aboutsummaryrefslogtreecommitdiffstatshomepage
path: root/libraries/irrlicht-1.8/source/Irrlicht/jpeglib/jfdctflt.c
diff options
context:
space:
mode:
authorDavid Walter Seikel2013-01-13 18:54:10 +1000
committerDavid Walter Seikel2013-01-13 18:54:10 +1000
commit959831f4ef5a3e797f576c3de08cd65032c997ad (patch)
treee7351908be5995f0b325b2ebeaa02d5a34b82583 /libraries/irrlicht-1.8/source/Irrlicht/jpeglib/jfdctflt.c
parentAdd info about changes to Irrlicht. (diff)
downloadSledjHamr-959831f4ef5a3e797f576c3de08cd65032c997ad.zip
SledjHamr-959831f4ef5a3e797f576c3de08cd65032c997ad.tar.gz
SledjHamr-959831f4ef5a3e797f576c3de08cd65032c997ad.tar.bz2
SledjHamr-959831f4ef5a3e797f576c3de08cd65032c997ad.tar.xz
Remove damned ancient DOS line endings from Irrlicht. Hopefully I did not go overboard.
Diffstat (limited to 'libraries/irrlicht-1.8/source/Irrlicht/jpeglib/jfdctflt.c')
-rw-r--r--libraries/irrlicht-1.8/source/Irrlicht/jpeglib/jfdctflt.c348
1 files changed, 174 insertions, 174 deletions
diff --git a/libraries/irrlicht-1.8/source/Irrlicht/jpeglib/jfdctflt.c b/libraries/irrlicht-1.8/source/Irrlicht/jpeglib/jfdctflt.c
index 3c1b174..74d0d86 100644
--- a/libraries/irrlicht-1.8/source/Irrlicht/jpeglib/jfdctflt.c
+++ b/libraries/irrlicht-1.8/source/Irrlicht/jpeglib/jfdctflt.c
@@ -1,174 +1,174 @@
1/* 1/*
2 * jfdctflt.c 2 * jfdctflt.c
3 * 3 *
4 * Copyright (C) 1994-1996, Thomas G. Lane. 4 * Copyright (C) 1994-1996, Thomas G. Lane.
5 * Modified 2003-2009 by Guido Vollbeding. 5 * Modified 2003-2009 by Guido Vollbeding.
6 * This file is part of the Independent JPEG Group's software. 6 * This file is part of the Independent JPEG Group's software.
7 * For conditions of distribution and use, see the accompanying README file. 7 * For conditions of distribution and use, see the accompanying README file.
8 * 8 *
9 * This file contains a floating-point implementation of the 9 * This file contains a floating-point implementation of the
10 * forward DCT (Discrete Cosine Transform). 10 * forward DCT (Discrete Cosine Transform).
11 * 11 *
12 * This implementation should be more accurate than either of the integer 12 * This implementation should be more accurate than either of the integer
13 * DCT implementations. However, it may not give the same results on all 13 * DCT implementations. However, it may not give the same results on all
14 * machines because of differences in roundoff behavior. Speed will depend 14 * machines because of differences in roundoff behavior. Speed will depend
15 * on the hardware's floating point capacity. 15 * on the hardware's floating point capacity.
16 * 16 *
17 * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT 17 * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
18 * on each column. Direct algorithms are also available, but they are 18 * on each column. Direct algorithms are also available, but they are
19 * much more complex and seem not to be any faster when reduced to code. 19 * much more complex and seem not to be any faster when reduced to code.
20 * 20 *
21 * This implementation is based on Arai, Agui, and Nakajima's algorithm for 21 * This implementation is based on Arai, Agui, and Nakajima's algorithm for
22 * scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in 22 * scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in
23 * Japanese, but the algorithm is described in the Pennebaker & Mitchell 23 * Japanese, but the algorithm is described in the Pennebaker & Mitchell
24 * JPEG textbook (see REFERENCES section in file README). The following code 24 * JPEG textbook (see REFERENCES section in file README). The following code
25 * is based directly on figure 4-8 in P&M. 25 * is based directly on figure 4-8 in P&M.
26 * While an 8-point DCT cannot be done in less than 11 multiplies, it is 26 * While an 8-point DCT cannot be done in less than 11 multiplies, it is
27 * possible to arrange the computation so that many of the multiplies are 27 * possible to arrange the computation so that many of the multiplies are
28 * simple scalings of the final outputs. These multiplies can then be 28 * simple scalings of the final outputs. These multiplies can then be
29 * folded into the multiplications or divisions by the JPEG quantization 29 * folded into the multiplications or divisions by the JPEG quantization
30 * table entries. The AA&N method leaves only 5 multiplies and 29 adds 30 * table entries. The AA&N method leaves only 5 multiplies and 29 adds
31 * to be done in the DCT itself. 31 * to be done in the DCT itself.
32 * The primary disadvantage of this method is that with a fixed-point 32 * The primary disadvantage of this method is that with a fixed-point
33 * implementation, accuracy is lost due to imprecise representation of the 33 * implementation, accuracy is lost due to imprecise representation of the
34 * scaled quantization values. However, that problem does not arise if 34 * scaled quantization values. However, that problem does not arise if
35 * we use floating point arithmetic. 35 * we use floating point arithmetic.
36 */ 36 */
37 37
38#define JPEG_INTERNALS 38#define JPEG_INTERNALS
39#include "jinclude.h" 39#include "jinclude.h"
40#include "jpeglib.h" 40#include "jpeglib.h"
41#include "jdct.h" /* Private declarations for DCT subsystem */ 41#include "jdct.h" /* Private declarations for DCT subsystem */
42 42
43#ifdef DCT_FLOAT_SUPPORTED 43#ifdef DCT_FLOAT_SUPPORTED
44 44
45 45
46/* 46/*
47 * This module is specialized to the case DCTSIZE = 8. 47 * This module is specialized to the case DCTSIZE = 8.
48 */ 48 */
49 49
50#if DCTSIZE != 8 50#if DCTSIZE != 8
51 Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */ 51 Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
52#endif 52#endif
53 53
54 54
55/* 55/*
56 * Perform the forward DCT on one block of samples. 56 * Perform the forward DCT on one block of samples.
57 */ 57 */
58 58
59GLOBAL(void) 59GLOBAL(void)
60jpeg_fdct_float (FAST_FLOAT * data, JSAMPARRAY sample_data, JDIMENSION start_col) 60jpeg_fdct_float (FAST_FLOAT * data, JSAMPARRAY sample_data, JDIMENSION start_col)
61{ 61{
62 FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; 62 FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
63 FAST_FLOAT tmp10, tmp11, tmp12, tmp13; 63 FAST_FLOAT tmp10, tmp11, tmp12, tmp13;
64 FAST_FLOAT z1, z2, z3, z4, z5, z11, z13; 64 FAST_FLOAT z1, z2, z3, z4, z5, z11, z13;
65 FAST_FLOAT *dataptr; 65 FAST_FLOAT *dataptr;
66 JSAMPROW elemptr; 66 JSAMPROW elemptr;
67 int ctr; 67 int ctr;
68 68
69 /* Pass 1: process rows. */ 69 /* Pass 1: process rows. */
70 70
71 dataptr = data; 71 dataptr = data;
72 for (ctr = 0; ctr < DCTSIZE; ctr++) { 72 for (ctr = 0; ctr < DCTSIZE; ctr++) {
73 elemptr = sample_data[ctr] + start_col; 73 elemptr = sample_data[ctr] + start_col;
74 74
75 /* Load data into workspace */ 75 /* Load data into workspace */
76 tmp0 = (FAST_FLOAT) (GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[7])); 76 tmp0 = (FAST_FLOAT) (GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[7]));
77 tmp7 = (FAST_FLOAT) (GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[7])); 77 tmp7 = (FAST_FLOAT) (GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[7]));
78 tmp1 = (FAST_FLOAT) (GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[6])); 78 tmp1 = (FAST_FLOAT) (GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[6]));
79 tmp6 = (FAST_FLOAT) (GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[6])); 79 tmp6 = (FAST_FLOAT) (GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[6]));
80 tmp2 = (FAST_FLOAT) (GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[5])); 80 tmp2 = (FAST_FLOAT) (GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[5]));
81 tmp5 = (FAST_FLOAT) (GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[5])); 81 tmp5 = (FAST_FLOAT) (GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[5]));
82 tmp3 = (FAST_FLOAT) (GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[4])); 82 tmp3 = (FAST_FLOAT) (GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[4]));
83 tmp4 = (FAST_FLOAT) (GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[4])); 83 tmp4 = (FAST_FLOAT) (GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[4]));
84 84
85 /* Even part */ 85 /* Even part */
86 86
87 tmp10 = tmp0 + tmp3; /* phase 2 */ 87 tmp10 = tmp0 + tmp3; /* phase 2 */
88 tmp13 = tmp0 - tmp3; 88 tmp13 = tmp0 - tmp3;
89 tmp11 = tmp1 + tmp2; 89 tmp11 = tmp1 + tmp2;
90 tmp12 = tmp1 - tmp2; 90 tmp12 = tmp1 - tmp2;
91 91
92 /* Apply unsigned->signed conversion */ 92 /* Apply unsigned->signed conversion */
93 dataptr[0] = tmp10 + tmp11 - 8 * CENTERJSAMPLE; /* phase 3 */ 93 dataptr[0] = tmp10 + tmp11 - 8 * CENTERJSAMPLE; /* phase 3 */
94 dataptr[4] = tmp10 - tmp11; 94 dataptr[4] = tmp10 - tmp11;
95 95
96 z1 = (tmp12 + tmp13) * ((FAST_FLOAT) 0.707106781); /* c4 */ 96 z1 = (tmp12 + tmp13) * ((FAST_FLOAT) 0.707106781); /* c4 */
97 dataptr[2] = tmp13 + z1; /* phase 5 */ 97 dataptr[2] = tmp13 + z1; /* phase 5 */
98 dataptr[6] = tmp13 - z1; 98 dataptr[6] = tmp13 - z1;
99 99
100 /* Odd part */ 100 /* Odd part */
101 101
102 tmp10 = tmp4 + tmp5; /* phase 2 */ 102 tmp10 = tmp4 + tmp5; /* phase 2 */
103 tmp11 = tmp5 + tmp6; 103 tmp11 = tmp5 + tmp6;
104 tmp12 = tmp6 + tmp7; 104 tmp12 = tmp6 + tmp7;
105 105
106 /* The rotator is modified from fig 4-8 to avoid extra negations. */ 106 /* The rotator is modified from fig 4-8 to avoid extra negations. */
107 z5 = (tmp10 - tmp12) * ((FAST_FLOAT) 0.382683433); /* c6 */ 107 z5 = (tmp10 - tmp12) * ((FAST_FLOAT) 0.382683433); /* c6 */
108 z2 = ((FAST_FLOAT) 0.541196100) * tmp10 + z5; /* c2-c6 */ 108 z2 = ((FAST_FLOAT) 0.541196100) * tmp10 + z5; /* c2-c6 */
109 z4 = ((FAST_FLOAT) 1.306562965) * tmp12 + z5; /* c2+c6 */ 109 z4 = ((FAST_FLOAT) 1.306562965) * tmp12 + z5; /* c2+c6 */
110 z3 = tmp11 * ((FAST_FLOAT) 0.707106781); /* c4 */ 110 z3 = tmp11 * ((FAST_FLOAT) 0.707106781); /* c4 */
111 111
112 z11 = tmp7 + z3; /* phase 5 */ 112 z11 = tmp7 + z3; /* phase 5 */
113 z13 = tmp7 - z3; 113 z13 = tmp7 - z3;
114 114
115 dataptr[5] = z13 + z2; /* phase 6 */ 115 dataptr[5] = z13 + z2; /* phase 6 */
116 dataptr[3] = z13 - z2; 116 dataptr[3] = z13 - z2;
117 dataptr[1] = z11 + z4; 117 dataptr[1] = z11 + z4;
118 dataptr[7] = z11 - z4; 118 dataptr[7] = z11 - z4;
119 119
120 dataptr += DCTSIZE; /* advance pointer to next row */ 120 dataptr += DCTSIZE; /* advance pointer to next row */
121 } 121 }
122 122
123 /* Pass 2: process columns. */ 123 /* Pass 2: process columns. */
124 124
125 dataptr = data; 125 dataptr = data;
126 for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { 126 for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
127 tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7]; 127 tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
128 tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7]; 128 tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
129 tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6]; 129 tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
130 tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6]; 130 tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
131 tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5]; 131 tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
132 tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5]; 132 tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
133 tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4]; 133 tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
134 tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4]; 134 tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
135 135
136 /* Even part */ 136 /* Even part */
137 137
138 tmp10 = tmp0 + tmp3; /* phase 2 */ 138 tmp10 = tmp0 + tmp3; /* phase 2 */
139 tmp13 = tmp0 - tmp3; 139 tmp13 = tmp0 - tmp3;
140 tmp11 = tmp1 + tmp2; 140 tmp11 = tmp1 + tmp2;
141 tmp12 = tmp1 - tmp2; 141 tmp12 = tmp1 - tmp2;
142 142
143 dataptr[DCTSIZE*0] = tmp10 + tmp11; /* phase 3 */ 143 dataptr[DCTSIZE*0] = tmp10 + tmp11; /* phase 3 */
144 dataptr[DCTSIZE*4] = tmp10 - tmp11; 144 dataptr[DCTSIZE*4] = tmp10 - tmp11;
145 145
146 z1 = (tmp12 + tmp13) * ((FAST_FLOAT) 0.707106781); /* c4 */ 146 z1 = (tmp12 + tmp13) * ((FAST_FLOAT) 0.707106781); /* c4 */
147 dataptr[DCTSIZE*2] = tmp13 + z1; /* phase 5 */ 147 dataptr[DCTSIZE*2] = tmp13 + z1; /* phase 5 */
148 dataptr[DCTSIZE*6] = tmp13 - z1; 148 dataptr[DCTSIZE*6] = tmp13 - z1;
149 149
150 /* Odd part */ 150 /* Odd part */
151 151
152 tmp10 = tmp4 + tmp5; /* phase 2 */ 152 tmp10 = tmp4 + tmp5; /* phase 2 */
153 tmp11 = tmp5 + tmp6; 153 tmp11 = tmp5 + tmp6;
154 tmp12 = tmp6 + tmp7; 154 tmp12 = tmp6 + tmp7;
155 155
156 /* The rotator is modified from fig 4-8 to avoid extra negations. */ 156 /* The rotator is modified from fig 4-8 to avoid extra negations. */
157 z5 = (tmp10 - tmp12) * ((FAST_FLOAT) 0.382683433); /* c6 */ 157 z5 = (tmp10 - tmp12) * ((FAST_FLOAT) 0.382683433); /* c6 */
158 z2 = ((FAST_FLOAT) 0.541196100) * tmp10 + z5; /* c2-c6 */ 158 z2 = ((FAST_FLOAT) 0.541196100) * tmp10 + z5; /* c2-c6 */
159 z4 = ((FAST_FLOAT) 1.306562965) * tmp12 + z5; /* c2+c6 */ 159 z4 = ((FAST_FLOAT) 1.306562965) * tmp12 + z5; /* c2+c6 */
160 z3 = tmp11 * ((FAST_FLOAT) 0.707106781); /* c4 */ 160 z3 = tmp11 * ((FAST_FLOAT) 0.707106781); /* c4 */
161 161
162 z11 = tmp7 + z3; /* phase 5 */ 162 z11 = tmp7 + z3; /* phase 5 */
163 z13 = tmp7 - z3; 163 z13 = tmp7 - z3;
164 164
165 dataptr[DCTSIZE*5] = z13 + z2; /* phase 6 */ 165 dataptr[DCTSIZE*5] = z13 + z2; /* phase 6 */
166 dataptr[DCTSIZE*3] = z13 - z2; 166 dataptr[DCTSIZE*3] = z13 - z2;
167 dataptr[DCTSIZE*1] = z11 + z4; 167 dataptr[DCTSIZE*1] = z11 + z4;
168 dataptr[DCTSIZE*7] = z11 - z4; 168 dataptr[DCTSIZE*7] = z11 - z4;
169 169
170 dataptr++; /* advance pointer to next column */ 170 dataptr++; /* advance pointer to next column */
171 } 171 }
172} 172}
173 173
174#endif /* DCT_FLOAT_SUPPORTED */ 174#endif /* DCT_FLOAT_SUPPORTED */