aboutsummaryrefslogtreecommitdiffstatshomepage
path: root/libraries/irrlicht-1.8/source/Irrlicht/jpeglib/jccoefct.c
diff options
context:
space:
mode:
authorDavid Walter Seikel2013-01-13 18:54:10 +1000
committerDavid Walter Seikel2013-01-13 18:54:10 +1000
commit959831f4ef5a3e797f576c3de08cd65032c997ad (patch)
treee7351908be5995f0b325b2ebeaa02d5a34b82583 /libraries/irrlicht-1.8/source/Irrlicht/jpeglib/jccoefct.c
parentAdd info about changes to Irrlicht. (diff)
downloadSledjHamr-959831f4ef5a3e797f576c3de08cd65032c997ad.zip
SledjHamr-959831f4ef5a3e797f576c3de08cd65032c997ad.tar.gz
SledjHamr-959831f4ef5a3e797f576c3de08cd65032c997ad.tar.bz2
SledjHamr-959831f4ef5a3e797f576c3de08cd65032c997ad.tar.xz
Remove damned ancient DOS line endings from Irrlicht. Hopefully I did not go overboard.
Diffstat (limited to 'libraries/irrlicht-1.8/source/Irrlicht/jpeglib/jccoefct.c')
-rw-r--r--libraries/irrlicht-1.8/source/Irrlicht/jpeglib/jccoefct.c908
1 files changed, 454 insertions, 454 deletions
diff --git a/libraries/irrlicht-1.8/source/Irrlicht/jpeglib/jccoefct.c b/libraries/irrlicht-1.8/source/Irrlicht/jpeglib/jccoefct.c
index b64b46e..924a703 100644
--- a/libraries/irrlicht-1.8/source/Irrlicht/jpeglib/jccoefct.c
+++ b/libraries/irrlicht-1.8/source/Irrlicht/jpeglib/jccoefct.c
@@ -1,454 +1,454 @@
1/* 1/*
2 * jccoefct.c 2 * jccoefct.c
3 * 3 *
4 * Copyright (C) 1994-1997, Thomas G. Lane. 4 * Copyright (C) 1994-1997, Thomas G. Lane.
5 * Modified 2003-2011 by Guido Vollbeding. 5 * Modified 2003-2011 by Guido Vollbeding.
6 * This file is part of the Independent JPEG Group's software. 6 * This file is part of the Independent JPEG Group's software.
7 * For conditions of distribution and use, see the accompanying README file. 7 * For conditions of distribution and use, see the accompanying README file.
8 * 8 *
9 * This file contains the coefficient buffer controller for compression. 9 * This file contains the coefficient buffer controller for compression.
10 * This controller is the top level of the JPEG compressor proper. 10 * This controller is the top level of the JPEG compressor proper.
11 * The coefficient buffer lies between forward-DCT and entropy encoding steps. 11 * The coefficient buffer lies between forward-DCT and entropy encoding steps.
12 */ 12 */
13 13
14#define JPEG_INTERNALS 14#define JPEG_INTERNALS
15#include "jinclude.h" 15#include "jinclude.h"
16#include "jpeglib.h" 16#include "jpeglib.h"
17 17
18 18
19/* We use a full-image coefficient buffer when doing Huffman optimization, 19/* We use a full-image coefficient buffer when doing Huffman optimization,
20 * and also for writing multiple-scan JPEG files. In all cases, the DCT 20 * and also for writing multiple-scan JPEG files. In all cases, the DCT
21 * step is run during the first pass, and subsequent passes need only read 21 * step is run during the first pass, and subsequent passes need only read
22 * the buffered coefficients. 22 * the buffered coefficients.
23 */ 23 */
24#ifdef ENTROPY_OPT_SUPPORTED 24#ifdef ENTROPY_OPT_SUPPORTED
25#define FULL_COEF_BUFFER_SUPPORTED 25#define FULL_COEF_BUFFER_SUPPORTED
26#else 26#else
27#ifdef C_MULTISCAN_FILES_SUPPORTED 27#ifdef C_MULTISCAN_FILES_SUPPORTED
28#define FULL_COEF_BUFFER_SUPPORTED 28#define FULL_COEF_BUFFER_SUPPORTED
29#endif 29#endif
30#endif 30#endif
31 31
32 32
33/* Private buffer controller object */ 33/* Private buffer controller object */
34 34
35typedef struct { 35typedef struct {
36 struct jpeg_c_coef_controller pub; /* public fields */ 36 struct jpeg_c_coef_controller pub; /* public fields */
37 37
38 JDIMENSION iMCU_row_num; /* iMCU row # within image */ 38 JDIMENSION iMCU_row_num; /* iMCU row # within image */
39 JDIMENSION mcu_ctr; /* counts MCUs processed in current row */ 39 JDIMENSION mcu_ctr; /* counts MCUs processed in current row */
40 int MCU_vert_offset; /* counts MCU rows within iMCU row */ 40 int MCU_vert_offset; /* counts MCU rows within iMCU row */
41 int MCU_rows_per_iMCU_row; /* number of such rows needed */ 41 int MCU_rows_per_iMCU_row; /* number of such rows needed */
42 42
43 /* For single-pass compression, it's sufficient to buffer just one MCU 43 /* For single-pass compression, it's sufficient to buffer just one MCU
44 * (although this may prove a bit slow in practice). We allocate a 44 * (although this may prove a bit slow in practice). We allocate a
45 * workspace of C_MAX_BLOCKS_IN_MCU coefficient blocks, and reuse it for each 45 * workspace of C_MAX_BLOCKS_IN_MCU coefficient blocks, and reuse it for each
46 * MCU constructed and sent. (On 80x86, the workspace is FAR even though 46 * MCU constructed and sent. (On 80x86, the workspace is FAR even though
47 * it's not really very big; this is to keep the module interfaces unchanged 47 * it's not really very big; this is to keep the module interfaces unchanged
48 * when a large coefficient buffer is necessary.) 48 * when a large coefficient buffer is necessary.)
49 * In multi-pass modes, this array points to the current MCU's blocks 49 * In multi-pass modes, this array points to the current MCU's blocks
50 * within the virtual arrays. 50 * within the virtual arrays.
51 */ 51 */
52 JBLOCKROW MCU_buffer[C_MAX_BLOCKS_IN_MCU]; 52 JBLOCKROW MCU_buffer[C_MAX_BLOCKS_IN_MCU];
53 53
54 /* In multi-pass modes, we need a virtual block array for each component. */ 54 /* In multi-pass modes, we need a virtual block array for each component. */
55 jvirt_barray_ptr whole_image[MAX_COMPONENTS]; 55 jvirt_barray_ptr whole_image[MAX_COMPONENTS];
56} my_coef_controller; 56} my_coef_controller;
57 57
58typedef my_coef_controller * my_coef_ptr; 58typedef my_coef_controller * my_coef_ptr;
59 59
60 60
61/* Forward declarations */ 61/* Forward declarations */
62METHODDEF(boolean) compress_data 62METHODDEF(boolean) compress_data
63 JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf)); 63 JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf));
64#ifdef FULL_COEF_BUFFER_SUPPORTED 64#ifdef FULL_COEF_BUFFER_SUPPORTED
65METHODDEF(boolean) compress_first_pass 65METHODDEF(boolean) compress_first_pass
66 JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf)); 66 JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf));
67METHODDEF(boolean) compress_output 67METHODDEF(boolean) compress_output
68 JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf)); 68 JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf));
69#endif 69#endif
70 70
71 71
72LOCAL(void) 72LOCAL(void)
73start_iMCU_row (j_compress_ptr cinfo) 73start_iMCU_row (j_compress_ptr cinfo)
74/* Reset within-iMCU-row counters for a new row */ 74/* Reset within-iMCU-row counters for a new row */
75{ 75{
76 my_coef_ptr coef = (my_coef_ptr) cinfo->coef; 76 my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
77 77
78 /* In an interleaved scan, an MCU row is the same as an iMCU row. 78 /* In an interleaved scan, an MCU row is the same as an iMCU row.
79 * In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows. 79 * In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows.
80 * But at the bottom of the image, process only what's left. 80 * But at the bottom of the image, process only what's left.
81 */ 81 */
82 if (cinfo->comps_in_scan > 1) { 82 if (cinfo->comps_in_scan > 1) {
83 coef->MCU_rows_per_iMCU_row = 1; 83 coef->MCU_rows_per_iMCU_row = 1;
84 } else { 84 } else {
85 if (coef->iMCU_row_num < (cinfo->total_iMCU_rows-1)) 85 if (coef->iMCU_row_num < (cinfo->total_iMCU_rows-1))
86 coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor; 86 coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor;
87 else 87 else
88 coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height; 88 coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height;
89 } 89 }
90 90
91 coef->mcu_ctr = 0; 91 coef->mcu_ctr = 0;
92 coef->MCU_vert_offset = 0; 92 coef->MCU_vert_offset = 0;
93} 93}
94 94
95 95
96/* 96/*
97 * Initialize for a processing pass. 97 * Initialize for a processing pass.
98 */ 98 */
99 99
100METHODDEF(void) 100METHODDEF(void)
101start_pass_coef (j_compress_ptr cinfo, J_BUF_MODE pass_mode) 101start_pass_coef (j_compress_ptr cinfo, J_BUF_MODE pass_mode)
102{ 102{
103 my_coef_ptr coef = (my_coef_ptr) cinfo->coef; 103 my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
104 104
105 coef->iMCU_row_num = 0; 105 coef->iMCU_row_num = 0;
106 start_iMCU_row(cinfo); 106 start_iMCU_row(cinfo);
107 107
108 switch (pass_mode) { 108 switch (pass_mode) {
109 case JBUF_PASS_THRU: 109 case JBUF_PASS_THRU:
110 if (coef->whole_image[0] != NULL) 110 if (coef->whole_image[0] != NULL)
111 ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); 111 ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
112 coef->pub.compress_data = compress_data; 112 coef->pub.compress_data = compress_data;
113 break; 113 break;
114#ifdef FULL_COEF_BUFFER_SUPPORTED 114#ifdef FULL_COEF_BUFFER_SUPPORTED
115 case JBUF_SAVE_AND_PASS: 115 case JBUF_SAVE_AND_PASS:
116 if (coef->whole_image[0] == NULL) 116 if (coef->whole_image[0] == NULL)
117 ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); 117 ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
118 coef->pub.compress_data = compress_first_pass; 118 coef->pub.compress_data = compress_first_pass;
119 break; 119 break;
120 case JBUF_CRANK_DEST: 120 case JBUF_CRANK_DEST:
121 if (coef->whole_image[0] == NULL) 121 if (coef->whole_image[0] == NULL)
122 ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); 122 ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
123 coef->pub.compress_data = compress_output; 123 coef->pub.compress_data = compress_output;
124 break; 124 break;
125#endif 125#endif
126 default: 126 default:
127 ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); 127 ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
128 break; 128 break;
129 } 129 }
130} 130}
131 131
132 132
133/* 133/*
134 * Process some data in the single-pass case. 134 * Process some data in the single-pass case.
135 * We process the equivalent of one fully interleaved MCU row ("iMCU" row) 135 * We process the equivalent of one fully interleaved MCU row ("iMCU" row)
136 * per call, ie, v_samp_factor block rows for each component in the image. 136 * per call, ie, v_samp_factor block rows for each component in the image.
137 * Returns TRUE if the iMCU row is completed, FALSE if suspended. 137 * Returns TRUE if the iMCU row is completed, FALSE if suspended.
138 * 138 *
139 * NB: input_buf contains a plane for each component in image, 139 * NB: input_buf contains a plane for each component in image,
140 * which we index according to the component's SOF position. 140 * which we index according to the component's SOF position.
141 */ 141 */
142 142
143METHODDEF(boolean) 143METHODDEF(boolean)
144compress_data (j_compress_ptr cinfo, JSAMPIMAGE input_buf) 144compress_data (j_compress_ptr cinfo, JSAMPIMAGE input_buf)
145{ 145{
146 my_coef_ptr coef = (my_coef_ptr) cinfo->coef; 146 my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
147 JDIMENSION MCU_col_num; /* index of current MCU within row */ 147 JDIMENSION MCU_col_num; /* index of current MCU within row */
148 JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1; 148 JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1;
149 JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1; 149 JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
150 int blkn, bi, ci, yindex, yoffset, blockcnt; 150 int blkn, bi, ci, yindex, yoffset, blockcnt;
151 JDIMENSION ypos, xpos; 151 JDIMENSION ypos, xpos;
152 jpeg_component_info *compptr; 152 jpeg_component_info *compptr;
153 forward_DCT_ptr forward_DCT; 153 forward_DCT_ptr forward_DCT;
154 154
155 /* Loop to write as much as one whole iMCU row */ 155 /* Loop to write as much as one whole iMCU row */
156 for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row; 156 for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
157 yoffset++) { 157 yoffset++) {
158 for (MCU_col_num = coef->mcu_ctr; MCU_col_num <= last_MCU_col; 158 for (MCU_col_num = coef->mcu_ctr; MCU_col_num <= last_MCU_col;
159 MCU_col_num++) { 159 MCU_col_num++) {
160 /* Determine where data comes from in input_buf and do the DCT thing. 160 /* Determine where data comes from in input_buf and do the DCT thing.
161 * Each call on forward_DCT processes a horizontal row of DCT blocks 161 * Each call on forward_DCT processes a horizontal row of DCT blocks
162 * as wide as an MCU; we rely on having allocated the MCU_buffer[] blocks 162 * as wide as an MCU; we rely on having allocated the MCU_buffer[] blocks
163 * sequentially. Dummy blocks at the right or bottom edge are filled in 163 * sequentially. Dummy blocks at the right or bottom edge are filled in
164 * specially. The data in them does not matter for image reconstruction, 164 * specially. The data in them does not matter for image reconstruction,
165 * so we fill them with values that will encode to the smallest amount of 165 * so we fill them with values that will encode to the smallest amount of
166 * data, viz: all zeroes in the AC entries, DC entries equal to previous 166 * data, viz: all zeroes in the AC entries, DC entries equal to previous
167 * block's DC value. (Thanks to Thomas Kinsman for this idea.) 167 * block's DC value. (Thanks to Thomas Kinsman for this idea.)
168 */ 168 */
169 blkn = 0; 169 blkn = 0;
170 for (ci = 0; ci < cinfo->comps_in_scan; ci++) { 170 for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
171 compptr = cinfo->cur_comp_info[ci]; 171 compptr = cinfo->cur_comp_info[ci];
172 forward_DCT = cinfo->fdct->forward_DCT[compptr->component_index]; 172 forward_DCT = cinfo->fdct->forward_DCT[compptr->component_index];
173 blockcnt = (MCU_col_num < last_MCU_col) ? compptr->MCU_width 173 blockcnt = (MCU_col_num < last_MCU_col) ? compptr->MCU_width
174 : compptr->last_col_width; 174 : compptr->last_col_width;
175 xpos = MCU_col_num * compptr->MCU_sample_width; 175 xpos = MCU_col_num * compptr->MCU_sample_width;
176 ypos = yoffset * compptr->DCT_v_scaled_size; 176 ypos = yoffset * compptr->DCT_v_scaled_size;
177 /* ypos == (yoffset+yindex) * DCTSIZE */ 177 /* ypos == (yoffset+yindex) * DCTSIZE */
178 for (yindex = 0; yindex < compptr->MCU_height; yindex++) { 178 for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
179 if (coef->iMCU_row_num < last_iMCU_row || 179 if (coef->iMCU_row_num < last_iMCU_row ||
180 yoffset+yindex < compptr->last_row_height) { 180 yoffset+yindex < compptr->last_row_height) {
181 (*forward_DCT) (cinfo, compptr, 181 (*forward_DCT) (cinfo, compptr,
182 input_buf[compptr->component_index], 182 input_buf[compptr->component_index],
183 coef->MCU_buffer[blkn], 183 coef->MCU_buffer[blkn],
184 ypos, xpos, (JDIMENSION) blockcnt); 184 ypos, xpos, (JDIMENSION) blockcnt);
185 if (blockcnt < compptr->MCU_width) { 185 if (blockcnt < compptr->MCU_width) {
186 /* Create some dummy blocks at the right edge of the image. */ 186 /* Create some dummy blocks at the right edge of the image. */
187 FMEMZERO((void FAR *) coef->MCU_buffer[blkn + blockcnt], 187 FMEMZERO((void FAR *) coef->MCU_buffer[blkn + blockcnt],
188 (compptr->MCU_width - blockcnt) * SIZEOF(JBLOCK)); 188 (compptr->MCU_width - blockcnt) * SIZEOF(JBLOCK));
189 for (bi = blockcnt; bi < compptr->MCU_width; bi++) { 189 for (bi = blockcnt; bi < compptr->MCU_width; bi++) {
190 coef->MCU_buffer[blkn+bi][0][0] = coef->MCU_buffer[blkn+bi-1][0][0]; 190 coef->MCU_buffer[blkn+bi][0][0] = coef->MCU_buffer[blkn+bi-1][0][0];
191 } 191 }
192 } 192 }
193 } else { 193 } else {
194 /* Create a row of dummy blocks at the bottom of the image. */ 194 /* Create a row of dummy blocks at the bottom of the image. */
195 FMEMZERO((void FAR *) coef->MCU_buffer[blkn], 195 FMEMZERO((void FAR *) coef->MCU_buffer[blkn],
196 compptr->MCU_width * SIZEOF(JBLOCK)); 196 compptr->MCU_width * SIZEOF(JBLOCK));
197 for (bi = 0; bi < compptr->MCU_width; bi++) { 197 for (bi = 0; bi < compptr->MCU_width; bi++) {
198 coef->MCU_buffer[blkn+bi][0][0] = coef->MCU_buffer[blkn-1][0][0]; 198 coef->MCU_buffer[blkn+bi][0][0] = coef->MCU_buffer[blkn-1][0][0];
199 } 199 }
200 } 200 }
201 blkn += compptr->MCU_width; 201 blkn += compptr->MCU_width;
202 ypos += compptr->DCT_v_scaled_size; 202 ypos += compptr->DCT_v_scaled_size;
203 } 203 }
204 } 204 }
205 /* Try to write the MCU. In event of a suspension failure, we will 205 /* Try to write the MCU. In event of a suspension failure, we will
206 * re-DCT the MCU on restart (a bit inefficient, could be fixed...) 206 * re-DCT the MCU on restart (a bit inefficient, could be fixed...)
207 */ 207 */
208 if (! (*cinfo->entropy->encode_mcu) (cinfo, coef->MCU_buffer)) { 208 if (! (*cinfo->entropy->encode_mcu) (cinfo, coef->MCU_buffer)) {
209 /* Suspension forced; update state counters and exit */ 209 /* Suspension forced; update state counters and exit */
210 coef->MCU_vert_offset = yoffset; 210 coef->MCU_vert_offset = yoffset;
211 coef->mcu_ctr = MCU_col_num; 211 coef->mcu_ctr = MCU_col_num;
212 return FALSE; 212 return FALSE;
213 } 213 }
214 } 214 }
215 /* Completed an MCU row, but perhaps not an iMCU row */ 215 /* Completed an MCU row, but perhaps not an iMCU row */
216 coef->mcu_ctr = 0; 216 coef->mcu_ctr = 0;
217 } 217 }
218 /* Completed the iMCU row, advance counters for next one */ 218 /* Completed the iMCU row, advance counters for next one */
219 coef->iMCU_row_num++; 219 coef->iMCU_row_num++;
220 start_iMCU_row(cinfo); 220 start_iMCU_row(cinfo);
221 return TRUE; 221 return TRUE;
222} 222}
223 223
224 224
225#ifdef FULL_COEF_BUFFER_SUPPORTED 225#ifdef FULL_COEF_BUFFER_SUPPORTED
226 226
227/* 227/*
228 * Process some data in the first pass of a multi-pass case. 228 * Process some data in the first pass of a multi-pass case.
229 * We process the equivalent of one fully interleaved MCU row ("iMCU" row) 229 * We process the equivalent of one fully interleaved MCU row ("iMCU" row)
230 * per call, ie, v_samp_factor block rows for each component in the image. 230 * per call, ie, v_samp_factor block rows for each component in the image.
231 * This amount of data is read from the source buffer, DCT'd and quantized, 231 * This amount of data is read from the source buffer, DCT'd and quantized,
232 * and saved into the virtual arrays. We also generate suitable dummy blocks 232 * and saved into the virtual arrays. We also generate suitable dummy blocks
233 * as needed at the right and lower edges. (The dummy blocks are constructed 233 * as needed at the right and lower edges. (The dummy blocks are constructed
234 * in the virtual arrays, which have been padded appropriately.) This makes 234 * in the virtual arrays, which have been padded appropriately.) This makes
235 * it possible for subsequent passes not to worry about real vs. dummy blocks. 235 * it possible for subsequent passes not to worry about real vs. dummy blocks.
236 * 236 *
237 * We must also emit the data to the entropy encoder. This is conveniently 237 * We must also emit the data to the entropy encoder. This is conveniently
238 * done by calling compress_output() after we've loaded the current strip 238 * done by calling compress_output() after we've loaded the current strip
239 * of the virtual arrays. 239 * of the virtual arrays.
240 * 240 *
241 * NB: input_buf contains a plane for each component in image. All 241 * NB: input_buf contains a plane for each component in image. All
242 * components are DCT'd and loaded into the virtual arrays in this pass. 242 * components are DCT'd and loaded into the virtual arrays in this pass.
243 * However, it may be that only a subset of the components are emitted to 243 * However, it may be that only a subset of the components are emitted to
244 * the entropy encoder during this first pass; be careful about looking 244 * the entropy encoder during this first pass; be careful about looking
245 * at the scan-dependent variables (MCU dimensions, etc). 245 * at the scan-dependent variables (MCU dimensions, etc).
246 */ 246 */
247 247
248METHODDEF(boolean) 248METHODDEF(boolean)
249compress_first_pass (j_compress_ptr cinfo, JSAMPIMAGE input_buf) 249compress_first_pass (j_compress_ptr cinfo, JSAMPIMAGE input_buf)
250{ 250{
251 my_coef_ptr coef = (my_coef_ptr) cinfo->coef; 251 my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
252 JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1; 252 JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
253 JDIMENSION blocks_across, MCUs_across, MCUindex; 253 JDIMENSION blocks_across, MCUs_across, MCUindex;
254 int bi, ci, h_samp_factor, block_row, block_rows, ndummy; 254 int bi, ci, h_samp_factor, block_row, block_rows, ndummy;
255 JCOEF lastDC; 255 JCOEF lastDC;
256 jpeg_component_info *compptr; 256 jpeg_component_info *compptr;
257 JBLOCKARRAY buffer; 257 JBLOCKARRAY buffer;
258 JBLOCKROW thisblockrow, lastblockrow; 258 JBLOCKROW thisblockrow, lastblockrow;
259 forward_DCT_ptr forward_DCT; 259 forward_DCT_ptr forward_DCT;
260 260
261 for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; 261 for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
262 ci++, compptr++) { 262 ci++, compptr++) {
263 /* Align the virtual buffer for this component. */ 263 /* Align the virtual buffer for this component. */
264 buffer = (*cinfo->mem->access_virt_barray) 264 buffer = (*cinfo->mem->access_virt_barray)
265 ((j_common_ptr) cinfo, coef->whole_image[ci], 265 ((j_common_ptr) cinfo, coef->whole_image[ci],
266 coef->iMCU_row_num * compptr->v_samp_factor, 266 coef->iMCU_row_num * compptr->v_samp_factor,
267 (JDIMENSION) compptr->v_samp_factor, TRUE); 267 (JDIMENSION) compptr->v_samp_factor, TRUE);
268 /* Count non-dummy DCT block rows in this iMCU row. */ 268 /* Count non-dummy DCT block rows in this iMCU row. */
269 if (coef->iMCU_row_num < last_iMCU_row) 269 if (coef->iMCU_row_num < last_iMCU_row)
270 block_rows = compptr->v_samp_factor; 270 block_rows = compptr->v_samp_factor;
271 else { 271 else {
272 /* NB: can't use last_row_height here, since may not be set! */ 272 /* NB: can't use last_row_height here, since may not be set! */
273 block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor); 273 block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
274 if (block_rows == 0) block_rows = compptr->v_samp_factor; 274 if (block_rows == 0) block_rows = compptr->v_samp_factor;
275 } 275 }
276 blocks_across = compptr->width_in_blocks; 276 blocks_across = compptr->width_in_blocks;
277 h_samp_factor = compptr->h_samp_factor; 277 h_samp_factor = compptr->h_samp_factor;
278 /* Count number of dummy blocks to be added at the right margin. */ 278 /* Count number of dummy blocks to be added at the right margin. */
279 ndummy = (int) (blocks_across % h_samp_factor); 279 ndummy = (int) (blocks_across % h_samp_factor);
280 if (ndummy > 0) 280 if (ndummy > 0)
281 ndummy = h_samp_factor - ndummy; 281 ndummy = h_samp_factor - ndummy;
282 forward_DCT = cinfo->fdct->forward_DCT[ci]; 282 forward_DCT = cinfo->fdct->forward_DCT[ci];
283 /* Perform DCT for all non-dummy blocks in this iMCU row. Each call 283 /* Perform DCT for all non-dummy blocks in this iMCU row. Each call
284 * on forward_DCT processes a complete horizontal row of DCT blocks. 284 * on forward_DCT processes a complete horizontal row of DCT blocks.
285 */ 285 */
286 for (block_row = 0; block_row < block_rows; block_row++) { 286 for (block_row = 0; block_row < block_rows; block_row++) {
287 thisblockrow = buffer[block_row]; 287 thisblockrow = buffer[block_row];
288 (*forward_DCT) (cinfo, compptr, input_buf[ci], thisblockrow, 288 (*forward_DCT) (cinfo, compptr, input_buf[ci], thisblockrow,
289 (JDIMENSION) (block_row * compptr->DCT_v_scaled_size), 289 (JDIMENSION) (block_row * compptr->DCT_v_scaled_size),
290 (JDIMENSION) 0, blocks_across); 290 (JDIMENSION) 0, blocks_across);
291 if (ndummy > 0) { 291 if (ndummy > 0) {
292 /* Create dummy blocks at the right edge of the image. */ 292 /* Create dummy blocks at the right edge of the image. */
293 thisblockrow += blocks_across; /* => first dummy block */ 293 thisblockrow += blocks_across; /* => first dummy block */
294 FMEMZERO((void FAR *) thisblockrow, ndummy * SIZEOF(JBLOCK)); 294 FMEMZERO((void FAR *) thisblockrow, ndummy * SIZEOF(JBLOCK));
295 lastDC = thisblockrow[-1][0]; 295 lastDC = thisblockrow[-1][0];
296 for (bi = 0; bi < ndummy; bi++) { 296 for (bi = 0; bi < ndummy; bi++) {
297 thisblockrow[bi][0] = lastDC; 297 thisblockrow[bi][0] = lastDC;
298 } 298 }
299 } 299 }
300 } 300 }
301 /* If at end of image, create dummy block rows as needed. 301 /* If at end of image, create dummy block rows as needed.
302 * The tricky part here is that within each MCU, we want the DC values 302 * The tricky part here is that within each MCU, we want the DC values
303 * of the dummy blocks to match the last real block's DC value. 303 * of the dummy blocks to match the last real block's DC value.
304 * This squeezes a few more bytes out of the resulting file... 304 * This squeezes a few more bytes out of the resulting file...
305 */ 305 */
306 if (coef->iMCU_row_num == last_iMCU_row) { 306 if (coef->iMCU_row_num == last_iMCU_row) {
307 blocks_across += ndummy; /* include lower right corner */ 307 blocks_across += ndummy; /* include lower right corner */
308 MCUs_across = blocks_across / h_samp_factor; 308 MCUs_across = blocks_across / h_samp_factor;
309 for (block_row = block_rows; block_row < compptr->v_samp_factor; 309 for (block_row = block_rows; block_row < compptr->v_samp_factor;
310 block_row++) { 310 block_row++) {
311 thisblockrow = buffer[block_row]; 311 thisblockrow = buffer[block_row];
312 lastblockrow = buffer[block_row-1]; 312 lastblockrow = buffer[block_row-1];
313 FMEMZERO((void FAR *) thisblockrow, 313 FMEMZERO((void FAR *) thisblockrow,
314 (size_t) (blocks_across * SIZEOF(JBLOCK))); 314 (size_t) (blocks_across * SIZEOF(JBLOCK)));
315 for (MCUindex = 0; MCUindex < MCUs_across; MCUindex++) { 315 for (MCUindex = 0; MCUindex < MCUs_across; MCUindex++) {
316 lastDC = lastblockrow[h_samp_factor-1][0]; 316 lastDC = lastblockrow[h_samp_factor-1][0];
317 for (bi = 0; bi < h_samp_factor; bi++) { 317 for (bi = 0; bi < h_samp_factor; bi++) {
318 thisblockrow[bi][0] = lastDC; 318 thisblockrow[bi][0] = lastDC;
319 } 319 }
320 thisblockrow += h_samp_factor; /* advance to next MCU in row */ 320 thisblockrow += h_samp_factor; /* advance to next MCU in row */
321 lastblockrow += h_samp_factor; 321 lastblockrow += h_samp_factor;
322 } 322 }
323 } 323 }
324 } 324 }
325 } 325 }
326 /* NB: compress_output will increment iMCU_row_num if successful. 326 /* NB: compress_output will increment iMCU_row_num if successful.
327 * A suspension return will result in redoing all the work above next time. 327 * A suspension return will result in redoing all the work above next time.
328 */ 328 */
329 329
330 /* Emit data to the entropy encoder, sharing code with subsequent passes */ 330 /* Emit data to the entropy encoder, sharing code with subsequent passes */
331 return compress_output(cinfo, input_buf); 331 return compress_output(cinfo, input_buf);
332} 332}
333 333
334 334
335/* 335/*
336 * Process some data in subsequent passes of a multi-pass case. 336 * Process some data in subsequent passes of a multi-pass case.
337 * We process the equivalent of one fully interleaved MCU row ("iMCU" row) 337 * We process the equivalent of one fully interleaved MCU row ("iMCU" row)
338 * per call, ie, v_samp_factor block rows for each component in the scan. 338 * per call, ie, v_samp_factor block rows for each component in the scan.
339 * The data is obtained from the virtual arrays and fed to the entropy coder. 339 * The data is obtained from the virtual arrays and fed to the entropy coder.
340 * Returns TRUE if the iMCU row is completed, FALSE if suspended. 340 * Returns TRUE if the iMCU row is completed, FALSE if suspended.
341 * 341 *
342 * NB: input_buf is ignored; it is likely to be a NULL pointer. 342 * NB: input_buf is ignored; it is likely to be a NULL pointer.
343 */ 343 */
344 344
345METHODDEF(boolean) 345METHODDEF(boolean)
346compress_output (j_compress_ptr cinfo, JSAMPIMAGE input_buf) 346compress_output (j_compress_ptr cinfo, JSAMPIMAGE input_buf)
347{ 347{
348 my_coef_ptr coef = (my_coef_ptr) cinfo->coef; 348 my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
349 JDIMENSION MCU_col_num; /* index of current MCU within row */ 349 JDIMENSION MCU_col_num; /* index of current MCU within row */
350 int blkn, ci, xindex, yindex, yoffset; 350 int blkn, ci, xindex, yindex, yoffset;
351 JDIMENSION start_col; 351 JDIMENSION start_col;
352 JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN]; 352 JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN];
353 JBLOCKROW buffer_ptr; 353 JBLOCKROW buffer_ptr;
354 jpeg_component_info *compptr; 354 jpeg_component_info *compptr;
355 355
356 /* Align the virtual buffers for the components used in this scan. 356 /* Align the virtual buffers for the components used in this scan.
357 * NB: during first pass, this is safe only because the buffers will 357 * NB: during first pass, this is safe only because the buffers will
358 * already be aligned properly, so jmemmgr.c won't need to do any I/O. 358 * already be aligned properly, so jmemmgr.c won't need to do any I/O.
359 */ 359 */
360 for (ci = 0; ci < cinfo->comps_in_scan; ci++) { 360 for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
361 compptr = cinfo->cur_comp_info[ci]; 361 compptr = cinfo->cur_comp_info[ci];
362 buffer[ci] = (*cinfo->mem->access_virt_barray) 362 buffer[ci] = (*cinfo->mem->access_virt_barray)
363 ((j_common_ptr) cinfo, coef->whole_image[compptr->component_index], 363 ((j_common_ptr) cinfo, coef->whole_image[compptr->component_index],
364 coef->iMCU_row_num * compptr->v_samp_factor, 364 coef->iMCU_row_num * compptr->v_samp_factor,
365 (JDIMENSION) compptr->v_samp_factor, FALSE); 365 (JDIMENSION) compptr->v_samp_factor, FALSE);
366 } 366 }
367 367
368 /* Loop to process one whole iMCU row */ 368 /* Loop to process one whole iMCU row */
369 for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row; 369 for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
370 yoffset++) { 370 yoffset++) {
371 for (MCU_col_num = coef->mcu_ctr; MCU_col_num < cinfo->MCUs_per_row; 371 for (MCU_col_num = coef->mcu_ctr; MCU_col_num < cinfo->MCUs_per_row;
372 MCU_col_num++) { 372 MCU_col_num++) {
373 /* Construct list of pointers to DCT blocks belonging to this MCU */ 373 /* Construct list of pointers to DCT blocks belonging to this MCU */
374 blkn = 0; /* index of current DCT block within MCU */ 374 blkn = 0; /* index of current DCT block within MCU */
375 for (ci = 0; ci < cinfo->comps_in_scan; ci++) { 375 for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
376 compptr = cinfo->cur_comp_info[ci]; 376 compptr = cinfo->cur_comp_info[ci];
377 start_col = MCU_col_num * compptr->MCU_width; 377 start_col = MCU_col_num * compptr->MCU_width;
378 for (yindex = 0; yindex < compptr->MCU_height; yindex++) { 378 for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
379 buffer_ptr = buffer[ci][yindex+yoffset] + start_col; 379 buffer_ptr = buffer[ci][yindex+yoffset] + start_col;
380 for (xindex = 0; xindex < compptr->MCU_width; xindex++) { 380 for (xindex = 0; xindex < compptr->MCU_width; xindex++) {
381 coef->MCU_buffer[blkn++] = buffer_ptr++; 381 coef->MCU_buffer[blkn++] = buffer_ptr++;
382 } 382 }
383 } 383 }
384 } 384 }
385 /* Try to write the MCU. */ 385 /* Try to write the MCU. */
386 if (! (*cinfo->entropy->encode_mcu) (cinfo, coef->MCU_buffer)) { 386 if (! (*cinfo->entropy->encode_mcu) (cinfo, coef->MCU_buffer)) {
387 /* Suspension forced; update state counters and exit */ 387 /* Suspension forced; update state counters and exit */
388 coef->MCU_vert_offset = yoffset; 388 coef->MCU_vert_offset = yoffset;
389 coef->mcu_ctr = MCU_col_num; 389 coef->mcu_ctr = MCU_col_num;
390 return FALSE; 390 return FALSE;
391 } 391 }
392 } 392 }
393 /* Completed an MCU row, but perhaps not an iMCU row */ 393 /* Completed an MCU row, but perhaps not an iMCU row */
394 coef->mcu_ctr = 0; 394 coef->mcu_ctr = 0;
395 } 395 }
396 /* Completed the iMCU row, advance counters for next one */ 396 /* Completed the iMCU row, advance counters for next one */
397 coef->iMCU_row_num++; 397 coef->iMCU_row_num++;
398 start_iMCU_row(cinfo); 398 start_iMCU_row(cinfo);
399 return TRUE; 399 return TRUE;
400} 400}
401 401
402#endif /* FULL_COEF_BUFFER_SUPPORTED */ 402#endif /* FULL_COEF_BUFFER_SUPPORTED */
403 403
404 404
405/* 405/*
406 * Initialize coefficient buffer controller. 406 * Initialize coefficient buffer controller.
407 */ 407 */
408 408
409GLOBAL(void) 409GLOBAL(void)
410jinit_c_coef_controller (j_compress_ptr cinfo, boolean need_full_buffer) 410jinit_c_coef_controller (j_compress_ptr cinfo, boolean need_full_buffer)
411{ 411{
412 my_coef_ptr coef; 412 my_coef_ptr coef;
413 413
414 coef = (my_coef_ptr) 414 coef = (my_coef_ptr)
415 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, 415 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
416 SIZEOF(my_coef_controller)); 416 SIZEOF(my_coef_controller));
417 cinfo->coef = (struct jpeg_c_coef_controller *) coef; 417 cinfo->coef = (struct jpeg_c_coef_controller *) coef;
418 coef->pub.start_pass = start_pass_coef; 418 coef->pub.start_pass = start_pass_coef;
419 419
420 /* Create the coefficient buffer. */ 420 /* Create the coefficient buffer. */
421 if (need_full_buffer) { 421 if (need_full_buffer) {
422#ifdef FULL_COEF_BUFFER_SUPPORTED 422#ifdef FULL_COEF_BUFFER_SUPPORTED
423 /* Allocate a full-image virtual array for each component, */ 423 /* Allocate a full-image virtual array for each component, */
424 /* padded to a multiple of samp_factor DCT blocks in each direction. */ 424 /* padded to a multiple of samp_factor DCT blocks in each direction. */
425 int ci; 425 int ci;
426 jpeg_component_info *compptr; 426 jpeg_component_info *compptr;
427 427
428 for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; 428 for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
429 ci++, compptr++) { 429 ci++, compptr++) {
430 coef->whole_image[ci] = (*cinfo->mem->request_virt_barray) 430 coef->whole_image[ci] = (*cinfo->mem->request_virt_barray)
431 ((j_common_ptr) cinfo, JPOOL_IMAGE, FALSE, 431 ((j_common_ptr) cinfo, JPOOL_IMAGE, FALSE,
432 (JDIMENSION) jround_up((long) compptr->width_in_blocks, 432 (JDIMENSION) jround_up((long) compptr->width_in_blocks,
433 (long) compptr->h_samp_factor), 433 (long) compptr->h_samp_factor),
434 (JDIMENSION) jround_up((long) compptr->height_in_blocks, 434 (JDIMENSION) jround_up((long) compptr->height_in_blocks,
435 (long) compptr->v_samp_factor), 435 (long) compptr->v_samp_factor),
436 (JDIMENSION) compptr->v_samp_factor); 436 (JDIMENSION) compptr->v_samp_factor);
437 } 437 }
438#else 438#else
439 ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); 439 ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
440#endif 440#endif
441 } else { 441 } else {
442 /* We only need a single-MCU buffer. */ 442 /* We only need a single-MCU buffer. */
443 JBLOCKROW buffer; 443 JBLOCKROW buffer;
444 int i; 444 int i;
445 445
446 buffer = (JBLOCKROW) 446 buffer = (JBLOCKROW)
447 (*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE, 447 (*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE,
448 C_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK)); 448 C_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK));
449 for (i = 0; i < C_MAX_BLOCKS_IN_MCU; i++) { 449 for (i = 0; i < C_MAX_BLOCKS_IN_MCU; i++) {
450 coef->MCU_buffer[i] = buffer + i; 450 coef->MCU_buffer[i] = buffer + i;
451 } 451 }
452 coef->whole_image[0] = NULL; /* flag for no virtual arrays */ 452 coef->whole_image[0] = NULL; /* flag for no virtual arrays */
453 } 453 }
454} 454}