diff options
author | David Walter Seikel | 2014-01-13 19:47:58 +1000 |
---|---|---|
committer | David Walter Seikel | 2014-01-13 19:47:58 +1000 |
commit | f9158592e1478b2013afc7041d9ed041cf2d2f4a (patch) | |
tree | b16e389d7988700e21b4c9741044cefa536dcbae /libraries/irrlicht-1.8/source/Irrlicht/jpeglib/jdcoefct.c | |
parent | Libraries readme updated with change markers and more of the Irrlicht changes. (diff) | |
download | SledjHamr-f9158592e1478b2013afc7041d9ed041cf2d2f4a.zip SledjHamr-f9158592e1478b2013afc7041d9ed041cf2d2f4a.tar.gz SledjHamr-f9158592e1478b2013afc7041d9ed041cf2d2f4a.tar.bz2 SledjHamr-f9158592e1478b2013afc7041d9ed041cf2d2f4a.tar.xz |
Update Irrlicht to 1.8.1. Include actual change markers this time. lol
Diffstat (limited to 'libraries/irrlicht-1.8/source/Irrlicht/jpeglib/jdcoefct.c')
-rw-r--r-- | libraries/irrlicht-1.8/source/Irrlicht/jpeglib/jdcoefct.c | 741 |
1 files changed, 0 insertions, 741 deletions
diff --git a/libraries/irrlicht-1.8/source/Irrlicht/jpeglib/jdcoefct.c b/libraries/irrlicht-1.8/source/Irrlicht/jpeglib/jdcoefct.c deleted file mode 100644 index ed02fc3..0000000 --- a/libraries/irrlicht-1.8/source/Irrlicht/jpeglib/jdcoefct.c +++ /dev/null | |||
@@ -1,741 +0,0 @@ | |||
1 | /* | ||
2 | * jdcoefct.c | ||
3 | * | ||
4 | * Copyright (C) 1994-1997, Thomas G. Lane. | ||
5 | * Modified 2002-2011 by Guido Vollbeding. | ||
6 | * This file is part of the Independent JPEG Group's software. | ||
7 | * For conditions of distribution and use, see the accompanying README file. | ||
8 | * | ||
9 | * This file contains the coefficient buffer controller for decompression. | ||
10 | * This controller is the top level of the JPEG decompressor proper. | ||
11 | * The coefficient buffer lies between entropy decoding and inverse-DCT steps. | ||
12 | * | ||
13 | * In buffered-image mode, this controller is the interface between | ||
14 | * input-oriented processing and output-oriented processing. | ||
15 | * Also, the input side (only) is used when reading a file for transcoding. | ||
16 | */ | ||
17 | |||
18 | #define JPEG_INTERNALS | ||
19 | #include "jinclude.h" | ||
20 | #include "jpeglib.h" | ||
21 | |||
22 | /* Block smoothing is only applicable for progressive JPEG, so: */ | ||
23 | #ifndef D_PROGRESSIVE_SUPPORTED | ||
24 | #undef BLOCK_SMOOTHING_SUPPORTED | ||
25 | #endif | ||
26 | |||
27 | /* Private buffer controller object */ | ||
28 | |||
29 | typedef struct { | ||
30 | struct jpeg_d_coef_controller pub; /* public fields */ | ||
31 | |||
32 | /* These variables keep track of the current location of the input side. */ | ||
33 | /* cinfo->input_iMCU_row is also used for this. */ | ||
34 | JDIMENSION MCU_ctr; /* counts MCUs processed in current row */ | ||
35 | int MCU_vert_offset; /* counts MCU rows within iMCU row */ | ||
36 | int MCU_rows_per_iMCU_row; /* number of such rows needed */ | ||
37 | |||
38 | /* The output side's location is represented by cinfo->output_iMCU_row. */ | ||
39 | |||
40 | /* In single-pass modes, it's sufficient to buffer just one MCU. | ||
41 | * We allocate a workspace of D_MAX_BLOCKS_IN_MCU coefficient blocks, | ||
42 | * and let the entropy decoder write into that workspace each time. | ||
43 | * (On 80x86, the workspace is FAR even though it's not really very big; | ||
44 | * this is to keep the module interfaces unchanged when a large coefficient | ||
45 | * buffer is necessary.) | ||
46 | * In multi-pass modes, this array points to the current MCU's blocks | ||
47 | * within the virtual arrays; it is used only by the input side. | ||
48 | */ | ||
49 | JBLOCKROW MCU_buffer[D_MAX_BLOCKS_IN_MCU]; | ||
50 | |||
51 | #ifdef D_MULTISCAN_FILES_SUPPORTED | ||
52 | /* In multi-pass modes, we need a virtual block array for each component. */ | ||
53 | jvirt_barray_ptr whole_image[MAX_COMPONENTS]; | ||
54 | #endif | ||
55 | |||
56 | #ifdef BLOCK_SMOOTHING_SUPPORTED | ||
57 | /* When doing block smoothing, we latch coefficient Al values here */ | ||
58 | int * coef_bits_latch; | ||
59 | #define SAVED_COEFS 6 /* we save coef_bits[0..5] */ | ||
60 | #endif | ||
61 | } my_coef_controller; | ||
62 | |||
63 | typedef my_coef_controller * my_coef_ptr; | ||
64 | |||
65 | /* Forward declarations */ | ||
66 | METHODDEF(int) decompress_onepass | ||
67 | JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf)); | ||
68 | #ifdef D_MULTISCAN_FILES_SUPPORTED | ||
69 | METHODDEF(int) decompress_data | ||
70 | JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf)); | ||
71 | #endif | ||
72 | #ifdef BLOCK_SMOOTHING_SUPPORTED | ||
73 | LOCAL(boolean) smoothing_ok JPP((j_decompress_ptr cinfo)); | ||
74 | METHODDEF(int) decompress_smooth_data | ||
75 | JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf)); | ||
76 | #endif | ||
77 | |||
78 | |||
79 | LOCAL(void) | ||
80 | start_iMCU_row (j_decompress_ptr cinfo) | ||
81 | /* Reset within-iMCU-row counters for a new row (input side) */ | ||
82 | { | ||
83 | my_coef_ptr coef = (my_coef_ptr) cinfo->coef; | ||
84 | |||
85 | /* In an interleaved scan, an MCU row is the same as an iMCU row. | ||
86 | * In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows. | ||
87 | * But at the bottom of the image, process only what's left. | ||
88 | */ | ||
89 | if (cinfo->comps_in_scan > 1) { | ||
90 | coef->MCU_rows_per_iMCU_row = 1; | ||
91 | } else { | ||
92 | if (cinfo->input_iMCU_row < (cinfo->total_iMCU_rows-1)) | ||
93 | coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor; | ||
94 | else | ||
95 | coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height; | ||
96 | } | ||
97 | |||
98 | coef->MCU_ctr = 0; | ||
99 | coef->MCU_vert_offset = 0; | ||
100 | } | ||
101 | |||
102 | |||
103 | /* | ||
104 | * Initialize for an input processing pass. | ||
105 | */ | ||
106 | |||
107 | METHODDEF(void) | ||
108 | start_input_pass (j_decompress_ptr cinfo) | ||
109 | { | ||
110 | cinfo->input_iMCU_row = 0; | ||
111 | start_iMCU_row(cinfo); | ||
112 | } | ||
113 | |||
114 | |||
115 | /* | ||
116 | * Initialize for an output processing pass. | ||
117 | */ | ||
118 | |||
119 | METHODDEF(void) | ||
120 | start_output_pass (j_decompress_ptr cinfo) | ||
121 | { | ||
122 | #ifdef BLOCK_SMOOTHING_SUPPORTED | ||
123 | my_coef_ptr coef = (my_coef_ptr) cinfo->coef; | ||
124 | |||
125 | /* If multipass, check to see whether to use block smoothing on this pass */ | ||
126 | if (coef->pub.coef_arrays != NULL) { | ||
127 | if (cinfo->do_block_smoothing && smoothing_ok(cinfo)) | ||
128 | coef->pub.decompress_data = decompress_smooth_data; | ||
129 | else | ||
130 | coef->pub.decompress_data = decompress_data; | ||
131 | } | ||
132 | #endif | ||
133 | cinfo->output_iMCU_row = 0; | ||
134 | } | ||
135 | |||
136 | |||
137 | /* | ||
138 | * Decompress and return some data in the single-pass case. | ||
139 | * Always attempts to emit one fully interleaved MCU row ("iMCU" row). | ||
140 | * Input and output must run in lockstep since we have only a one-MCU buffer. | ||
141 | * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED. | ||
142 | * | ||
143 | * NB: output_buf contains a plane for each component in image, | ||
144 | * which we index according to the component's SOF position. | ||
145 | */ | ||
146 | |||
147 | METHODDEF(int) | ||
148 | decompress_onepass (j_decompress_ptr cinfo, JSAMPIMAGE output_buf) | ||
149 | { | ||
150 | my_coef_ptr coef = (my_coef_ptr) cinfo->coef; | ||
151 | JDIMENSION MCU_col_num; /* index of current MCU within row */ | ||
152 | JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1; | ||
153 | JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1; | ||
154 | int blkn, ci, xindex, yindex, yoffset, useful_width; | ||
155 | JSAMPARRAY output_ptr; | ||
156 | JDIMENSION start_col, output_col; | ||
157 | jpeg_component_info *compptr; | ||
158 | inverse_DCT_method_ptr inverse_DCT; | ||
159 | |||
160 | /* Loop to process as much as one whole iMCU row */ | ||
161 | for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row; | ||
162 | yoffset++) { | ||
163 | for (MCU_col_num = coef->MCU_ctr; MCU_col_num <= last_MCU_col; | ||
164 | MCU_col_num++) { | ||
165 | /* Try to fetch an MCU. Entropy decoder expects buffer to be zeroed. */ | ||
166 | if (cinfo->lim_Se) /* can bypass in DC only case */ | ||
167 | FMEMZERO((void FAR *) coef->MCU_buffer[0], | ||
168 | (size_t) (cinfo->blocks_in_MCU * SIZEOF(JBLOCK))); | ||
169 | if (! (*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) { | ||
170 | /* Suspension forced; update state counters and exit */ | ||
171 | coef->MCU_vert_offset = yoffset; | ||
172 | coef->MCU_ctr = MCU_col_num; | ||
173 | return JPEG_SUSPENDED; | ||
174 | } | ||
175 | /* Determine where data should go in output_buf and do the IDCT thing. | ||
176 | * We skip dummy blocks at the right and bottom edges (but blkn gets | ||
177 | * incremented past them!). Note the inner loop relies on having | ||
178 | * allocated the MCU_buffer[] blocks sequentially. | ||
179 | */ | ||
180 | blkn = 0; /* index of current DCT block within MCU */ | ||
181 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) { | ||
182 | compptr = cinfo->cur_comp_info[ci]; | ||
183 | /* Don't bother to IDCT an uninteresting component. */ | ||
184 | if (! compptr->component_needed) { | ||
185 | blkn += compptr->MCU_blocks; | ||
186 | continue; | ||
187 | } | ||
188 | inverse_DCT = cinfo->idct->inverse_DCT[compptr->component_index]; | ||
189 | useful_width = (MCU_col_num < last_MCU_col) ? compptr->MCU_width | ||
190 | : compptr->last_col_width; | ||
191 | output_ptr = output_buf[compptr->component_index] + | ||
192 | yoffset * compptr->DCT_v_scaled_size; | ||
193 | start_col = MCU_col_num * compptr->MCU_sample_width; | ||
194 | for (yindex = 0; yindex < compptr->MCU_height; yindex++) { | ||
195 | if (cinfo->input_iMCU_row < last_iMCU_row || | ||
196 | yoffset+yindex < compptr->last_row_height) { | ||
197 | output_col = start_col; | ||
198 | for (xindex = 0; xindex < useful_width; xindex++) { | ||
199 | (*inverse_DCT) (cinfo, compptr, | ||
200 | (JCOEFPTR) coef->MCU_buffer[blkn+xindex], | ||
201 | output_ptr, output_col); | ||
202 | output_col += compptr->DCT_h_scaled_size; | ||
203 | } | ||
204 | } | ||
205 | blkn += compptr->MCU_width; | ||
206 | output_ptr += compptr->DCT_v_scaled_size; | ||
207 | } | ||
208 | } | ||
209 | } | ||
210 | /* Completed an MCU row, but perhaps not an iMCU row */ | ||
211 | coef->MCU_ctr = 0; | ||
212 | } | ||
213 | /* Completed the iMCU row, advance counters for next one */ | ||
214 | cinfo->output_iMCU_row++; | ||
215 | if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) { | ||
216 | start_iMCU_row(cinfo); | ||
217 | return JPEG_ROW_COMPLETED; | ||
218 | } | ||
219 | /* Completed the scan */ | ||
220 | (*cinfo->inputctl->finish_input_pass) (cinfo); | ||
221 | return JPEG_SCAN_COMPLETED; | ||
222 | } | ||
223 | |||
224 | |||
225 | /* | ||
226 | * Dummy consume-input routine for single-pass operation. | ||
227 | */ | ||
228 | |||
229 | METHODDEF(int) | ||
230 | dummy_consume_data (j_decompress_ptr cinfo) | ||
231 | { | ||
232 | return JPEG_SUSPENDED; /* Always indicate nothing was done */ | ||
233 | } | ||
234 | |||
235 | |||
236 | #ifdef D_MULTISCAN_FILES_SUPPORTED | ||
237 | |||
238 | /* | ||
239 | * Consume input data and store it in the full-image coefficient buffer. | ||
240 | * We read as much as one fully interleaved MCU row ("iMCU" row) per call, | ||
241 | * ie, v_samp_factor block rows for each component in the scan. | ||
242 | * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED. | ||
243 | */ | ||
244 | |||
245 | METHODDEF(int) | ||
246 | consume_data (j_decompress_ptr cinfo) | ||
247 | { | ||
248 | my_coef_ptr coef = (my_coef_ptr) cinfo->coef; | ||
249 | JDIMENSION MCU_col_num; /* index of current MCU within row */ | ||
250 | int blkn, ci, xindex, yindex, yoffset; | ||
251 | JDIMENSION start_col; | ||
252 | JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN]; | ||
253 | JBLOCKROW buffer_ptr; | ||
254 | jpeg_component_info *compptr; | ||
255 | |||
256 | /* Align the virtual buffers for the components used in this scan. */ | ||
257 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) { | ||
258 | compptr = cinfo->cur_comp_info[ci]; | ||
259 | buffer[ci] = (*cinfo->mem->access_virt_barray) | ||
260 | ((j_common_ptr) cinfo, coef->whole_image[compptr->component_index], | ||
261 | cinfo->input_iMCU_row * compptr->v_samp_factor, | ||
262 | (JDIMENSION) compptr->v_samp_factor, TRUE); | ||
263 | /* Note: entropy decoder expects buffer to be zeroed, | ||
264 | * but this is handled automatically by the memory manager | ||
265 | * because we requested a pre-zeroed array. | ||
266 | */ | ||
267 | } | ||
268 | |||
269 | /* Loop to process one whole iMCU row */ | ||
270 | for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row; | ||
271 | yoffset++) { | ||
272 | for (MCU_col_num = coef->MCU_ctr; MCU_col_num < cinfo->MCUs_per_row; | ||
273 | MCU_col_num++) { | ||
274 | /* Construct list of pointers to DCT blocks belonging to this MCU */ | ||
275 | blkn = 0; /* index of current DCT block within MCU */ | ||
276 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) { | ||
277 | compptr = cinfo->cur_comp_info[ci]; | ||
278 | start_col = MCU_col_num * compptr->MCU_width; | ||
279 | for (yindex = 0; yindex < compptr->MCU_height; yindex++) { | ||
280 | buffer_ptr = buffer[ci][yindex+yoffset] + start_col; | ||
281 | for (xindex = 0; xindex < compptr->MCU_width; xindex++) { | ||
282 | coef->MCU_buffer[blkn++] = buffer_ptr++; | ||
283 | } | ||
284 | } | ||
285 | } | ||
286 | /* Try to fetch the MCU. */ | ||
287 | if (! (*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) { | ||
288 | /* Suspension forced; update state counters and exit */ | ||
289 | coef->MCU_vert_offset = yoffset; | ||
290 | coef->MCU_ctr = MCU_col_num; | ||
291 | return JPEG_SUSPENDED; | ||
292 | } | ||
293 | } | ||
294 | /* Completed an MCU row, but perhaps not an iMCU row */ | ||
295 | coef->MCU_ctr = 0; | ||
296 | } | ||
297 | /* Completed the iMCU row, advance counters for next one */ | ||
298 | if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) { | ||
299 | start_iMCU_row(cinfo); | ||
300 | return JPEG_ROW_COMPLETED; | ||
301 | } | ||
302 | /* Completed the scan */ | ||
303 | (*cinfo->inputctl->finish_input_pass) (cinfo); | ||
304 | return JPEG_SCAN_COMPLETED; | ||
305 | } | ||
306 | |||
307 | |||
308 | /* | ||
309 | * Decompress and return some data in the multi-pass case. | ||
310 | * Always attempts to emit one fully interleaved MCU row ("iMCU" row). | ||
311 | * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED. | ||
312 | * | ||
313 | * NB: output_buf contains a plane for each component in image. | ||
314 | */ | ||
315 | |||
316 | METHODDEF(int) | ||
317 | decompress_data (j_decompress_ptr cinfo, JSAMPIMAGE output_buf) | ||
318 | { | ||
319 | my_coef_ptr coef = (my_coef_ptr) cinfo->coef; | ||
320 | JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1; | ||
321 | JDIMENSION block_num; | ||
322 | int ci, block_row, block_rows; | ||
323 | JBLOCKARRAY buffer; | ||
324 | JBLOCKROW buffer_ptr; | ||
325 | JSAMPARRAY output_ptr; | ||
326 | JDIMENSION output_col; | ||
327 | jpeg_component_info *compptr; | ||
328 | inverse_DCT_method_ptr inverse_DCT; | ||
329 | |||
330 | /* Force some input to be done if we are getting ahead of the input. */ | ||
331 | while (cinfo->input_scan_number < cinfo->output_scan_number || | ||
332 | (cinfo->input_scan_number == cinfo->output_scan_number && | ||
333 | cinfo->input_iMCU_row <= cinfo->output_iMCU_row)) { | ||
334 | if ((*cinfo->inputctl->consume_input)(cinfo) == JPEG_SUSPENDED) | ||
335 | return JPEG_SUSPENDED; | ||
336 | } | ||
337 | |||
338 | /* OK, output from the virtual arrays. */ | ||
339 | for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; | ||
340 | ci++, compptr++) { | ||
341 | /* Don't bother to IDCT an uninteresting component. */ | ||
342 | if (! compptr->component_needed) | ||
343 | continue; | ||
344 | /* Align the virtual buffer for this component. */ | ||
345 | buffer = (*cinfo->mem->access_virt_barray) | ||
346 | ((j_common_ptr) cinfo, coef->whole_image[ci], | ||
347 | cinfo->output_iMCU_row * compptr->v_samp_factor, | ||
348 | (JDIMENSION) compptr->v_samp_factor, FALSE); | ||
349 | /* Count non-dummy DCT block rows in this iMCU row. */ | ||
350 | if (cinfo->output_iMCU_row < last_iMCU_row) | ||
351 | block_rows = compptr->v_samp_factor; | ||
352 | else { | ||
353 | /* NB: can't use last_row_height here; it is input-side-dependent! */ | ||
354 | block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor); | ||
355 | if (block_rows == 0) block_rows = compptr->v_samp_factor; | ||
356 | } | ||
357 | inverse_DCT = cinfo->idct->inverse_DCT[ci]; | ||
358 | output_ptr = output_buf[ci]; | ||
359 | /* Loop over all DCT blocks to be processed. */ | ||
360 | for (block_row = 0; block_row < block_rows; block_row++) { | ||
361 | buffer_ptr = buffer[block_row]; | ||
362 | output_col = 0; | ||
363 | for (block_num = 0; block_num < compptr->width_in_blocks; block_num++) { | ||
364 | (*inverse_DCT) (cinfo, compptr, (JCOEFPTR) buffer_ptr, | ||
365 | output_ptr, output_col); | ||
366 | buffer_ptr++; | ||
367 | output_col += compptr->DCT_h_scaled_size; | ||
368 | } | ||
369 | output_ptr += compptr->DCT_v_scaled_size; | ||
370 | } | ||
371 | } | ||
372 | |||
373 | if (++(cinfo->output_iMCU_row) < cinfo->total_iMCU_rows) | ||
374 | return JPEG_ROW_COMPLETED; | ||
375 | return JPEG_SCAN_COMPLETED; | ||
376 | } | ||
377 | |||
378 | #endif /* D_MULTISCAN_FILES_SUPPORTED */ | ||
379 | |||
380 | |||
381 | #ifdef BLOCK_SMOOTHING_SUPPORTED | ||
382 | |||
383 | /* | ||
384 | * This code applies interblock smoothing as described by section K.8 | ||
385 | * of the JPEG standard: the first 5 AC coefficients are estimated from | ||
386 | * the DC values of a DCT block and its 8 neighboring blocks. | ||
387 | * We apply smoothing only for progressive JPEG decoding, and only if | ||
388 | * the coefficients it can estimate are not yet known to full precision. | ||
389 | */ | ||
390 | |||
391 | /* Natural-order array positions of the first 5 zigzag-order coefficients */ | ||
392 | #define Q01_POS 1 | ||
393 | #define Q10_POS 8 | ||
394 | #define Q20_POS 16 | ||
395 | #define Q11_POS 9 | ||
396 | #define Q02_POS 2 | ||
397 | |||
398 | /* | ||
399 | * Determine whether block smoothing is applicable and safe. | ||
400 | * We also latch the current states of the coef_bits[] entries for the | ||
401 | * AC coefficients; otherwise, if the input side of the decompressor | ||
402 | * advances into a new scan, we might think the coefficients are known | ||
403 | * more accurately than they really are. | ||
404 | */ | ||
405 | |||
406 | LOCAL(boolean) | ||
407 | smoothing_ok (j_decompress_ptr cinfo) | ||
408 | { | ||
409 | my_coef_ptr coef = (my_coef_ptr) cinfo->coef; | ||
410 | boolean smoothing_useful = FALSE; | ||
411 | int ci, coefi; | ||
412 | jpeg_component_info *compptr; | ||
413 | JQUANT_TBL * qtable; | ||
414 | int * coef_bits; | ||
415 | int * coef_bits_latch; | ||
416 | |||
417 | if (! cinfo->progressive_mode || cinfo->coef_bits == NULL) | ||
418 | return FALSE; | ||
419 | |||
420 | /* Allocate latch area if not already done */ | ||
421 | if (coef->coef_bits_latch == NULL) | ||
422 | coef->coef_bits_latch = (int *) | ||
423 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, | ||
424 | cinfo->num_components * | ||
425 | (SAVED_COEFS * SIZEOF(int))); | ||
426 | coef_bits_latch = coef->coef_bits_latch; | ||
427 | |||
428 | for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; | ||
429 | ci++, compptr++) { | ||
430 | /* All components' quantization values must already be latched. */ | ||
431 | if ((qtable = compptr->quant_table) == NULL) | ||
432 | return FALSE; | ||
433 | /* Verify DC & first 5 AC quantizers are nonzero to avoid zero-divide. */ | ||
434 | if (qtable->quantval[0] == 0 || | ||
435 | qtable->quantval[Q01_POS] == 0 || | ||
436 | qtable->quantval[Q10_POS] == 0 || | ||
437 | qtable->quantval[Q20_POS] == 0 || | ||
438 | qtable->quantval[Q11_POS] == 0 || | ||
439 | qtable->quantval[Q02_POS] == 0) | ||
440 | return FALSE; | ||
441 | /* DC values must be at least partly known for all components. */ | ||
442 | coef_bits = cinfo->coef_bits[ci]; | ||
443 | if (coef_bits[0] < 0) | ||
444 | return FALSE; | ||
445 | /* Block smoothing is helpful if some AC coefficients remain inaccurate. */ | ||
446 | for (coefi = 1; coefi <= 5; coefi++) { | ||
447 | coef_bits_latch[coefi] = coef_bits[coefi]; | ||
448 | if (coef_bits[coefi] != 0) | ||
449 | smoothing_useful = TRUE; | ||
450 | } | ||
451 | coef_bits_latch += SAVED_COEFS; | ||
452 | } | ||
453 | |||
454 | return smoothing_useful; | ||
455 | } | ||
456 | |||
457 | |||
458 | /* | ||
459 | * Variant of decompress_data for use when doing block smoothing. | ||
460 | */ | ||
461 | |||
462 | METHODDEF(int) | ||
463 | decompress_smooth_data (j_decompress_ptr cinfo, JSAMPIMAGE output_buf) | ||
464 | { | ||
465 | my_coef_ptr coef = (my_coef_ptr) cinfo->coef; | ||
466 | JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1; | ||
467 | JDIMENSION block_num, last_block_column; | ||
468 | int ci, block_row, block_rows, access_rows; | ||
469 | JBLOCKARRAY buffer; | ||
470 | JBLOCKROW buffer_ptr, prev_block_row, next_block_row; | ||
471 | JSAMPARRAY output_ptr; | ||
472 | JDIMENSION output_col; | ||
473 | jpeg_component_info *compptr; | ||
474 | inverse_DCT_method_ptr inverse_DCT; | ||
475 | boolean first_row, last_row; | ||
476 | JBLOCK workspace; | ||
477 | int *coef_bits; | ||
478 | JQUANT_TBL *quanttbl; | ||
479 | INT32 Q00,Q01,Q02,Q10,Q11,Q20, num; | ||
480 | int DC1,DC2,DC3,DC4,DC5,DC6,DC7,DC8,DC9; | ||
481 | int Al, pred; | ||
482 | |||
483 | /* Force some input to be done if we are getting ahead of the input. */ | ||
484 | while (cinfo->input_scan_number <= cinfo->output_scan_number && | ||
485 | ! cinfo->inputctl->eoi_reached) { | ||
486 | if (cinfo->input_scan_number == cinfo->output_scan_number) { | ||
487 | /* If input is working on current scan, we ordinarily want it to | ||
488 | * have completed the current row. But if input scan is DC, | ||
489 | * we want it to keep one row ahead so that next block row's DC | ||
490 | * values are up to date. | ||
491 | */ | ||
492 | JDIMENSION delta = (cinfo->Ss == 0) ? 1 : 0; | ||
493 | if (cinfo->input_iMCU_row > cinfo->output_iMCU_row+delta) | ||
494 | break; | ||
495 | } | ||
496 | if ((*cinfo->inputctl->consume_input)(cinfo) == JPEG_SUSPENDED) | ||
497 | return JPEG_SUSPENDED; | ||
498 | } | ||
499 | |||
500 | /* OK, output from the virtual arrays. */ | ||
501 | for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; | ||
502 | ci++, compptr++) { | ||
503 | /* Don't bother to IDCT an uninteresting component. */ | ||
504 | if (! compptr->component_needed) | ||
505 | continue; | ||
506 | /* Count non-dummy DCT block rows in this iMCU row. */ | ||
507 | if (cinfo->output_iMCU_row < last_iMCU_row) { | ||
508 | block_rows = compptr->v_samp_factor; | ||
509 | access_rows = block_rows * 2; /* this and next iMCU row */ | ||
510 | last_row = FALSE; | ||
511 | } else { | ||
512 | /* NB: can't use last_row_height here; it is input-side-dependent! */ | ||
513 | block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor); | ||
514 | if (block_rows == 0) block_rows = compptr->v_samp_factor; | ||
515 | access_rows = block_rows; /* this iMCU row only */ | ||
516 | last_row = TRUE; | ||
517 | } | ||
518 | /* Align the virtual buffer for this component. */ | ||
519 | if (cinfo->output_iMCU_row > 0) { | ||
520 | access_rows += compptr->v_samp_factor; /* prior iMCU row too */ | ||
521 | buffer = (*cinfo->mem->access_virt_barray) | ||
522 | ((j_common_ptr) cinfo, coef->whole_image[ci], | ||
523 | (cinfo->output_iMCU_row - 1) * compptr->v_samp_factor, | ||
524 | (JDIMENSION) access_rows, FALSE); | ||
525 | buffer += compptr->v_samp_factor; /* point to current iMCU row */ | ||
526 | first_row = FALSE; | ||
527 | } else { | ||
528 | buffer = (*cinfo->mem->access_virt_barray) | ||
529 | ((j_common_ptr) cinfo, coef->whole_image[ci], | ||
530 | (JDIMENSION) 0, (JDIMENSION) access_rows, FALSE); | ||
531 | first_row = TRUE; | ||
532 | } | ||
533 | /* Fetch component-dependent info */ | ||
534 | coef_bits = coef->coef_bits_latch + (ci * SAVED_COEFS); | ||
535 | quanttbl = compptr->quant_table; | ||
536 | Q00 = quanttbl->quantval[0]; | ||
537 | Q01 = quanttbl->quantval[Q01_POS]; | ||
538 | Q10 = quanttbl->quantval[Q10_POS]; | ||
539 | Q20 = quanttbl->quantval[Q20_POS]; | ||
540 | Q11 = quanttbl->quantval[Q11_POS]; | ||
541 | Q02 = quanttbl->quantval[Q02_POS]; | ||
542 | inverse_DCT = cinfo->idct->inverse_DCT[ci]; | ||
543 | output_ptr = output_buf[ci]; | ||
544 | /* Loop over all DCT blocks to be processed. */ | ||
545 | for (block_row = 0; block_row < block_rows; block_row++) { | ||
546 | buffer_ptr = buffer[block_row]; | ||
547 | if (first_row && block_row == 0) | ||
548 | prev_block_row = buffer_ptr; | ||
549 | else | ||
550 | prev_block_row = buffer[block_row-1]; | ||
551 | if (last_row && block_row == block_rows-1) | ||
552 | next_block_row = buffer_ptr; | ||
553 | else | ||
554 | next_block_row = buffer[block_row+1]; | ||
555 | /* We fetch the surrounding DC values using a sliding-register approach. | ||
556 | * Initialize all nine here so as to do the right thing on narrow pics. | ||
557 | */ | ||
558 | DC1 = DC2 = DC3 = (int) prev_block_row[0][0]; | ||
559 | DC4 = DC5 = DC6 = (int) buffer_ptr[0][0]; | ||
560 | DC7 = DC8 = DC9 = (int) next_block_row[0][0]; | ||
561 | output_col = 0; | ||
562 | last_block_column = compptr->width_in_blocks - 1; | ||
563 | for (block_num = 0; block_num <= last_block_column; block_num++) { | ||
564 | /* Fetch current DCT block into workspace so we can modify it. */ | ||
565 | jcopy_block_row(buffer_ptr, (JBLOCKROW) workspace, (JDIMENSION) 1); | ||
566 | /* Update DC values */ | ||
567 | if (block_num < last_block_column) { | ||
568 | DC3 = (int) prev_block_row[1][0]; | ||
569 | DC6 = (int) buffer_ptr[1][0]; | ||
570 | DC9 = (int) next_block_row[1][0]; | ||
571 | } | ||
572 | /* Compute coefficient estimates per K.8. | ||
573 | * An estimate is applied only if coefficient is still zero, | ||
574 | * and is not known to be fully accurate. | ||
575 | */ | ||
576 | /* AC01 */ | ||
577 | if ((Al=coef_bits[1]) != 0 && workspace[1] == 0) { | ||
578 | num = 36 * Q00 * (DC4 - DC6); | ||
579 | if (num >= 0) { | ||
580 | pred = (int) (((Q01<<7) + num) / (Q01<<8)); | ||
581 | if (Al > 0 && pred >= (1<<Al)) | ||
582 | pred = (1<<Al)-1; | ||
583 | } else { | ||
584 | pred = (int) (((Q01<<7) - num) / (Q01<<8)); | ||
585 | if (Al > 0 && pred >= (1<<Al)) | ||
586 | pred = (1<<Al)-1; | ||
587 | pred = -pred; | ||
588 | } | ||
589 | workspace[1] = (JCOEF) pred; | ||
590 | } | ||
591 | /* AC10 */ | ||
592 | if ((Al=coef_bits[2]) != 0 && workspace[8] == 0) { | ||
593 | num = 36 * Q00 * (DC2 - DC8); | ||
594 | if (num >= 0) { | ||
595 | pred = (int) (((Q10<<7) + num) / (Q10<<8)); | ||
596 | if (Al > 0 && pred >= (1<<Al)) | ||
597 | pred = (1<<Al)-1; | ||
598 | } else { | ||
599 | pred = (int) (((Q10<<7) - num) / (Q10<<8)); | ||
600 | if (Al > 0 && pred >= (1<<Al)) | ||
601 | pred = (1<<Al)-1; | ||
602 | pred = -pred; | ||
603 | } | ||
604 | workspace[8] = (JCOEF) pred; | ||
605 | } | ||
606 | /* AC20 */ | ||
607 | if ((Al=coef_bits[3]) != 0 && workspace[16] == 0) { | ||
608 | num = 9 * Q00 * (DC2 + DC8 - 2*DC5); | ||
609 | if (num >= 0) { | ||
610 | pred = (int) (((Q20<<7) + num) / (Q20<<8)); | ||
611 | if (Al > 0 && pred >= (1<<Al)) | ||
612 | pred = (1<<Al)-1; | ||
613 | } else { | ||
614 | pred = (int) (((Q20<<7) - num) / (Q20<<8)); | ||
615 | if (Al > 0 && pred >= (1<<Al)) | ||
616 | pred = (1<<Al)-1; | ||
617 | pred = -pred; | ||
618 | } | ||
619 | workspace[16] = (JCOEF) pred; | ||
620 | } | ||
621 | /* AC11 */ | ||
622 | if ((Al=coef_bits[4]) != 0 && workspace[9] == 0) { | ||
623 | num = 5 * Q00 * (DC1 - DC3 - DC7 + DC9); | ||
624 | if (num >= 0) { | ||
625 | pred = (int) (((Q11<<7) + num) / (Q11<<8)); | ||
626 | if (Al > 0 && pred >= (1<<Al)) | ||
627 | pred = (1<<Al)-1; | ||
628 | } else { | ||
629 | pred = (int) (((Q11<<7) - num) / (Q11<<8)); | ||
630 | if (Al > 0 && pred >= (1<<Al)) | ||
631 | pred = (1<<Al)-1; | ||
632 | pred = -pred; | ||
633 | } | ||
634 | workspace[9] = (JCOEF) pred; | ||
635 | } | ||
636 | /* AC02 */ | ||
637 | if ((Al=coef_bits[5]) != 0 && workspace[2] == 0) { | ||
638 | num = 9 * Q00 * (DC4 + DC6 - 2*DC5); | ||
639 | if (num >= 0) { | ||
640 | pred = (int) (((Q02<<7) + num) / (Q02<<8)); | ||
641 | if (Al > 0 && pred >= (1<<Al)) | ||
642 | pred = (1<<Al)-1; | ||
643 | } else { | ||
644 | pred = (int) (((Q02<<7) - num) / (Q02<<8)); | ||
645 | if (Al > 0 && pred >= (1<<Al)) | ||
646 | pred = (1<<Al)-1; | ||
647 | pred = -pred; | ||
648 | } | ||
649 | workspace[2] = (JCOEF) pred; | ||
650 | } | ||
651 | /* OK, do the IDCT */ | ||
652 | (*inverse_DCT) (cinfo, compptr, (JCOEFPTR) workspace, | ||
653 | output_ptr, output_col); | ||
654 | /* Advance for next column */ | ||
655 | DC1 = DC2; DC2 = DC3; | ||
656 | DC4 = DC5; DC5 = DC6; | ||
657 | DC7 = DC8; DC8 = DC9; | ||
658 | buffer_ptr++, prev_block_row++, next_block_row++; | ||
659 | output_col += compptr->DCT_h_scaled_size; | ||
660 | } | ||
661 | output_ptr += compptr->DCT_v_scaled_size; | ||
662 | } | ||
663 | } | ||
664 | |||
665 | if (++(cinfo->output_iMCU_row) < cinfo->total_iMCU_rows) | ||
666 | return JPEG_ROW_COMPLETED; | ||
667 | return JPEG_SCAN_COMPLETED; | ||
668 | } | ||
669 | |||
670 | #endif /* BLOCK_SMOOTHING_SUPPORTED */ | ||
671 | |||
672 | |||
673 | /* | ||
674 | * Initialize coefficient buffer controller. | ||
675 | */ | ||
676 | |||
677 | GLOBAL(void) | ||
678 | jinit_d_coef_controller (j_decompress_ptr cinfo, boolean need_full_buffer) | ||
679 | { | ||
680 | my_coef_ptr coef; | ||
681 | |||
682 | coef = (my_coef_ptr) | ||
683 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, | ||
684 | SIZEOF(my_coef_controller)); | ||
685 | cinfo->coef = (struct jpeg_d_coef_controller *) coef; | ||
686 | coef->pub.start_input_pass = start_input_pass; | ||
687 | coef->pub.start_output_pass = start_output_pass; | ||
688 | #ifdef BLOCK_SMOOTHING_SUPPORTED | ||
689 | coef->coef_bits_latch = NULL; | ||
690 | #endif | ||
691 | |||
692 | /* Create the coefficient buffer. */ | ||
693 | if (need_full_buffer) { | ||
694 | #ifdef D_MULTISCAN_FILES_SUPPORTED | ||
695 | /* Allocate a full-image virtual array for each component, */ | ||
696 | /* padded to a multiple of samp_factor DCT blocks in each direction. */ | ||
697 | /* Note we ask for a pre-zeroed array. */ | ||
698 | int ci, access_rows; | ||
699 | jpeg_component_info *compptr; | ||
700 | |||
701 | for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; | ||
702 | ci++, compptr++) { | ||
703 | access_rows = compptr->v_samp_factor; | ||
704 | #ifdef BLOCK_SMOOTHING_SUPPORTED | ||
705 | /* If block smoothing could be used, need a bigger window */ | ||
706 | if (cinfo->progressive_mode) | ||
707 | access_rows *= 3; | ||
708 | #endif | ||
709 | coef->whole_image[ci] = (*cinfo->mem->request_virt_barray) | ||
710 | ((j_common_ptr) cinfo, JPOOL_IMAGE, TRUE, | ||
711 | (JDIMENSION) jround_up((long) compptr->width_in_blocks, | ||
712 | (long) compptr->h_samp_factor), | ||
713 | (JDIMENSION) jround_up((long) compptr->height_in_blocks, | ||
714 | (long) compptr->v_samp_factor), | ||
715 | (JDIMENSION) access_rows); | ||
716 | } | ||
717 | coef->pub.consume_data = consume_data; | ||
718 | coef->pub.decompress_data = decompress_data; | ||
719 | coef->pub.coef_arrays = coef->whole_image; /* link to virtual arrays */ | ||
720 | #else | ||
721 | ERREXIT(cinfo, JERR_NOT_COMPILED); | ||
722 | #endif | ||
723 | } else { | ||
724 | /* We only need a single-MCU buffer. */ | ||
725 | JBLOCKROW buffer; | ||
726 | int i; | ||
727 | |||
728 | buffer = (JBLOCKROW) | ||
729 | (*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE, | ||
730 | D_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK)); | ||
731 | for (i = 0; i < D_MAX_BLOCKS_IN_MCU; i++) { | ||
732 | coef->MCU_buffer[i] = buffer + i; | ||
733 | } | ||
734 | if (cinfo->lim_Se == 0) /* DC only case: want to bypass later */ | ||
735 | FMEMZERO((void FAR *) buffer, | ||
736 | (size_t) (D_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK))); | ||
737 | coef->pub.consume_data = dummy_consume_data; | ||
738 | coef->pub.decompress_data = decompress_onepass; | ||
739 | coef->pub.coef_arrays = NULL; /* flag for no virtual arrays */ | ||
740 | } | ||
741 | } | ||