aboutsummaryrefslogtreecommitdiffstatshomepage
path: root/libraries/irrlicht-1.8/source/Irrlicht/jpeglib/jcarith.c
diff options
context:
space:
mode:
authorDavid Walter Seikel2013-01-13 17:24:39 +1000
committerDavid Walter Seikel2013-01-13 17:24:39 +1000
commit393b5cd1dc438872af89d334ef6e5fcc59f27d47 (patch)
tree6a14521219942a08a1b95cb2f5a923a9edd60f63 /libraries/irrlicht-1.8/source/Irrlicht/jpeglib/jcarith.c
parentAdd a note about rasters suggested start up code. (diff)
downloadSledjHamr-393b5cd1dc438872af89d334ef6e5fcc59f27d47.zip
SledjHamr-393b5cd1dc438872af89d334ef6e5fcc59f27d47.tar.gz
SledjHamr-393b5cd1dc438872af89d334ef6e5fcc59f27d47.tar.bz2
SledjHamr-393b5cd1dc438872af89d334ef6e5fcc59f27d47.tar.xz
Added Irrlicht 1.8, but without all the Windows binaries.
Diffstat (limited to 'libraries/irrlicht-1.8/source/Irrlicht/jpeglib/jcarith.c')
-rw-r--r--libraries/irrlicht-1.8/source/Irrlicht/jpeglib/jcarith.c937
1 files changed, 937 insertions, 0 deletions
diff --git a/libraries/irrlicht-1.8/source/Irrlicht/jpeglib/jcarith.c b/libraries/irrlicht-1.8/source/Irrlicht/jpeglib/jcarith.c
new file mode 100644
index 0000000..60c0ed7
--- /dev/null
+++ b/libraries/irrlicht-1.8/source/Irrlicht/jpeglib/jcarith.c
@@ -0,0 +1,937 @@
1/*
2 * jcarith.c
3 *
4 * Developed 1997-2011 by Guido Vollbeding.
5 * This file is part of the Independent JPEG Group's software.
6 * For conditions of distribution and use, see the accompanying README file.
7 *
8 * This file contains portable arithmetic entropy encoding routines for JPEG
9 * (implementing the ISO/IEC IS 10918-1 and CCITT Recommendation ITU-T T.81).
10 *
11 * Both sequential and progressive modes are supported in this single module.
12 *
13 * Suspension is not currently supported in this module.
14 */
15
16#define JPEG_INTERNALS
17#include "jinclude.h"
18#include "jpeglib.h"
19
20
21/* Expanded entropy encoder object for arithmetic encoding. */
22
23typedef struct {
24 struct jpeg_entropy_encoder pub; /* public fields */
25
26 INT32 c; /* C register, base of coding interval, layout as in sec. D.1.3 */
27 INT32 a; /* A register, normalized size of coding interval */
28 INT32 sc; /* counter for stacked 0xFF values which might overflow */
29 INT32 zc; /* counter for pending 0x00 output values which might *
30 * be discarded at the end ("Pacman" termination) */
31 int ct; /* bit shift counter, determines when next byte will be written */
32 int buffer; /* buffer for most recent output byte != 0xFF */
33
34 int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
35 int dc_context[MAX_COMPS_IN_SCAN]; /* context index for DC conditioning */
36
37 unsigned int restarts_to_go; /* MCUs left in this restart interval */
38 int next_restart_num; /* next restart number to write (0-7) */
39
40 /* Pointers to statistics areas (these workspaces have image lifespan) */
41 unsigned char * dc_stats[NUM_ARITH_TBLS];
42 unsigned char * ac_stats[NUM_ARITH_TBLS];
43
44 /* Statistics bin for coding with fixed probability 0.5 */
45 unsigned char fixed_bin[4];
46} arith_entropy_encoder;
47
48typedef arith_entropy_encoder * arith_entropy_ptr;
49
50/* The following two definitions specify the allocation chunk size
51 * for the statistics area.
52 * According to sections F.1.4.4.1.3 and F.1.4.4.2, we need at least
53 * 49 statistics bins for DC, and 245 statistics bins for AC coding.
54 *
55 * We use a compact representation with 1 byte per statistics bin,
56 * thus the numbers directly represent byte sizes.
57 * This 1 byte per statistics bin contains the meaning of the MPS
58 * (more probable symbol) in the highest bit (mask 0x80), and the
59 * index into the probability estimation state machine table
60 * in the lower bits (mask 0x7F).
61 */
62
63#define DC_STAT_BINS 64
64#define AC_STAT_BINS 256
65
66/* NOTE: Uncomment the following #define if you want to use the
67 * given formula for calculating the AC conditioning parameter Kx
68 * for spectral selection progressive coding in section G.1.3.2
69 * of the spec (Kx = Kmin + SRL (8 + Se - Kmin) 4).
70 * Although the spec and P&M authors claim that this "has proven
71 * to give good results for 8 bit precision samples", I'm not
72 * convinced yet that this is really beneficial.
73 * Early tests gave only very marginal compression enhancements
74 * (a few - around 5 or so - bytes even for very large files),
75 * which would turn out rather negative if we'd suppress the
76 * DAC (Define Arithmetic Conditioning) marker segments for
77 * the default parameters in the future.
78 * Note that currently the marker writing module emits 12-byte
79 * DAC segments for a full-component scan in a color image.
80 * This is not worth worrying about IMHO. However, since the
81 * spec defines the default values to be used if the tables
82 * are omitted (unlike Huffman tables, which are required
83 * anyway), one might optimize this behaviour in the future,
84 * and then it would be disadvantageous to use custom tables if
85 * they don't provide sufficient gain to exceed the DAC size.
86 *
87 * On the other hand, I'd consider it as a reasonable result
88 * that the conditioning has no significant influence on the
89 * compression performance. This means that the basic
90 * statistical model is already rather stable.
91 *
92 * Thus, at the moment, we use the default conditioning values
93 * anyway, and do not use the custom formula.
94 *
95#define CALCULATE_SPECTRAL_CONDITIONING
96 */
97
98/* IRIGHT_SHIFT is like RIGHT_SHIFT, but works on int rather than INT32.
99 * We assume that int right shift is unsigned if INT32 right shift is,
100 * which should be safe.
101 */
102
103#ifdef RIGHT_SHIFT_IS_UNSIGNED
104#define ISHIFT_TEMPS int ishift_temp;
105#define IRIGHT_SHIFT(x,shft) \
106 ((ishift_temp = (x)) < 0 ? \
107 (ishift_temp >> (shft)) | ((~0) << (16-(shft))) : \
108 (ishift_temp >> (shft)))
109#else
110#define ISHIFT_TEMPS
111#define IRIGHT_SHIFT(x,shft) ((x) >> (shft))
112#endif
113
114
115LOCAL(void)
116emit_byte (int val, j_compress_ptr cinfo)
117/* Write next output byte; we do not support suspension in this module. */
118{
119 struct jpeg_destination_mgr * dest = cinfo->dest;
120
121 *dest->next_output_byte++ = (JOCTET) val;
122 if (--dest->free_in_buffer == 0)
123 if (! (*dest->empty_output_buffer) (cinfo))
124 ERREXIT(cinfo, JERR_CANT_SUSPEND);
125}
126
127
128/*
129 * Finish up at the end of an arithmetic-compressed scan.
130 */
131
132METHODDEF(void)
133finish_pass (j_compress_ptr cinfo)
134{
135 arith_entropy_ptr e = (arith_entropy_ptr) cinfo->entropy;
136 INT32 temp;
137
138 /* Section D.1.8: Termination of encoding */
139
140 /* Find the e->c in the coding interval with the largest
141 * number of trailing zero bits */
142 if ((temp = (e->a - 1 + e->c) & 0xFFFF0000L) < e->c)
143 e->c = temp + 0x8000L;
144 else
145 e->c = temp;
146 /* Send remaining bytes to output */
147 e->c <<= e->ct;
148 if (e->c & 0xF8000000L) {
149 /* One final overflow has to be handled */
150 if (e->buffer >= 0) {
151 if (e->zc)
152 do emit_byte(0x00, cinfo);
153 while (--e->zc);
154 emit_byte(e->buffer + 1, cinfo);
155 if (e->buffer + 1 == 0xFF)
156 emit_byte(0x00, cinfo);
157 }
158 e->zc += e->sc; /* carry-over converts stacked 0xFF bytes to 0x00 */
159 e->sc = 0;
160 } else {
161 if (e->buffer == 0)
162 ++e->zc;
163 else if (e->buffer >= 0) {
164 if (e->zc)
165 do emit_byte(0x00, cinfo);
166 while (--e->zc);
167 emit_byte(e->buffer, cinfo);
168 }
169 if (e->sc) {
170 if (e->zc)
171 do emit_byte(0x00, cinfo);
172 while (--e->zc);
173 do {
174 emit_byte(0xFF, cinfo);
175 emit_byte(0x00, cinfo);
176 } while (--e->sc);
177 }
178 }
179 /* Output final bytes only if they are not 0x00 */
180 if (e->c & 0x7FFF800L) {
181 if (e->zc) /* output final pending zero bytes */
182 do emit_byte(0x00, cinfo);
183 while (--e->zc);
184 emit_byte((e->c >> 19) & 0xFF, cinfo);
185 if (((e->c >> 19) & 0xFF) == 0xFF)
186 emit_byte(0x00, cinfo);
187 if (e->c & 0x7F800L) {
188 emit_byte((e->c >> 11) & 0xFF, cinfo);
189 if (((e->c >> 11) & 0xFF) == 0xFF)
190 emit_byte(0x00, cinfo);
191 }
192 }
193}
194
195
196/*
197 * The core arithmetic encoding routine (common in JPEG and JBIG).
198 * This needs to go as fast as possible.
199 * Machine-dependent optimization facilities
200 * are not utilized in this portable implementation.
201 * However, this code should be fairly efficient and
202 * may be a good base for further optimizations anyway.
203 *
204 * Parameter 'val' to be encoded may be 0 or 1 (binary decision).
205 *
206 * Note: I've added full "Pacman" termination support to the
207 * byte output routines, which is equivalent to the optional
208 * Discard_final_zeros procedure (Figure D.15) in the spec.
209 * Thus, we always produce the shortest possible output
210 * stream compliant to the spec (no trailing zero bytes,
211 * except for FF stuffing).
212 *
213 * I've also introduced a new scheme for accessing
214 * the probability estimation state machine table,
215 * derived from Markus Kuhn's JBIG implementation.
216 */
217
218LOCAL(void)
219arith_encode (j_compress_ptr cinfo, unsigned char *st, int val)
220{
221 register arith_entropy_ptr e = (arith_entropy_ptr) cinfo->entropy;
222 register unsigned char nl, nm;
223 register INT32 qe, temp;
224 register int sv;
225
226 /* Fetch values from our compact representation of Table D.3(D.2):
227 * Qe values and probability estimation state machine
228 */
229 sv = *st;
230 qe = jpeg_aritab[sv & 0x7F]; /* => Qe_Value */
231 nl = qe & 0xFF; qe >>= 8; /* Next_Index_LPS + Switch_MPS */
232 nm = qe & 0xFF; qe >>= 8; /* Next_Index_MPS */
233
234 /* Encode & estimation procedures per sections D.1.4 & D.1.5 */
235 e->a -= qe;
236 if (val != (sv >> 7)) {
237 /* Encode the less probable symbol */
238 if (e->a >= qe) {
239 /* If the interval size (qe) for the less probable symbol (LPS)
240 * is larger than the interval size for the MPS, then exchange
241 * the two symbols for coding efficiency, otherwise code the LPS
242 * as usual: */
243 e->c += e->a;
244 e->a = qe;
245 }
246 *st = (sv & 0x80) ^ nl; /* Estimate_after_LPS */
247 } else {
248 /* Encode the more probable symbol */
249 if (e->a >= 0x8000L)
250 return; /* A >= 0x8000 -> ready, no renormalization required */
251 if (e->a < qe) {
252 /* If the interval size (qe) for the less probable symbol (LPS)
253 * is larger than the interval size for the MPS, then exchange
254 * the two symbols for coding efficiency: */
255 e->c += e->a;
256 e->a = qe;
257 }
258 *st = (sv & 0x80) ^ nm; /* Estimate_after_MPS */
259 }
260
261 /* Renormalization & data output per section D.1.6 */
262 do {
263 e->a <<= 1;
264 e->c <<= 1;
265 if (--e->ct == 0) {
266 /* Another byte is ready for output */
267 temp = e->c >> 19;
268 if (temp > 0xFF) {
269 /* Handle overflow over all stacked 0xFF bytes */
270 if (e->buffer >= 0) {
271 if (e->zc)
272 do emit_byte(0x00, cinfo);
273 while (--e->zc);
274 emit_byte(e->buffer + 1, cinfo);
275 if (e->buffer + 1 == 0xFF)
276 emit_byte(0x00, cinfo);
277 }
278 e->zc += e->sc; /* carry-over converts stacked 0xFF bytes to 0x00 */
279 e->sc = 0;
280 /* Note: The 3 spacer bits in the C register guarantee
281 * that the new buffer byte can't be 0xFF here
282 * (see page 160 in the P&M JPEG book). */
283 e->buffer = temp & 0xFF; /* new output byte, might overflow later */
284 } else if (temp == 0xFF) {
285 ++e->sc; /* stack 0xFF byte (which might overflow later) */
286 } else {
287 /* Output all stacked 0xFF bytes, they will not overflow any more */
288 if (e->buffer == 0)
289 ++e->zc;
290 else if (e->buffer >= 0) {
291 if (e->zc)
292 do emit_byte(0x00, cinfo);
293 while (--e->zc);
294 emit_byte(e->buffer, cinfo);
295 }
296 if (e->sc) {
297 if (e->zc)
298 do emit_byte(0x00, cinfo);
299 while (--e->zc);
300 do {
301 emit_byte(0xFF, cinfo);
302 emit_byte(0x00, cinfo);
303 } while (--e->sc);
304 }
305 e->buffer = temp & 0xFF; /* new output byte (can still overflow) */
306 }
307 e->c &= 0x7FFFFL;
308 e->ct += 8;
309 }
310 } while (e->a < 0x8000L);
311}
312
313
314/*
315 * Emit a restart marker & resynchronize predictions.
316 */
317
318LOCAL(void)
319emit_restart (j_compress_ptr cinfo, int restart_num)
320{
321 arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
322 int ci;
323 jpeg_component_info * compptr;
324
325 finish_pass(cinfo);
326
327 emit_byte(0xFF, cinfo);
328 emit_byte(JPEG_RST0 + restart_num, cinfo);
329
330 /* Re-initialize statistics areas */
331 for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
332 compptr = cinfo->cur_comp_info[ci];
333 /* DC needs no table for refinement scan */
334 if (cinfo->Ss == 0 && cinfo->Ah == 0) {
335 MEMZERO(entropy->dc_stats[compptr->dc_tbl_no], DC_STAT_BINS);
336 /* Reset DC predictions to 0 */
337 entropy->last_dc_val[ci] = 0;
338 entropy->dc_context[ci] = 0;
339 }
340 /* AC needs no table when not present */
341 if (cinfo->Se) {
342 MEMZERO(entropy->ac_stats[compptr->ac_tbl_no], AC_STAT_BINS);
343 }
344 }
345
346 /* Reset arithmetic encoding variables */
347 entropy->c = 0;
348 entropy->a = 0x10000L;
349 entropy->sc = 0;
350 entropy->zc = 0;
351 entropy->ct = 11;
352 entropy->buffer = -1; /* empty */
353}
354
355
356/*
357 * MCU encoding for DC initial scan (either spectral selection,
358 * or first pass of successive approximation).
359 */
360
361METHODDEF(boolean)
362encode_mcu_DC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
363{
364 arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
365 JBLOCKROW block;
366 unsigned char *st;
367 int blkn, ci, tbl;
368 int v, v2, m;
369 ISHIFT_TEMPS
370
371 /* Emit restart marker if needed */
372 if (cinfo->restart_interval) {
373 if (entropy->restarts_to_go == 0) {
374 emit_restart(cinfo, entropy->next_restart_num);
375 entropy->restarts_to_go = cinfo->restart_interval;
376 entropy->next_restart_num++;
377 entropy->next_restart_num &= 7;
378 }
379 entropy->restarts_to_go--;
380 }
381
382 /* Encode the MCU data blocks */
383 for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
384 block = MCU_data[blkn];
385 ci = cinfo->MCU_membership[blkn];
386 tbl = cinfo->cur_comp_info[ci]->dc_tbl_no;
387
388 /* Compute the DC value after the required point transform by Al.
389 * This is simply an arithmetic right shift.
390 */
391 m = IRIGHT_SHIFT((int) ((*block)[0]), cinfo->Al);
392
393 /* Sections F.1.4.1 & F.1.4.4.1: Encoding of DC coefficients */
394
395 /* Table F.4: Point to statistics bin S0 for DC coefficient coding */
396 st = entropy->dc_stats[tbl] + entropy->dc_context[ci];
397
398 /* Figure F.4: Encode_DC_DIFF */
399 if ((v = m - entropy->last_dc_val[ci]) == 0) {
400 arith_encode(cinfo, st, 0);
401 entropy->dc_context[ci] = 0; /* zero diff category */
402 } else {
403 entropy->last_dc_val[ci] = m;
404 arith_encode(cinfo, st, 1);
405 /* Figure F.6: Encoding nonzero value v */
406 /* Figure F.7: Encoding the sign of v */
407 if (v > 0) {
408 arith_encode(cinfo, st + 1, 0); /* Table F.4: SS = S0 + 1 */
409 st += 2; /* Table F.4: SP = S0 + 2 */
410 entropy->dc_context[ci] = 4; /* small positive diff category */
411 } else {
412 v = -v;
413 arith_encode(cinfo, st + 1, 1); /* Table F.4: SS = S0 + 1 */
414 st += 3; /* Table F.4: SN = S0 + 3 */
415 entropy->dc_context[ci] = 8; /* small negative diff category */
416 }
417 /* Figure F.8: Encoding the magnitude category of v */
418 m = 0;
419 if (v -= 1) {
420 arith_encode(cinfo, st, 1);
421 m = 1;
422 v2 = v;
423 st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */
424 while (v2 >>= 1) {
425 arith_encode(cinfo, st, 1);
426 m <<= 1;
427 st += 1;
428 }
429 }
430 arith_encode(cinfo, st, 0);
431 /* Section F.1.4.4.1.2: Establish dc_context conditioning category */
432 if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1))
433 entropy->dc_context[ci] = 0; /* zero diff category */
434 else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1))
435 entropy->dc_context[ci] += 8; /* large diff category */
436 /* Figure F.9: Encoding the magnitude bit pattern of v */
437 st += 14;
438 while (m >>= 1)
439 arith_encode(cinfo, st, (m & v) ? 1 : 0);
440 }
441 }
442
443 return TRUE;
444}
445
446
447/*
448 * MCU encoding for AC initial scan (either spectral selection,
449 * or first pass of successive approximation).
450 */
451
452METHODDEF(boolean)
453encode_mcu_AC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
454{
455 arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
456 JBLOCKROW block;
457 unsigned char *st;
458 int tbl, k, ke;
459 int v, v2, m;
460 const int * natural_order;
461
462 /* Emit restart marker if needed */
463 if (cinfo->restart_interval) {
464 if (entropy->restarts_to_go == 0) {
465 emit_restart(cinfo, entropy->next_restart_num);
466 entropy->restarts_to_go = cinfo->restart_interval;
467 entropy->next_restart_num++;
468 entropy->next_restart_num &= 7;
469 }
470 entropy->restarts_to_go--;
471 }
472
473 natural_order = cinfo->natural_order;
474
475 /* Encode the MCU data block */
476 block = MCU_data[0];
477 tbl = cinfo->cur_comp_info[0]->ac_tbl_no;
478
479 /* Sections F.1.4.2 & F.1.4.4.2: Encoding of AC coefficients */
480
481 /* Establish EOB (end-of-block) index */
482 for (ke = cinfo->Se; ke > 0; ke--)
483 /* We must apply the point transform by Al. For AC coefficients this
484 * is an integer division with rounding towards 0. To do this portably
485 * in C, we shift after obtaining the absolute value.
486 */
487 if ((v = (*block)[natural_order[ke]]) >= 0) {
488 if (v >>= cinfo->Al) break;
489 } else {
490 v = -v;
491 if (v >>= cinfo->Al) break;
492 }
493
494 /* Figure F.5: Encode_AC_Coefficients */
495 for (k = cinfo->Ss; k <= ke; k++) {
496 st = entropy->ac_stats[tbl] + 3 * (k - 1);
497 arith_encode(cinfo, st, 0); /* EOB decision */
498 for (;;) {
499 if ((v = (*block)[natural_order[k]]) >= 0) {
500 if (v >>= cinfo->Al) {
501 arith_encode(cinfo, st + 1, 1);
502 arith_encode(cinfo, entropy->fixed_bin, 0);
503 break;
504 }
505 } else {
506 v = -v;
507 if (v >>= cinfo->Al) {
508 arith_encode(cinfo, st + 1, 1);
509 arith_encode(cinfo, entropy->fixed_bin, 1);
510 break;
511 }
512 }
513 arith_encode(cinfo, st + 1, 0); st += 3; k++;
514 }
515 st += 2;
516 /* Figure F.8: Encoding the magnitude category of v */
517 m = 0;
518 if (v -= 1) {
519 arith_encode(cinfo, st, 1);
520 m = 1;
521 v2 = v;
522 if (v2 >>= 1) {
523 arith_encode(cinfo, st, 1);
524 m <<= 1;
525 st = entropy->ac_stats[tbl] +
526 (k <= cinfo->arith_ac_K[tbl] ? 189 : 217);
527 while (v2 >>= 1) {
528 arith_encode(cinfo, st, 1);
529 m <<= 1;
530 st += 1;
531 }
532 }
533 }
534 arith_encode(cinfo, st, 0);
535 /* Figure F.9: Encoding the magnitude bit pattern of v */
536 st += 14;
537 while (m >>= 1)
538 arith_encode(cinfo, st, (m & v) ? 1 : 0);
539 }
540 /* Encode EOB decision only if k <= cinfo->Se */
541 if (k <= cinfo->Se) {
542 st = entropy->ac_stats[tbl] + 3 * (k - 1);
543 arith_encode(cinfo, st, 1);
544 }
545
546 return TRUE;
547}
548
549
550/*
551 * MCU encoding for DC successive approximation refinement scan.
552 */
553
554METHODDEF(boolean)
555encode_mcu_DC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
556{
557 arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
558 unsigned char *st;
559 int Al, blkn;
560
561 /* Emit restart marker if needed */
562 if (cinfo->restart_interval) {
563 if (entropy->restarts_to_go == 0) {
564 emit_restart(cinfo, entropy->next_restart_num);
565 entropy->restarts_to_go = cinfo->restart_interval;
566 entropy->next_restart_num++;
567 entropy->next_restart_num &= 7;
568 }
569 entropy->restarts_to_go--;
570 }
571
572 st = entropy->fixed_bin; /* use fixed probability estimation */
573 Al = cinfo->Al;
574
575 /* Encode the MCU data blocks */
576 for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
577 /* We simply emit the Al'th bit of the DC coefficient value. */
578 arith_encode(cinfo, st, (MCU_data[blkn][0][0] >> Al) & 1);
579 }
580
581 return TRUE;
582}
583
584
585/*
586 * MCU encoding for AC successive approximation refinement scan.
587 */
588
589METHODDEF(boolean)
590encode_mcu_AC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
591{
592 arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
593 JBLOCKROW block;
594 unsigned char *st;
595 int tbl, k, ke, kex;
596 int v;
597 const int * natural_order;
598
599 /* Emit restart marker if needed */
600 if (cinfo->restart_interval) {
601 if (entropy->restarts_to_go == 0) {
602 emit_restart(cinfo, entropy->next_restart_num);
603 entropy->restarts_to_go = cinfo->restart_interval;
604 entropy->next_restart_num++;
605 entropy->next_restart_num &= 7;
606 }
607 entropy->restarts_to_go--;
608 }
609
610 natural_order = cinfo->natural_order;
611
612 /* Encode the MCU data block */
613 block = MCU_data[0];
614 tbl = cinfo->cur_comp_info[0]->ac_tbl_no;
615
616 /* Section G.1.3.3: Encoding of AC coefficients */
617
618 /* Establish EOB (end-of-block) index */
619 for (ke = cinfo->Se; ke > 0; ke--)
620 /* We must apply the point transform by Al. For AC coefficients this
621 * is an integer division with rounding towards 0. To do this portably
622 * in C, we shift after obtaining the absolute value.
623 */
624 if ((v = (*block)[natural_order[ke]]) >= 0) {
625 if (v >>= cinfo->Al) break;
626 } else {
627 v = -v;
628 if (v >>= cinfo->Al) break;
629 }
630
631 /* Establish EOBx (previous stage end-of-block) index */
632 for (kex = ke; kex > 0; kex--)
633 if ((v = (*block)[natural_order[kex]]) >= 0) {
634 if (v >>= cinfo->Ah) break;
635 } else {
636 v = -v;
637 if (v >>= cinfo->Ah) break;
638 }
639
640 /* Figure G.10: Encode_AC_Coefficients_SA */
641 for (k = cinfo->Ss; k <= ke; k++) {
642 st = entropy->ac_stats[tbl] + 3 * (k - 1);
643 if (k > kex)
644 arith_encode(cinfo, st, 0); /* EOB decision */
645 for (;;) {
646 if ((v = (*block)[natural_order[k]]) >= 0) {
647 if (v >>= cinfo->Al) {
648 if (v >> 1) /* previously nonzero coef */
649 arith_encode(cinfo, st + 2, (v & 1));
650 else { /* newly nonzero coef */
651 arith_encode(cinfo, st + 1, 1);
652 arith_encode(cinfo, entropy->fixed_bin, 0);
653 }
654 break;
655 }
656 } else {
657 v = -v;
658 if (v >>= cinfo->Al) {
659 if (v >> 1) /* previously nonzero coef */
660 arith_encode(cinfo, st + 2, (v & 1));
661 else { /* newly nonzero coef */
662 arith_encode(cinfo, st + 1, 1);
663 arith_encode(cinfo, entropy->fixed_bin, 1);
664 }
665 break;
666 }
667 }
668 arith_encode(cinfo, st + 1, 0); st += 3; k++;
669 }
670 }
671 /* Encode EOB decision only if k <= cinfo->Se */
672 if (k <= cinfo->Se) {
673 st = entropy->ac_stats[tbl] + 3 * (k - 1);
674 arith_encode(cinfo, st, 1);
675 }
676
677 return TRUE;
678}
679
680
681/*
682 * Encode and output one MCU's worth of arithmetic-compressed coefficients.
683 */
684
685METHODDEF(boolean)
686encode_mcu (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
687{
688 arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
689 jpeg_component_info * compptr;
690 JBLOCKROW block;
691 unsigned char *st;
692 int blkn, ci, tbl, k, ke;
693 int v, v2, m;
694 const int * natural_order;
695
696 /* Emit restart marker if needed */
697 if (cinfo->restart_interval) {
698 if (entropy->restarts_to_go == 0) {
699 emit_restart(cinfo, entropy->next_restart_num);
700 entropy->restarts_to_go = cinfo->restart_interval;
701 entropy->next_restart_num++;
702 entropy->next_restart_num &= 7;
703 }
704 entropy->restarts_to_go--;
705 }
706
707 natural_order = cinfo->natural_order;
708
709 /* Encode the MCU data blocks */
710 for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
711 block = MCU_data[blkn];
712 ci = cinfo->MCU_membership[blkn];
713 compptr = cinfo->cur_comp_info[ci];
714
715 /* Sections F.1.4.1 & F.1.4.4.1: Encoding of DC coefficients */
716
717 tbl = compptr->dc_tbl_no;
718
719 /* Table F.4: Point to statistics bin S0 for DC coefficient coding */
720 st = entropy->dc_stats[tbl] + entropy->dc_context[ci];
721
722 /* Figure F.4: Encode_DC_DIFF */
723 if ((v = (*block)[0] - entropy->last_dc_val[ci]) == 0) {
724 arith_encode(cinfo, st, 0);
725 entropy->dc_context[ci] = 0; /* zero diff category */
726 } else {
727 entropy->last_dc_val[ci] = (*block)[0];
728 arith_encode(cinfo, st, 1);
729 /* Figure F.6: Encoding nonzero value v */
730 /* Figure F.7: Encoding the sign of v */
731 if (v > 0) {
732 arith_encode(cinfo, st + 1, 0); /* Table F.4: SS = S0 + 1 */
733 st += 2; /* Table F.4: SP = S0 + 2 */
734 entropy->dc_context[ci] = 4; /* small positive diff category */
735 } else {
736 v = -v;
737 arith_encode(cinfo, st + 1, 1); /* Table F.4: SS = S0 + 1 */
738 st += 3; /* Table F.4: SN = S0 + 3 */
739 entropy->dc_context[ci] = 8; /* small negative diff category */
740 }
741 /* Figure F.8: Encoding the magnitude category of v */
742 m = 0;
743 if (v -= 1) {
744 arith_encode(cinfo, st, 1);
745 m = 1;
746 v2 = v;
747 st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */
748 while (v2 >>= 1) {
749 arith_encode(cinfo, st, 1);
750 m <<= 1;
751 st += 1;
752 }
753 }
754 arith_encode(cinfo, st, 0);
755 /* Section F.1.4.4.1.2: Establish dc_context conditioning category */
756 if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1))
757 entropy->dc_context[ci] = 0; /* zero diff category */
758 else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1))
759 entropy->dc_context[ci] += 8; /* large diff category */
760 /* Figure F.9: Encoding the magnitude bit pattern of v */
761 st += 14;
762 while (m >>= 1)
763 arith_encode(cinfo, st, (m & v) ? 1 : 0);
764 }
765
766 /* Sections F.1.4.2 & F.1.4.4.2: Encoding of AC coefficients */
767
768 if ((ke = cinfo->lim_Se) == 0) continue;
769 tbl = compptr->ac_tbl_no;
770
771 /* Establish EOB (end-of-block) index */
772 do {
773 if ((*block)[natural_order[ke]]) break;
774 } while (--ke);
775
776 /* Figure F.5: Encode_AC_Coefficients */
777 for (k = 0; k < ke;) {
778 st = entropy->ac_stats[tbl] + 3 * k;
779 arith_encode(cinfo, st, 0); /* EOB decision */
780 while ((v = (*block)[natural_order[++k]]) == 0) {
781 arith_encode(cinfo, st + 1, 0);
782 st += 3;
783 }
784 arith_encode(cinfo, st + 1, 1);
785 /* Figure F.6: Encoding nonzero value v */
786 /* Figure F.7: Encoding the sign of v */
787 if (v > 0) {
788 arith_encode(cinfo, entropy->fixed_bin, 0);
789 } else {
790 v = -v;
791 arith_encode(cinfo, entropy->fixed_bin, 1);
792 }
793 st += 2;
794 /* Figure F.8: Encoding the magnitude category of v */
795 m = 0;
796 if (v -= 1) {
797 arith_encode(cinfo, st, 1);
798 m = 1;
799 v2 = v;
800 if (v2 >>= 1) {
801 arith_encode(cinfo, st, 1);
802 m <<= 1;
803 st = entropy->ac_stats[tbl] +
804 (k <= cinfo->arith_ac_K[tbl] ? 189 : 217);
805 while (v2 >>= 1) {
806 arith_encode(cinfo, st, 1);
807 m <<= 1;
808 st += 1;
809 }
810 }
811 }
812 arith_encode(cinfo, st, 0);
813 /* Figure F.9: Encoding the magnitude bit pattern of v */
814 st += 14;
815 while (m >>= 1)
816 arith_encode(cinfo, st, (m & v) ? 1 : 0);
817 }
818 /* Encode EOB decision only if k < cinfo->lim_Se */
819 if (k < cinfo->lim_Se) {
820 st = entropy->ac_stats[tbl] + 3 * k;
821 arith_encode(cinfo, st, 1);
822 }
823 }
824
825 return TRUE;
826}
827
828
829/*
830 * Initialize for an arithmetic-compressed scan.
831 */
832
833METHODDEF(void)
834start_pass (j_compress_ptr cinfo, boolean gather_statistics)
835{
836 arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
837 int ci, tbl;
838 jpeg_component_info * compptr;
839
840 if (gather_statistics)
841 /* Make sure to avoid that in the master control logic!
842 * We are fully adaptive here and need no extra
843 * statistics gathering pass!
844 */
845 ERREXIT(cinfo, JERR_NOT_COMPILED);
846
847 /* We assume jcmaster.c already validated the progressive scan parameters. */
848
849 /* Select execution routines */
850 if (cinfo->progressive_mode) {
851 if (cinfo->Ah == 0) {
852 if (cinfo->Ss == 0)
853 entropy->pub.encode_mcu = encode_mcu_DC_first;
854 else
855 entropy->pub.encode_mcu = encode_mcu_AC_first;
856 } else {
857 if (cinfo->Ss == 0)
858 entropy->pub.encode_mcu = encode_mcu_DC_refine;
859 else
860 entropy->pub.encode_mcu = encode_mcu_AC_refine;
861 }
862 } else
863 entropy->pub.encode_mcu = encode_mcu;
864
865 /* Allocate & initialize requested statistics areas */
866 for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
867 compptr = cinfo->cur_comp_info[ci];
868 /* DC needs no table for refinement scan */
869 if (cinfo->Ss == 0 && cinfo->Ah == 0) {
870 tbl = compptr->dc_tbl_no;
871 if (tbl < 0 || tbl >= NUM_ARITH_TBLS)
872 ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);
873 if (entropy->dc_stats[tbl] == NULL)
874 entropy->dc_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small)
875 ((j_common_ptr) cinfo, JPOOL_IMAGE, DC_STAT_BINS);
876 MEMZERO(entropy->dc_stats[tbl], DC_STAT_BINS);
877 /* Initialize DC predictions to 0 */
878 entropy->last_dc_val[ci] = 0;
879 entropy->dc_context[ci] = 0;
880 }
881 /* AC needs no table when not present */
882 if (cinfo->Se) {
883 tbl = compptr->ac_tbl_no;
884 if (tbl < 0 || tbl >= NUM_ARITH_TBLS)
885 ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);
886 if (entropy->ac_stats[tbl] == NULL)
887 entropy->ac_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small)
888 ((j_common_ptr) cinfo, JPOOL_IMAGE, AC_STAT_BINS);
889 MEMZERO(entropy->ac_stats[tbl], AC_STAT_BINS);
890#ifdef CALCULATE_SPECTRAL_CONDITIONING
891 if (cinfo->progressive_mode)
892 /* Section G.1.3.2: Set appropriate arithmetic conditioning value Kx */
893 cinfo->arith_ac_K[tbl] = cinfo->Ss + ((8 + cinfo->Se - cinfo->Ss) >> 4);
894#endif
895 }
896 }
897
898 /* Initialize arithmetic encoding variables */
899 entropy->c = 0;
900 entropy->a = 0x10000L;
901 entropy->sc = 0;
902 entropy->zc = 0;
903 entropy->ct = 11;
904 entropy->buffer = -1; /* empty */
905
906 /* Initialize restart stuff */
907 entropy->restarts_to_go = cinfo->restart_interval;
908 entropy->next_restart_num = 0;
909}
910
911
912/*
913 * Module initialization routine for arithmetic entropy encoding.
914 */
915
916GLOBAL(void)
917jinit_arith_encoder (j_compress_ptr cinfo)
918{
919 arith_entropy_ptr entropy;
920 int i;
921
922 entropy = (arith_entropy_ptr)
923 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
924 SIZEOF(arith_entropy_encoder));
925 cinfo->entropy = (struct jpeg_entropy_encoder *) entropy;
926 entropy->pub.start_pass = start_pass;
927 entropy->pub.finish_pass = finish_pass;
928
929 /* Mark tables unallocated */
930 for (i = 0; i < NUM_ARITH_TBLS; i++) {
931 entropy->dc_stats[i] = NULL;
932 entropy->ac_stats[i] = NULL;
933 }
934
935 /* Initialize index for fixed probability estimation */
936 entropy->fixed_bin[0] = 113;
937}