFT_TEMPS 152#define ISHIFT_TEMPS
153#define IRIGHT_SHIFT(x,shft) ((x) >> (shft)) 153#define IRIGHT_SHIFT(x,shft) ((x) >> (shft))
154#endif 154#endif
155 155
156#ifdef USE_ACCURATE_ROUNDING 156#ifdef USE_ACCURATE_ROUNDING
157#define IDESCALE(x,n) ((int) IRIGHT_SHIFT((x) + (1 << ((n)-1)), n)) 157#define IDESCALE(x,n) ((int) IRIGHT_SHIFT((x) + (1 << ((n)-1)), n))
158#else 158#else
159#define IDESCALE(x,n) ((int) IRIGHT_SHIFT(x, n)) 159#define IDESCALE(x,n) ((int) IRIGHT_SHIFT(x, n))
160#endif 160#endif
161 161
162 162
163/* 163/*
164 * Perform dequantization and inverse DCT on one block of coefficients. 164 * Perform dequantization and inverse DCT on one block of coefficients.
165 */ 165 */
166 166
167GLOBAL(void) 167GLOBAL(void)
168jpeg_idct_ifast (j_decompress_ptr cinfo, jpeg_component_info * compptr, 168jpeg_idct_ifast (j_decompress_ptr cinfo, jpeg_component_info * compptr,
169 JCOEFPTR coef_block, 169 JCOEFPTR coef_block,
170 JSAMPARRAY output_buf, JDIMENSION output_col) 170 JSAMPARRAY output_buf, JDIMENSION output_col)
171{ 171{
172 DCTELEM tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; 172 DCTELEM tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
173 DCTELEM tmp10, tmp11, tmp12, tmp13; 173 DCTELEM tmp10, tmp11, tmp12, tmp13;
174 DCTELEM z5, z10, z11, z12, z13; 174 DCTELEM z5, z10, z11, z12, z13;
175 JCOEFPTR inptr; 175 JCOEFPTR inptr;
176 IFAST_MULT_TYPE * quantptr; 176 IFAST_MULT_TYPE * quantptr;
177 int * wsptr; 177 int * wsptr;
178 JSAMPROW outptr; 178 JSAMPROW outptr;
179 JSAMPLE *range_limit = IDCT_range_limit(cinfo); 179 JSAMPLE *range_limit = IDCT_range_limit(cinfo);
180 int ctr; 180 int ctr;
181 int workspace[DCTSIZE2]; /* buffers data between passes */ 181 int workspace[DCTSIZE2]; /* buffers data between passes */
182 SHIFT_TEMPS /* for DESCALE */ 182 SHIFT_TEMPS /* for DESCALE */
183 ISHIFT_TEMPS /* for IDESCALE */ 183 ISHIFT_TEMPS /* for IDESCALE */
184 184
185 /* Pass 1: process columns from input, store into work array. */ 185 /* Pass 1: process columns from input, store into work array. */
186 186
187 inptr = coef_block; 187 inptr = coef_block;
188 quantptr = (IFAST_MULT_TYPE *) compptr->dct_table; 188 quantptr = (IFAST_MULT_TYPE *) compptr->dct_table;
189 wsptr = workspace; 189 wsptr = workspace;
190 for (ctr = DCTSIZE; ctr > 0; ctr--) { 190 for (ctr = DCTSIZE; ctr > 0; ctr--) {
191 /* Due to quantization, we will usually find that many of the input 191 /* Due to quantization, we will usually find that many of the input
192 * coefficients are zero, especially the AC terms. We can exploit this 192 * coefficients are zero, especially the AC terms. We can exploit this
193 * by short-circuiting the IDCT calculation for any column in which all 193 * by short-circuiting the IDCT calculation for any column in which all
194 * the AC terms are zero. In that case each output is equal to the 194 * the AC terms are zero. In that case each output is equal to the
195 * DC coefficient (with scale factor as needed). 195 * DC coefficient (with scale factor as needed).
196 * With typical images and quantization tables, half or more of the 196 * With typical images and quantization tables, half or more of the
197 * column DCT calculations can be simplified this way. 197 * column DCT calculations can be simplified this way.
198 */ 198 */
199 199
200 if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 && 200 if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
201 inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 && 201 inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 &&
202 inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 && 202 inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 &&
203 inptr[DCTSIZE*7] == 0) { 203 inptr[DCTSIZE*7] == 0) {
204 /* AC terms all zero */ 204 /* AC terms all zero */
205 int dcval = (int) DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); 205 int dcval = (int) DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
206 206
207 wsptr[DCTSIZE*0] = dcval; 207 wsptr[DCTSIZE*0] = dcval;
208 wsptr[DCTSIZE*1] = dcval; 208 wsptr[DCTSIZE*1] = dcval;
209 wsptr[DCTSIZE*2] = dcval; 209 wsptr[DCTSIZE*2] = dcval;
210 wsptr[DCTSIZE*3] = dcval; 210 wsptr[DCTSIZE*3] = dcval;
211 wsptr[DCTSIZE*4] = dcval; 211 wsptr[DCTSIZE*4] = dcval;
212 wsptr[DCTSIZE*5] = dcval; 212 wsptr[DCTSIZE*5] = dcval;
213 wsptr[DCTSIZE*6] = dcval; 213 wsptr[DCTSIZE*6] = dcval;
214 wsptr[DCTSIZE*7] = dcval; 214 wsptr[DCTSIZE*7] = dcval;
215 215
216 inptr++; /* advance pointers to next column */ 216 inptr++; /* advance pointers to next column */
217 quantptr++; 217 quantptr++;
218 wsptr++; 218 wsptr++;
219 continue; 219 continue;
220 } 220 }
221 221
222 /* Even part */ 222 /* Even part */
223 223
224 tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); 224 tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
225 tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); 225 tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
226 tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]); 226 tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
227 tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]); 227 tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
228 228
229 tmp10 = tmp0 + tmp2; /* phase 3 */ 229 tmp10 = tmp0 + tmp2; /* phase 3 */
230 tmp11 = tmp0 - tmp2; 230 tmp11 = tmp0 - tmp2;
231 231
232 tmp13 = tmp1 + tmp3; /* phases 5-3 */ 232 tmp13 = tmp1 + tmp3; /* phases 5-3 */
233 tmp12 = MULTIPLY(tmp1 - tmp3, FIX_1_414213562) - tmp13; /* 2*c4 */ 233 tmp12 = MULTIPLY(tmp1 - tmp3, FIX_1_414213562) - tmp13; /* 2*c4 */
234 234
235 tmp0 = tmp10 + tmp13; /* phase 2 */ 235 tmp0 = tmp10 + tmp13; /* phase 2 */
236 tmp3 = tmp10 - tmp13; 236 tmp3 = tmp10 - tmp13;
237 tmp1 = tmp11 + tmp12; 237 tmp1 = tmp11 + tmp12;
238 tmp2 = tmp11 - tmp12; 238 tmp2 = tmp11 - tmp12;
239 239
240 /* Odd part */ 240 /* Odd part */
241 241
242 tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); 242 tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
243 tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); 243 tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
244 tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]); 244 tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
245 tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]); 245 tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
246 246
247 z13 = tmp6 + tmp5; /* phase 6 */ 247 z13 = tmp6 + tmp5; /* phase 6 */
248 z10 = tmp6 - tmp5; 248 z10 = tmp6 - tmp5;
249 z11 = tmp4 + tmp7; 249 z11 = tmp4 + tmp7;
250 z12 = tmp4 - tmp7; 250 z12 = tmp4 - tmp7;
251 251
252 tmp7 = z11 + z13; /* phase 5 */ 252 tmp7 = z11 + z13; /* phase 5 */
253 tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */ 253 tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */
254 254
255 z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */ 255 z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */
256 tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; /* 2*(c2-c6) */ 256 tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; /* 2*(c2-c6) */
257 tmp12 = MULTIPLY(z10, - FIX_2_613125930) + z5; /* -2*(c2+c6) */ 257 tmp12 = MULTIPLY(z10, - FIX_2_613125930) + z5; /* -2*(c2+c6) */
258 258
259 tmp6 = tmp12 - tmp7; /* phase 2 */ 259 tmp6 = tmp12 - tmp7; /* phase 2 */
260 tmp5 = tmp11 - tmp6; 260 tmp5 = tmp11 - tmp6;
261 tmp4 = tmp10 + tmp5; 261 tmp4 = tmp10 + tmp5;
262 262
263 wsptr[DCTSIZE*0] = (int) (tmp0 + tmp7); 263 wsptr[DCTSIZE*0] = (int) (tmp0 + tmp7);
264 wsptr[DCTSIZE*7] = (int) (tmp0 - tmp7); 264 wsptr[DCTSIZE*7] = (int) (tmp0 - tmp7);
265 wsptr[DCTSIZE*1] = (int) (tmp1 + tmp6); 265 wsptr[DCTSIZE*1] = (int) (tmp1 + tmp6);
266 wsptr[DCTSIZE*6] = (int) (tmp1 - tmp6); 266 wsptr[DCTSIZE*6] = (int) (tmp1 - tmp6);
267 wsptr[DCTSIZE*2] = (int) (tmp2 + tmp5); 267 wsptr[DCTSIZE*2] = (int) (tmp2 + tmp5);
268 wsptr[DCTSIZE*5] = (int) (tmp2 - tmp5); 268 wsptr[DCTSIZE*5] = (int) (tmp2 - tmp5);
269 wsptr[DCTSIZE*4] = (int) (tmp3 + tmp4); 269 wsptr[DCTSIZE*4] = (int) (tmp3 + tmp4);
270 wsptr[DCTSIZE*3] = (int) (tmp3 - tmp4); 270 wsptr[DCTSIZE*3] = (int) (tmp3 - tmp4);
271 271
272 inptr++; /* advance pointers to next column */ 272 inptr++; /* advance pointers to next column */
273 quantptr++; 273 quantptr++;
274 wsptr++; 274 wsptr++;
275 } 275 }
276 276
277 /* Pass 2: process rows from work array, store into output array. */ 277 /* Pass 2: process rows from work array, store into output array. */
278 /* Note that we must descale the results by a factor of 8 == 2**3, */ 278 /* Note that we must descale the results by a factor of 8 == 2**3, */
279 /* and also undo the PASS1_BITS scaling. */ 279 /* and also undo the PASS1_BITS scaling. */
280 280
281 wsptr = workspace; 281 wsptr = workspace;
282 for (ctr = 0; ctr < DCTSIZE; ctr++) { 282 for (ctr = 0; ctr < DCTSIZE; ctr++) {
283 outptr = output_buf[ctr] + output_col; 283 outptr = output_buf[ctr] + output_col;
284 /* Rows of zeroes can be exploited in the same way as we did with columns. 284 /* Rows of zeroes can be exploited in the same way as we did with columns.
285 * However, the column calculation has created many nonzero AC terms, so 285 * However, the column calculation has created many nonzero AC terms, so
286 * the simplification applies less often (typically 5% to 10% of the time). 286 * the simplification applies less often (typically 5% to 10% of the time).
287 * On machines with very fast multiplication, it's possible that the 287 * On machines with very fast multiplication, it's possible that the
288 * test takes more time than it's worth. In that case this section 288 * test takes more time than it's worth. In that case this section
289 * may be commented out. 289 * may be commented out.
290 */ 290 */
291 291
292#ifndef NO_ZERO_ROW_TEST 292#ifndef NO_ZERO_ROW_TEST
293 if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 && wsptr[4] == 0 && 293 if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 && wsptr[4] == 0 &&
294 wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) { 294 wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) {
295 /* AC terms all zero */ 295 /* AC terms all zero */
296 JSAMPLE dcval = range_limit[IDESCALE(wsptr[0], PASS1_BITS+3) 296 JSAMPLE dcval = range_limit[IDESCALE(wsptr[0], PASS1_BITS+3)
297 & RANGE_MASK]; 297 & RANGE_MASK];
298 298
299 outptr[0] = dcval; 299 outptr[0] = dcval;
300 outptr[1] = dcval; 300 outptr[1] = dcval;
301 outptr[2] = dcval; 301 outptr[2] = dcval;
302 outptr[3] = dcval; 302 outptr[3] = dcval;
303 outptr[4] = dcval; 303 outptr[4] = dcval;
304 outptr[5] = dcval; 304 outptr[5] = dcval;
305 outptr[6] = dcval; 305 outptr[6] = dcval;
306 outptr[7] = dcval; 306 outptr[7] = dcval;
307 307
308 wsptr += DCTSIZE; /* advance pointer to next row */ 308 wsptr += DCTSIZE; /* advance pointer to next row */
309 continue; 309 continue;
310 } 310 }
311#endif 311#endif
312 312
313 /* Even part */ 313 /* Even part */
314 314
315 tmp10 = ((DCTELEM) wsptr[0] + (DCTELEM) wsptr[4]); 315 tmp10 = ((DCTELEM) wsptr[0] + (DCTELEM) wsptr[4]);
316 tmp11 = ((DCTELEM) wsptr[0] - (DCTELEM) wsptr[4]); 316 tmp11 = ((DCTELEM) wsptr[0] - (DCTELEM) wsptr[4]);
317 317
318 tmp13 = ((DCTELEM) wsptr[2] + (DCTELEM) wsptr[6]); 318 tmp13 = ((DCTELEM) wsptr[2] + (DCTELEM) wsptr[6]);
319 tmp12 = MULTIPLY((DCTELEM) wsptr[2] - (DCTELEM) wsptr[6], FIX_1_414213562) 319 tmp12 = MULTIPLY((DCTELEM) wsptr[2] - (DCTELEM) wsptr[6], FIX_1_414213562)
320 - tmp13; 320 - tmp13;
321 321
322 tmp0 = tmp10 + tmp13; 322 tmp0 = tmp10 + tmp13;
323 tmp3 = tmp10 - tmp13; 323 tmp3 = tmp10 - tmp13;
324 tmp1 = tmp11 + tmp12; 324 tmp1 = tmp11 + tmp12;
325 tmp2 = tmp11 - tmp12; 325 tmp2 = tmp11 - tmp12;
326 326
327 /* Odd part */ 327 /* Odd part */
328 328
329 z13 = (DCTELEM) wsptr[5] + (DCTELEM) wsptr[3]; 329 z13 = (DCTELEM) wsptr[5] + (DCTELEM) wsptr[3];
330 z10 = (DCTELEM) wsptr[5] - (DCTELEM) wsptr[3]; 330 z10 = (DCTELEM) wsptr[5] - (DCTELEM) wsptr[3];
331 z11 = (DCTELEM) wsptr[1] + (DCTELEM) wsptr[7]; 331 z11 = (DCTELEM) wsptr[1] + (DCTELEM) wsptr[7];
332 z12 = (DCTELEM) wsptr[1] - (DCTELEM) wsptr[7]; 332 z12 = (DCTELEM) wsptr[1] - (DCTELEM) wsptr[7];
333 333
334 tmp7 = z11 + z13; /* phase 5 */ 334 tmp7 = z11 + z13; /* phase 5 */
335 tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */ 335 tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */
336 336
337 z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */ 337 z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */
338 tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; /* 2*(c2-c6) */ 338 tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; /* 2*(c2-c6) */
339 tmp12 = MULTIPLY(z10, - FIX_2_613125930) + z5; /* -2*(c2+c6) */ 339 tmp12 = MULTIPLY(z10, - FIX_2_613125930) + z5; /* -2*(c2+c6) */
340 340
341 tmp6 = tmp12 - tmp7; /* phase 2 */ 341 tmp6 = tmp12 - tmp7; /* phase 2 */
342 tmp5 = tmp11 - tmp6; 342 tmp5 = tmp11 - tmp6;
343 tmp4 = tmp10 + tmp5; 343 tmp4 = tmp10 + tmp5;
344 344
345 /* Final output stage: scale down by a factor of 8 and range-limit */ 345 /* Final output stage: scale down by a factor of 8 and range-limit */
346 346
347 outptr[0] = range_limit[IDESCALE(tmp0 + tmp7, PASS1_BITS+3) 347 outptr[0] = range_limit[IDESCALE(tmp0 + tmp7, PASS1_BITS+3)
348 & RANGE_MASK]; 348 & RANGE_MASK];
349 outptr[7] = range_limit[IDESCALE(tmp0 - tmp7, PASS1_BITS+3) 349 outptr[7] = range_limit[IDESCALE(tmp0 - tmp7, PASS1_BITS+3)
350 & RANGE_MASK]; 350 & RANGE_MASK];
351 outptr[1] = range_limit[IDESCALE(tmp1 + tmp6, PASS1_BITS+3) 351 outptr[1] = range_limit[IDESCALE(tmp1 + tmp6, PASS1_BITS+3)
352 & RANGE_MASK]; 352 & RANGE_MASK];
353 outptr[6] = range_limit[IDESCALE(tmp1 - tmp6, PASS1_BITS+3) 353 outptr[6] = range_limit[IDESCALE(tmp1 - tmp6, PASS1_BITS+3)
354 & RANGE_MASK]; 354 & RANGE_MASK];
355 outptr[2] = range_limit[IDESCALE(tmp2 + tmp5, PASS1_BITS+3) 355 outptr[2] = range_limit[IDESCALE(tmp2 + tmp5, PASS1_BITS+3)
356 & RANGE_MASK]; 356 & RANGE_MASK];
357 outptr[5] = range_limit[IDESCALE(tmp2 - tmp5, PASS1_BITS+3) 357 outptr[5] = range_limit[IDESCALE(tmp2 - tmp5, PASS1_BITS+3)
358 & RANGE_MASK]; 358 & RANGE_MASK];
359 outptr[4] = range_limit[IDESCALE(tmp3 + tmp4, PASS1_BITS+3) 359 outptr[4] = range_limit[IDESCALE(tmp3 + tmp4, PASS1_BITS+3)
360 & RANGE_MASK]; 360 & RANGE_MASK];
361 outptr[3] = range_limit[IDESCALE(tmp3 - tmp4, PASS1_BITS+3) 361 outptr[3] = range_limit[IDESCALE(tmp3 - tmp4, PASS1_BITS+3)
362 & RANGE_MASK]; 362 & RANGE_MASK];
363 363
364 wsptr += DCTSIZE; /* advance pointer to next row */ 364 wsptr += DCTSIZE; /* advance pointer to next row */
365 } 365 }
366} 366}
367 367
368#endif /* DCT_IFAST_SUPPORTED */ 368#endif /* DCT_IFAST_SUPPORTED */